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Abstract: With the continuous progress of human production and life, air quality has become the
focus of attention. In this paper, Beijing, Tianjin, Hebei, Shanxi, Shandong and Henan provinces
were taken as the study area, where there are 58 air quality monitoring stations from which daily
and monthly data are obtained. Firstly, the temporal characteristics of the air quality index (AQI) are
explored. Then, the spatial distribution of the AQI is mapped by the inverse distance weighted (IDW)
method, the ordinary kriging (OK) method and the Bayesian maximum entropy (BME) method.
Additionally, cross-validation is utilized to evaluate the mapping results of these methods with two
indexes: mean absolute error and root mean square interpolation error. Furthermore, the correlation
analysis of meteorological factors, including precipitation anomaly percentage, precipitation, mean
wind speed, average temperature, average water vapor pressure and average relative humidity,
potentially affecting the AQI was carried out on both daily and monthly scales. In the study area
and period, AQI shows a clear periodicity, although overall, it has a downward trend. The peak of
AQI appeared in November, December and January. BME interpolation has a higher accuracy than
OK. IDW has the maximum error. Overall, the AQI of winter (November), spring (February) is much
worse than summer (May) and autumn (August). Additionally, the air quality has improved during
the study period. The most polluted areas of air quality are concentrated in Beijing, the southern part
of Tianjin, the central-southern part of Hebei, the central-northern part of Henan and the western
part of Shandong. The average wind speed and average relative humidity have real correlation with
AQI. The effect of meteorological factors such as wind, precipitation and humidity on AQI is putative
to have temporal lag to different extents. AQI of cities with poor air quality will fluctuate greater
than that of others when weather changes and has higher correlation with meteorological factors.

Keywords: air quality index; correlation analysis; inverse distance weighting; kriging method;
Bayesian maximum entropy

1. Introduction

Nowadays, with the development of the social economy and the impact of human production
and life, environmental problems are becoming more and more serious; urban air quality is getting
worse and worse; and it is urgent to study and solve the problem of air quality [1,2]. We began
to monitor air quality very early, for example surface ozone over Athens, Greece, for the period
1901–1940. Comparing the historical data with the recent data, we can see the trend of air quality in
big cities. Furthermore, it is necessary to re-evaluate historical data with new tools in recent years [3].
From the long-term variations of the broadband direct and diffuse irradiances, as well as the ones
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of turbidity coefficients, the time evolution of the air quality for a longer period in the past can be
drawn indirectly [4]. A previous study reported that the various spectral wave bands for clear days
showed a pronounced decline in the period 1966–1990 for Athens, which was attributed to the increase
of air pollution due to the continuous development of the city in this period [5]. Air pollution has a
certain correlation with the occurrence of lung cancer and cardiovascular disease [6–9]. The plausible
association between increased levels of solar ultraviolet radiation, air-pollution at the ground level and
the development of ocular skin defects (for example, erythema, cataract, cornea, conjunctiva, eyelid
and lens damage) is studied in [10,11]. Urban air pollution makes the ground ultraviolet radiation
significantly reduced (up to 50%) [12].

In recent decades, the Chinese economy has made incremental progress thanks to the policy of
reform and opening; whereas, in the meantime, the air quality problems have deteriorated rapidly
all over the whole country because of the lack of the parallel high-tech guarantee and environmental
protection, especially in northern regions of China, such as Beijing, Tianjin, Hebei and Shandong.
The air quality report from Ministry of Environment Protection of the People’s Republic of China
shows that for 13 prefecture level cities in Beijing, Tianjin and Hebei, their average air quality standard
day ratio is 37.5%, which is 23% lower than the other 74 cities. To evaluate the air quality quantitatively,
some indices are proposed. The more recently used one is called the air quality index (AQI). AQI is a
dimensionless quantity. It is a substitute for the air pollution index after the second half of the year
2012. AQI is based on the comprehensive assessment of six pollutants: sulfur dioxide, nitrogen dioxide,
PM10, PM2.5, ozone and carbon monoxide, as stipulated by the Chinese government’s Ambient Air
Quality Standard (GB3095-2012); see [13]. The index is divided into six levels according to its value.
The higher the index or level is, the worse the air pollution is.

The AQI has temporal and spatial characteristics and is highly correlated in time and space.
Time series analysis is an important method to study the temporal characteristics of air quality,
while spatial interpolation is a primary method for exploring its spatial patterns. Commonly-used
spatial interpolation methods include: (1) the gradient descent algorithm; (2) inverse distance weight
methods; (3) kriging methods; (4) smoothing trend functions; (5) the polynomial approximation
method; and (6) the space spline pre-estimation method. Bayesian maximum entropy proposed in
recent years has also been widely used; see [14]. Bao et al. analyzed the distribution characteristics
of air quality in China in time and space and revealed the cyclical nature of air quality in the
seasons and the correlation between precipitation, pressure and temperature of air quality. AQI
in the south is lower than the north, in the vertical direction; it declines with elevation; and with the
increase in height, the trend of change gradually slows down [15,16]. Zhang analyzed air quality in
Urumqi by gray correlation analysis and identified several covariates, which are related to air quality:
industrial pollution, urban greening level, urban heating, automobile exhaust pollution, etc.; see [17].
Ashraf interpolated daily meteorological data from 17 stations in Nebraska, Kansas and Colorado
from 1989–1990 by the inverse distance squares method, the inverse distance method, ordinary
kriging and co-kriging and ascertained that co-kriging is the best one of these methods according
to the comparison of root mean square interpolation error (RMSIE) [18]. The existing methods
of spatio-temporal interpolation and their existing problems are summarized, and an improved
spatio-temporal interpolation method is proposed in [19].

The remainder of the paper is organized as follows. Firstly, the materials and methods used in
this paper are explained in Sections 2 and 3. Then, the analysis of temporal and spatial characteristics
is carried out, and the results are shown and discussed in Section 4. Next, the relationship between
AQI and meteorological conditions is presented in view of the potential impact of several main
meteorological factors, precipitation, wind, temperature, water vapor pressure and relative humidity,
in Section 5. Finally, conclusions are drawn in Section 6.
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2. Materials

2.1. Study Area

The study area of this paper covers Beijing, Tianjin, Hebei, Shanxi, Henan and Shandong. This area
covers a total area of 712,300 square kilometers, with a population of 330 million that accounts for
24.2% of the nation. According to the Statistical Yearbook 2014, the GDP in the study area amounts
to 27.2% of the nation. In terms of the health report from the national institutions, such as CDC,
cancer morbidity has had a rapid increase in recent years. Some research also confirmed the significant
correlation between cardiovascular diseases and air quality [6–9].

The study area is the most severely polluted one in China. Though the status of air quality is
slightly getting better in recent years, the average days exceeding the normal standard are still more
than 170. In the study area, there are in total 1710 daytimes of heavy pollution or above, which accounts
for 44.1% of the whole nation. With regard to the seasons when air pollution occurs, the most frequent
occurrences of heavy pollution are from January–March and October–December. The study area
suffered from several large-scale heavy pollution processes in Decembers, and the days with heavy or
above in the study account for 36.8% of the nation, which is remarkably higher than other months.
Given the reason that the area is one of the most polluted areas in the country, with a dense population,
diversified economic development levels, varied weather and terrain, we selected this study area to
analyze the temporal and spatial characteristics of AQI.

There are 1436 monitoring stations of air quality in total all over China from the Ministry of
Environment Protection of the People’s Republic of China website. There are 58 monitoring sites in
Beijing, Tianjin, Hebei, Shanxi, Henan and Shandong. The study area, its location in China and the
monitoring stations to be used are shown in Figure 1.
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2.2. Data

In this paper, the AQI data are downloaded from the Ministry of Environment Protection of the
People’s Republic of China website.

AQI takes the maximum of the six IAQI (individual air quality index) values (SO2, NO2, PM10,
PM2.5, O3, CO). IAQI is calculated as follows:

IAQIi =
IAQIHi − IAQILi

BPHi − BPLi
(Ci − BPLi) + IAQILi (1)

where IAQIi represents the individual air quality index of the i-th pollutant. Ci is the concentration
of the i-th pollutant. BPHi and BPLi are the high and low values of the pollutant concentration limit
closest to Ci. IAQIHi and IAQILi are the individual air quality indices corresponding to BPHi and BPLi.
The values of IAQIHi, IAQILi, BPHi, BPLi reference the Chinese government’s Ambient Air Quality
Standard (GB3095-2012).

The monitoring network is composed of 58 ground-based monitoring sites scattered around the
entire study area (Figure 1). All of the monitoring sites are equipped with instruments for continuous
real-time monitoring of several kinds of air pollutants, including PM2.5, PM10, CO, SO2, O3 and NO2.
(Although PM2.5 and PM10 update every 24 h). It can provide a great quantity of samples for all kinds
of studies in the field of atmospheric pollutants. The monthly meteorological data come from the China
Meteorological Data website. The monitoring network is composed of 23 ground-based monitoring
sites scattered around the entire study area. These meteorological data are abstracted from the daily
dataset of China Ground International Exchange Stations. The dataset is from 194 basic ground
meteorological stations. Data items include: average air pressure, average air temperature, average
water vapor pressure, mean relative humidity, average wind speed, evaporation, sunshine duration
and precipitation. The time range of these data is from August 2014–May 2016. The coordinate system
used for the location information of these stations is WGS84.

We found that some stations have missed part of the early monthly data, from August
2014–November 2014, and other stations are complete. We call the stations with missing data as
the incomplete data stations; others are complete data stations. There are 43 complete data stations
and 15 incomplete data stations (Figure 1). When we use the data before November 2014 to perform
the spatial interpolation, we only use the data of complete data stations.

3. Methods

The main contents of the integration of multi-method used in this research are composed of
four parts, data extraction, preprocessing, spatial interpolation and correlation analysis (Figure 2).
We obtained daily AQI data from the website of the Ministry of Environment Protection of the People’s
Republic of China. The monthly meteorological data are downloaded from the China Meteorological
Data Service website. Then, the data are preprocessed by a customized Python program. The stations
contained in the study area are screened out and their locations are geocoded with a base map of the
study area. The monthly mean of each station is calculated according to the daily data. Next, three
interpolation methods are used to map the AQI data, and the mapping accuracy is evaluated and
compared to one another. Finally, a correlation analysis between AQI and several main meteorological
factors is carried out. The flowchart of AQI analysis is shown in Figure 2.
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3.1. Spatial Interpolation

As shown in Figure 2, we use three kinds of interpolation techniques to map the spatial
distribution of AQI in the study area.

Inverse distance weighting: The basic idea of inverse distance weighting interpolation (IDW) is:
suppose the weight of the influence of the known sample point on the predicted point is inversely
proportional to the distance between the two points. The smaller the distance, the bigger the
interpolation weight is. For a given prediction point, the sum of the weights of all known sample
points adjacent to it is always 1 [20]. IDW is formulated as:

X =

n
∑

i=1

Xi
dp

i

n
∑

i=1

1
dp

i

(2)

where X is the estimated value for a prediction point. Xi is the value for the i-th known sample point.
di is the distance between the i-th known sample point and the prediction point. p is the power of
weight. Its value is usually taken as 2, and the most selected range is [0.5, 3].

Kriging: Kriging methods play an important role in geostatistics. Its main idea is to give different
weights to the grade of each sample point according to the difference of the spatial position of the
known sample points and the correlation between the sample points. After the moving weighted
average, the average grade of the central area is estimated. It is formulated as:

z∗(x0) =
n

∑
i=1

λiz(xi) (3)

where Z∗(x0) is the spatial estimated value of the predicted point. Z(xi) is the known attribute value
of the i-th sample point. n is the total number of sample points. λi is the weight coefficient of the
corresponding sample point.

For ordinary kriging, at each sample point, the expected value of the random function is
re-estimated, and the sliding data neighborhood used by ordinary kriging makes the algorithm
as a whole nonstationary, but the mean and covariance corresponding to the change are stable [21].

The basic steps of ordinary kriging can be referred to [22].
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Bayesian maximum entropy: Christakos (1990) established the Bayesian maximum entropy (BME)
method. The BME method takes many types of data and different types of knowledge bases into spatial
interpolation. These data and information are divided into general knowledge (KG) and site-specific
knowledge (KS) [23–27]. The Ks is composed of soft data and hard data. Hard data are the values
obtained by measurement, while soft data are historical experience or data with high uncertainty. The
steps for calculating BME include the prior stage, pre-posterior stage and posterior stage. In the prior
stage, a maximum entropy theory as Equation (4) is used to obtain the prior distribution:

In f oG
(
Zmap

)
= − log fG

(
Zmap

)
(4)

where Zmap is the stochastic variable in the study area, Zmap =
(

Zhard, Zso f t, Z0

)
, and Zhard, Zso f t and

Z0 indicate the value of hard data, soft data and the location for estimating, respectively. fG
(
Zmap

)
indicates the pdf based on general knowledge KG. Based on these constraints and the Lagrange
multiplier approach, we can get the prior pdf:

fG
(
Zmap

)
= A−1 exp

(
Nc

∑
α=1

µαgα

(
Zmap

))
(5)

where µα indicates Lagrange’s multiplier, gα(Zmap) is the known function associated with Zmap based
on KG and A indicates the normalization coefficient:

A =
∫

exp

(
Nc

∑
α=1

µαgα

(
Zmap

))
dZmap (6)

In pre-posterior stage, the aim is to collect and organize additional auxiliary information in
appropriate forms to produce site-specific knowledge. Then, they will be used in the BME model.
Hard data have been incorporated into the prior stage indirectly and will be used directly at this stage.

In the posterior stage, a Bayesian conditionalization as Equation (7) is used to obtain the
posterior distribution:

fK(Z0) = fG

(
Z0

∣∣∣Zhard, Zso f t

)
= fG

(
Z0, Zhard, Zso f t

)
×
(

fG

(
Zhard, Zso f t

))−1
(7)

where Zhard = [x1, ..., xn]
′, Zso f t = [xn+1, ..., xm]

′ and n, m indicate the number of hard data and soft
data within the scope of maximum distance dmax to the estimation point, respectively.

3.2. Spatial Autocorrelation

Semivariogram: Spatial autocorrelation plays an important role in geostatistics. Both the kriging
and BME methods need considering spatial autocorrelation in their processes. French statistician
Georges Matheron proposed the semivariogram as a quantitative measure of spatial autocorrelation in
the 1960s [28].

The autocorrelation discussed in space is obviously related to spatial distance, and the function to
measure this correlation is called the semivariogram [29], defined as:

r(h) =

N(h)
∑

i=1
[ai − ai+h]

2

2N(h)
(8)

where r(h) represents the value of the semivariogram and N(h) represents the number of point pairs
with distance h in the study area. The numerator represents the sum of the squares of the differences
between the two attribute values of any two points with distance h. Generally, as the spatial distance
h between two points increases, the correlation is getting smaller and smaller, which means the
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degree of variation is increasing. Therefore, the semivariogram increases slowly with the increase of
spatial distance h [30]. The semivariogram can describe both the randomness and the structure of the
regionalized variables better than other measures, such as spatial covariance [31].

Process of calculating semivariogram: We can estimate the semivariogram from the sample data.
This estimated semivariogram is called the empirical semivariogram. For a study area, first calculate
the distance between all of the point pairs. In this paper, there are 2415 pairs of points to be calculated;
and find out the maximum and minimum values to determine lag distance h and lag level N. Starting
from N = 1, find all point pairs

(
Pi, Pj

)
that satisfied:

(N − 1)h ≤ dis
(

Pi, Pj
)
≤ Nh (9)

The distance of the point pairs is denoted by DISi. Then, calculate the square of the difference
between the attribute values.

Si =
[
a(Pi)− a

(
Pj
)]2 (10)

The number of point pairs we can find is N(h). Calculate the average distance.

havg =
1

N(h)

N(h)

∑
i=1

DISi (11)

The value of the semivariogram at this lag level is calculated by:

r∗
(
havg

)
=

1
2N(h)

N(h)

∑
i=1

Si (12)

Draw the points
(
havg, r∗

(
havg

))
for each lag level and fit the points with a selected model. Thus,

we get the empirical semivariogram. Several commonly-used models for fitting the semivariogram
include the spherical model, the Gaussian model, the exponential model, etc. [32].

3.3. Cross-Validation

The cross-validation method is: First, the original sample data are divided into K different sets.
Each time a K − 1 set is used as the training sample data, and the remaining group as the test data,
calculate the relative error of the test data between the predicted and actual value after training. Each
set is used only once as test data, repeated N times to ensure that the K sets of the data have been
tested. The mean or root mean square of the error will be used for testing [33].

3.4. Interpolation Accuracy Evaluation

Two indices are used to evaluate the interpolation accuracy, one is mean absolute error (MAE),
defined as:

MAE =

m
∑

i=1
abs(xa,i − xe,i)

m
(13)

The other is root mean square interpolation error (RMSIE), defined as

RMSIE =

√√√√√ m
∑

i=1
(xa,i − xe,i)

2

m
(14)

where m represents the number of samples, xa,i represents the actual measured AQI for the i-th sample
station and xe,i represents the estimated AQI by the spatial interpolation for the i-th sample station.
Spatial interpolation of high precision has a small value of the two indicators. MAE is mainly used to
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evaluate the upper limit of error and the lower limit of error, but RMSIE is better at evaluating the
sensitivity of spatial interpolation results and the maximal minimum effect of some sample points [34].

3.5. Temporal Correlation

For each station within the study area, the monthly meteorological data and AQI data can be
viewed as two independent time series. We want to analyze the correlation between these two time
series. The correlation of two time series can be expressed by the correlation coefficient, defined as:

r =
n

n
∑

i=1
xiyi −

n
∑

i=1
xi ×

n
∑

i=1
yi√

n
n
∑

i=1
x2

i −
(

n
∑

i=1
xi

)2
×

√
n

n
∑

i=1
y2

i −
(

n
∑

i=1
yi

)2
(15)

where x = {x1, x2, . . . , xn} and y = {y1, y2, . . . , yn} represent two different time series, r is in the range
of [–1, 1]. R > 0 for positive correlation; r < 0 for negative correlation; r = 0 represents the absence of
correlation. The greater the correlation, the higher the absolute value of r. It is generally believed that
the absolute value of r is a micro correlation between 0 and 0.3, a real correlation between 0.3 and 0.5,
a significant correlation between 0.5 and 0.8 and a high correlation between 0.8 and 1 [35].

4. Analysis of Temporal and Spatial Characteristics

We used each of the three interpolation methods to map the spatial distribution individually.
The time span of the data duration includes 25 months from August 2014–August 2016. We selected
nine months to demonstrate the analysis results. In the subsequent exhibition, the figure panels are
read from left to right, from top to bottom: August 2014, November 2014, February 2015, May 2015,
August 2015, November 2015, February 2016, May 2016, August 2016. Cross-validation is used to
evaluate the accuracy of each interpolation method; every station is one set.

4.1. Temporal Characteristics

In order to study the trend and temporal characteristics of AQI, the AQI trend curves of all 58
stations and the annual AQI radar map were drawn. See Figures 3 and 4.
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We also calculated some significant statistical indicators based on the daily AQI data. Table 1
shows some of the results.

Table 1. Significant statistical indicators of the daily AQI data.

Station Mean Mean (2014) Mean (2015) Variance Variance (2014) Variance (2015) Max Min

Beijing 117.68 119.20 116.17 5457.34 4640.34 6275.74 485 23
Tianjin 104.38 108.90 99.89 3316.49 3228.31 3372.55 391 27

Baoding 145.85 160.73 131.10 7485.18 8055.78 6501.22 500 35
Yangquan 98.33 100.54 96.14 2083.73 1853.59 2308.03 360 26

Linfen 87.65 84.36 90.90 1964.32 1747.82 2163.05 346 20
Zhengzhou 129.78 134.62 124.98 4245.17 3755.58 4695.95 500 38

As seen from Figure 3, AQI shows a clear periodicity over time, and it is easy to see from Figure 4
that the peak of AQI appeared in November, December and January. From the trend curves and
radar maps, one can see that in recent years, the total AQI showed a downward trend; the calculation
results in Table 1 also support this conclusion. The calculation results show that AQI fluctuates more
drastically over time, although it shows a downward trend.

4.2. AQI Mapping with IDW

We use cross-validation results of 58 stations to select parameters. Considering that the search
diameter should be less than half of the study area, we look for the optimal parameters in [2, 3.5].
Maximum and minimum adjacent feature is found in three combinations: [2, 5], [5, 10] and [10, 15].
The power exponent is found in three combinations: 1.5, 2 and 2.5. Results show that the search
diameter has little effect on the interpolation results; a small adjacent feature leads to higher accuracy;
and the power exponent leads a better result when set in 1.5 and two.

Finally, interpolation parameter settings with IDW are determined as follows: power
exponent = 1.5, search radius = 2.69 (with a circle area), maximum adjacent feature = 10, minimum
adjacent feature = 5. The results of IDW are shown in Figure 5.
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4.3. AQI Mapping with Kriging

We examine the distribution of the AQI data through several ESDA (exploratory spatial data
analysis) techniques, such as histogram, quantile-quantile (Q-Q) diagram and 3D scatterplot, before
kriging these data.

From Figure 6, we can see the AQI generally follows a normal distribution and has a second
order of trend. After getting insights into the data, we select the exponential kernel function model
to remove the trend of the data. Model parameter optimization uses an iterative cross-validation
technique. The semivariogram is calculated after trend removal. We assume that the semivariogram is
isotropic. Its parameters, nugget, partial sill and others, are optimized using cross-validation focusing
on the estimation of these parameters.
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(a) Distribution histogram; (b) normal Q-Q plot; and (c) trend analysis.
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The semivariogram is calculated by ArcGIS and then interpolated using the ordinary kriging
method. The interpolated parameters of ordinary kriging are shown in Table 2.

The minimum and maximum number of adjacent elements also need to be determined. We find
when this number increases, the interpolation precision decreases slowly. Therefore, it is set to [2–5].

In the calculation of the semivariogram, the number of steps (lag level) is 12; the search field is
a standard circle; the minimum number of adjacent elements is two; and the maximum is five. The
search field (a circle) is divided into four sectors and deflected by 45◦.

Table 2. Interpolation parameters of ordinary kriging.

Month Nugget Parameter Major Range Partial Sill Lag Size

August 2014 72.562 0.2 4.5 0 0.56249
November 2014 0 0.91016 1.6529 290.05 0.18965
February 2015 486.36 0.2 1.0211 0 0.12764

May 2015 0 0.88027 1.1841 120.27 0.13472
August 2015 0 0.43906 1.1841 108.53 0.13474

November 2015 165.83 0.2 3.2688 0 0.40860
February 2016 0 0.90488 1.1841 100.52 0.13717

May 2016 75.69 0.2 14.213 0 1.18445
August 2016 42.136 2 1.1841 6.6152 0.13353

The stable model was used to fit the semivariogram function. The stable model is formulated
as [22,36]:

γ(h; θ) = θs

[
1− exp

(
−3
(

h
A

)θe
)]

(16)

where θs represents the partial sill, h represents distance, A is the major range and θe is a parameter
(Table 2). The complete semivariogram expression is:

Values(h) = θ0 + γ(h; θ) (17)

where θs represents the nugget. The semivariogram model for each month is drawn according to the
interpolation parameters in Table 1, as shown in Figure 7. The results of ordinary kriging interpolation
are shown in Figure 8.
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4.4. AQI Mapping with BME

The spatial distribution of AQI is represented as a spatial random field. The purpose of the
present work was to estimate the values of the random field at a non-measuring location by given data.
We define complete data and incomplete data as hard data and soft data respectively in this paper.

See Figure 1; there are 15 incomplete data stations, and the probability density function of the
air quality at these stations is calculated as the soft data. The probability density function of partial
stations is shown in Figure 9.
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Figure 9. The probability density function of partial stations.

The hard data are those measured AQI values. The semivariograms fitted in Section 4.3 are used
to perform BME estimation. There are three key parameters that need be determined when mapping
with BME: max number of hard data, max number of soft data, max search radius. After examining
the process, we find including too much hard data and soft data will reduce accuracy; the larger search
radius has little influence when the search field exceeds a certain limit. Finally, we set the max number
of hard data = 5, soft data = 3 and radius = 2.69. Mapping results are shown in Figure 10.
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to right, from top to bottom: August 2014, November 2014, February 2015, May 2015, August 2015,
November 2015, February 2016, May 2016, August 2016).

4.5. Cross-Validation and Comparison

The cross-validation results are shown in Table 3. Figure 11 is the column comparison charts of
the accuracy for three interpolation methods. The evaluation quantities used are MAE and RMSIE.
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Table 3. Cross-validation result of three interpolation methods. OK, ordinary kriging; BME, Bayesian
maximum entropy.

Time Method MAE RMSIE Time Method MAE RMSIE

August 2014
IDW 11.2923 14.8369

November 2015
IDW 16.8145 21.3827

OK 10.9151 14.1755 OK 13.3573 16.6038
BME 9.4169 12.4072 BME 16.0600 20.0600

November 2014
IDW 17.8546 24.1299

February 2016
IDW 9.6880 12.2206

OK 14.0996 18.6090 OK 8.9560 11.3090
BME 17.6734 21.8362 BME 9.2500 11.5400

February 2015
IDW 20.0113 26.6201

May 2016
IDW 8.5534 10.8039

OK 18.1584 24.6983 OK 8.9295 10.7937
BME 17.7400 23.1100 BME 8.8525 11.0317

May 2015
IDW 9.2370 11.8869

August 2016
IDW 7.8679 9.6368

OK 9.2512 11.8708 OK 7.7776 9.8154
BME 8.8569 11.6275 BME 7.5564 9.6982

August 2015
IDW 9.8277 12.1164
OK 9.9885 12.1584

BME 9.5299 11.7899
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Figure 11. The accuracy of each interpolation method. (a) August 2014; (b) November 2014;
(c) February 2015; (d) May 2015; (e) August 2015; (f) November 2015; (g) February 2016; (h) May
2016; and (i) August 2016.

Comparing the air quality maps made by three interpolation methods, it can be found that there
are obvious extreme points on the distribution map of the IDW method, while the other two methods
make the distribution maps more flat.

As a deterministic local interpolation method, IDW only considers the spatial distance as the factor
affecting the weight; the power exponent is fixed and chosen empirically, which makes the estimation
of the unmeasured points very inaccurate; OK takes into account the spatial autocorrelation of AQI
between the spatial points, but only calculates the semivariogram from known data locations and uses
this single semivariogram in predicting the unknown points. This process implicitly assumes that the
estimated semivariogram is the true semivariogram of the interpolation area. Since the uncertainty of
semivariogram estimation is not taken into account, ordinary kriging underestimates the standard
error of prediction. The Bayesian maximum entropy method takes into account the additional soft
data, constructs the prior probabilities using the existing data and obtains more accurate interpolation
results by calculating the posterior probability.
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In theory, the accuracy of the BME method should be higher than OK, and OK is higher than IDW.
The results of the actual evaluation also prove this to some extent. As shown in Figure 11, the accuracy
of the three interpolation methods varies at different times, but in general, the BME method is the best;
and OK is higher than IDW.

In a certain year, it can be seen that the AQI of winter (November) and spring (February) is
much worse than summer (May) and autumn (August). The distribution of AQI has obvious spatial
characteristics. The most polluted areas of air quality are concentrated in the central-southern part of
Hebei and the central part of Henan, followed by Beijing, the southern part of Tianjin and the western
part of Shandong. The air quality in Shanxi, the eastern and northern parts of Hebei and the eastern
part of Shandong is relatively good.

The heavily-polluted areas are the densely-populated areas of Beijing, Tianjin, Hebei, Shandong
and Henan, where large numbers of cities and factories are gathered, producing large amounts of
pollutants. The wind speed in these areas is lower because of a large number of urban buildings, which
makes contaminants not be easily spread. The air quality is better in areas with less population, where
the city distribution is sparse and there is not so much heavy industry, producing fewer pollutants.
The areas next to Inner Mongolia or near the sea have high wind speed. The generated contaminants
will be blown away quickly. The air near the ocean has a higher air humidity and, so, a better air
quality than the inland areas.

5. Relationship between AQI and Meteorological Conditions

The monthly meteorological data from August 2014–May 2016 of Beijing, Tianjin and Zhengzhou
(the capital of Henan Province) are extracted based on the downloaded monthly data. These data
include six meteorological factors: precipitation anomaly percentage, precipitation, mean wind speed,
average temperature, average water vapor pressure, average relative humidity. The correlation
between each factor and AQI was analyzed with the temporal correlation algorithm. The curves of
time series and the correlation coefficients of the AQI with every meteorological factor are shown in
Figure 12.
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Figure 12 uses August 2014 as zero of the x-axis, showing the trend of the two time series in 22
months. r is the calculated correlation index.

In order to study the correlation between AQI and meteorological factors in different cities, the
three-dimensional histogram of time series correlation of six factors in three cities was made; see
Figure 13.
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Figure 14. Temporal correlation analysis between daily meteorological factors and AQI in Beijing. 

Figure 13. Temporal correlation analysis in Beijing, Tianjin and Zhengzhou. Ci = [Beijing, Tianjin,
Zhengzhou], Fi = [precipitation anomaly percentage, precipitation, mean wind speed, average
temperature, average water vapor pressure, average relative humidity].

For comparison reasons, we analyzed the correlation between daily AQI and daily meteorological
data from August 2014–May 2016 of Beijing, Tianjin and Zhengzhou. These data are obtained as
described before in a daily scale. Five meteorological factors, precipitation, mean wind speed, average
temperature, average water vapor pressure and average relative humidity, are involved in this analysis.
The curves of time series and the correlation coefficients are shown in Figures 14 and 15.
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Figure 15. Temporal correlation analysis in Beijing, Tianjin and Zhengzhou. Ci = [Beijing, Tianjin,
Zhengzhou], Fi = [precipitation, mean wind speed, average temperature, average water vapor pressure,
average relative humidity].

To investigate whether there is a delay in the correlation between meteorological factors and air
quality, we made a cross-correlation analysis for the two daily time series. The results are shown in
Figure 16.
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From Figures 12 and 13, it can be seen that the average wind speed and average relative humidity
have a real correlation; there is a micro correlation in precipitation and average temperature; the other
two factors have a small correlation; the mean wind speed is negatively correlated with AQI; and the
relative humidity is positively correlated with AQI.

In Figures 14 and 15, we use daily data to calculate the correlation coefficient. It can be found
that the results are approximately the same as those calculated using monthly data, but have a larger
variance. Only the average wind speed and average relative humidity have reached real correlation.
The factors that have a high correlation coefficient calculated using monthly data will have a higher
correlation coefficient than using daily data, while the low ones will have a lower value. There is
reason to believe that by using daily data, we obtain a more accurate correlation.

From Figure 16, we can see that the lag effect of precipitation on AQI is from positive to negative.
Additionally, the relative humidity has a positive correlation with AQI while considering temporal lag.
We think the precipitation has an immediate effect of decreasing AQI and increases the air humidity
subsequently, which leads to the effect of the increase on AQI indirectly. The wind has an immediate
effect of decreasing AQI, which is consistent with our intuition because the wind can blow the polluted
air away. High temperature seems to worsen the air quality, and the longer lag effect of temperature is
obvious. Water vapor pressure has a negative lag effect on AQI.

The micro negative correlation between AQI and average temperature is corresponding with
the mapping results in Section 4. The heating is supplied in the winter and spring in the study area,
and there is a low absolute humidity, while the summer and autumn do not need heating; and there
is a high absolute humidity. However, some existing studies also imply that the impact of heating
on air quality is not as large as imagined. It may be because other industries output less pollutants
in winter although the heating increased emissions of pollutants. As a result, the overall pollutants
do not increase so much. The micro negative correlation between AQI and precipitation is easy to
understand. Raindrops can take away the dust and particles in air, making it more difficult for haze to
form. The real negative correlation between AQI and mean wind speed is because that wind will blow
away pollutants. The average relative humidity is real positively related with AQI. Relative humidity
means the ratio of absolute humidity to saturated humidity at the same temperature and air pressure.
Although the absolute humidity is very low in winter and spring, the relative humidity is high.
The correlation between relative humidity and AQI is the highest in the six factors. The trend of two
series is consistent, as seen in Figure 11. It is possible to find factors that have a higher correlation and
direct impact on AQI through the study of influence factors of the relative humidity further. Moreover,
the correlation between six factors and AQI showed a consistent trend in three cities. This shows that
the temporal correlation between AQI and these meteorological factors exists universally. There are
also some differences between cities. The correlation between AQI and these meteorological factors
in Beijing is greater than that in Tianjin and Zhengzhou. Combining the AQI distribution map in
Section 4, we can find that AQI in a city with poor air quality will fluctuate greater than others when
weather changes and has a higher correlation with meteorological factors.

6. Conclusions

In this paper, the mid-eastern China of Beijing, Tianjin, Hebei, Shanxi, Shandong and Henan
provinces were taken as the study area. Then, the distribution of AQI was mapped by the inverse
distance weighting method, the kriging method and the Bayesian maximum entropy method.
The correlation between AQI and meteorological factors was analyzed by temporal correlation analysis.
After discussing and analyzing the results, the following conclusions are drawn:

(1) In recent years, AQI shows a clear periodicity, although overall, it has a downward trend.
AQI fluctuates more drastically over time; the peak of AQI appeared in November, December
and January.

(2) Bayesian maximum entropy interpolation has a higher accuracy than kriging. IDW has the
maximum error.
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(3) In the same year, the AQI of winter (November) and spring (February) is much worse than
summer (May) and autumn (August). Additionally, the air quality has improved every quarter
for three years. It proves that the government’s air quality management strategy has been effective
in recent years.

(4) The distribution of AQI has obvious spatial characteristics. For the study area, the most polluted
areas of air quality are concentrated in Beijing, the southern part of Tianjin, the central-southern
part of Hebei, the central-northern part of Henan and the western part of Shandong.

(5) The average wind speed and average relative humidity have a real correlation. The calculated
correlation coefficients using daily data provide support for association analysis on a finer scale.
The effect of meteorological factors, such as wind, precipitation and humidity, on AQI is putative
to have a temporal lag to different extents.

(6) The AQI of a city with poor air quality will fluctuate greater than others when weather changes
and has higher correlation with meteorological factors.

In subsequent studies, we should map the spatiotemporal distribution of AQI simultaneously,
identify the patterns and explore the mechanism dominating the forming of the patterns. New
interpolation techniques that are capable of incorporating uncertain data and dynamic mechanisms
will be also devised to gain higher accuracy. Advanced methods appropriate for scale-variant detection
of spatiotemporal patterns are imperative for addressing the inherent multi-scale problems in spatial
data analysis.
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