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Abstract: The relationship between burglary and socio-demographic factors has long been a hot topic
in crime research. Spatial dependence and spatial heterogeneity are two issues to be addressed in
modeling geographic data. When these two issues arise at the same time, it is difficult to model
them simultaneously. A cross-comparison of three models is presented in this study to identify
which spatial effect should be addressed first in crime analysis. The negative binominal model
(NB), Bayesian hierarchical model (BHM) and the geographically weighted Poisson regression
model (GWPR) were implemented based on a three-year residential burglary data set from ZG,
China. The modeling result shows that both BHM and GWPR outperform NB as they capture
either of the spatial effects. Compared to the NB model, the mean absolute deviation (MAD) of
BHM and GWPR was decreased by 83.71% and 49.39%, the mean squared error (MSE) of BHM
and GWPR was decreased by 97.88% and 77.15%, and the R2

d of BHM and GWPR was improved
by 26.7% and 19.1%, respectively. In comparison with BHM and GWPR, BHM fits the data better
with lower MAD, MSE and higher R2

d. The empirical analysis indicates that the percentage of renter
population, percentage of people from other provinces, bus line density, and bus stop density have a
significantly positive impact on the number of residential burglaries. The percentage of residents
with a bachelor degree or higher, on the other hand, is negatively associated with the number of
residential burglaries.
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1. Introduction

Burglary has been a city problem for a long time. The spatial distribution of burglaries is never
random. Some places are more prone to burglary than others. Much attention has been paid to the
relationship between location and crime. Crime Prevention through Environmental Design (CPTED)
has been considered as a necessary component in city planning in the western nations since 1970s.

Previous studies have widely examined the relationship between environmental characteristics
and residential burglary. According to the social disorganization and routine activity theories, various
environmental factors are found to be related to burglary, including road configurations [1,2], residential
instability [3,4], demographics [5], income [6,7], unemployment rate [8], land use mix [9], housing
characteristics [10–13], guardianship [14,15], accessibility [16], and the physical environment [17].

There are usually two kinds of data used for crime analysis in the literature, aggregate data and
disaggregate data. Point data are referred to as disaggregate data because each point represents the
location of an incident. Various approaches have been developed to analyze crime based on point
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data, such as kernel density [18–20] and Spatial Scan Statistics [20–22] for hot spot analysis. In order
to investigate the relationship between crime events and the influential factors, crime incidents are
usually aggregated into different spatial units, such as census tract or block groups. Two spatial effects,
including spatial dependence and spatial heterogeneity, often arise after aggregation [23,24]. Spatial
dependence shows how a geographic attribute exhibits similarity among the nearby locations [25].
Spatial heterogeneity or first-order non-stationarity, on the other hand, refers to the uneven distribution
of spatial events or spatial relationships. In order to identify important underlying factors related
to crime, multiple regression models have been widely used [26–28]. However, the independence
assumption of the error distribution is often violated for spatial data due to spatial dependence.
In addition, when the number of crimes is used as the dependent variable, the assumption of the
normal distribution is violated because the number of crimes is a count variable. This will produce
biased estimates due to the underestimated standard errors of regression coefficients [29].

A number of models have been proposed to overcome these problems. Spatial econometric
models are employed to address spatial dependence, including the spatial error model and spatial
lag model [30–32]. These two models also require the dependent variable to follow a continuous
normal distribution. To satisfy this requirement, researchers often use the crime rate as the dependent
variable, which has caused other issues. For example, the crime rate would become unstable where
the population is low. Transforming the dependent variable, such as log-transformation, is another
commonly used method to meet the assumption [33]. Unfortunately, transformation makes it difficult
to interpret the model results [34].

Therefore, count data models are popular for crime analysis, and they can be either non-spatial or
spatial. For example, Poisson [1] and negative binominal models [3,35] are two non-spatial count data
models widely used in previous crime modeling. Two spatial count data models are the geographically
weighted Poisson regression and Bayesian hierarchical model, which are described as follows.

Geographically weighted regression (GWR) was proposed by Fotheringham et al. [36] to handle
spatial heterogeneity by allowing the relationship between variables to vary across a region. It is a
powerful tool and is widely used in geographic research [37–40]. Similar to linear regression, the GWR
model also requires normal distribution of the dependent variable. Geographically weighted Poisson
regression (GWPR) is an extension of GWR for count data with a Poisson distribution [41].

The Bayesian hierarchical model (BHM) is another model proposed to address spatial
autocorrelation by Besag for count data [42]. The BHM model handles data with Poisson or negative
binominal distribution and has been widely used to analyze traffic crashes [43,44], crimes [45,46],
and disease cases [47,48].

GWPR and BHM address spatial heterogeneity and spatial autocorrelation, respectively, but not
both simultaneously. When spatial autocorrelation and heterogeneity occur at the same time,
they cannot be independently modeled in a single model. To our best knowledge, there is no modeling
methodology that can address these two problems at the same time. With a residential burglary
data set collected in ZG, China, this research aims to identify the most suitable model for residential
burglary by comparing the model fitness of three different models; the first one with no control for the
spatial effects, the second one considering spatial dependence, and the third one accounting for spatial
heterogeneity. In addition, this study enriches the existing literature on residential burglary from an
empirical result obtained in a major city in China, which has unique socioeconomic characteristics and
urban structure.

2. Methodology

The three tested models include the negative binomial model (NB), BHM, and GWPR. The NB
model, which is non-spatial, is treated as the baseline. The BHM and GWPR models were calibrated to
account for spatial dependence and spatial heterogeneity, respectively.
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2.1. Negative Binominal Model

The Poisson distribution is often used as the benchmark for modeling count data. However,
the basic assumption of the Poisson distribution is that the variance is equal to the mean, which is
often not satisfied. When the variance is greater than the mean, the problem of over-dispersion arises,
which is common in crime data. The negative binominal model is used to account for this issue.

Let Yi denote the number of burglaries in spatial unit i (i = 1, 2, . . . , n), POPi is the population used
as the exposure variable of area i, Xik is the independent variable for area i. The NB model is specified as:

Yi ∼ Poisson(λi) (1)

ln(λi) = β0 + β1 ln(POPi) +
p

∑
k=2

βkβik + θi (2)

where λi is the expected number of burglaries in area i, β0, . . . , βp are parameters, EXP(θi) is a
gamma-distributed error term with mean 1 and variance α; the additional term allows the variance
different from the mean, as Var(Yi) = λi + αλi

2. The Poisson distribution is a special case of the
negative binominal distribution when α = 0.

2.2. Bayesian Hierarchical Model

Though the NB model can address the over-dispersion issue, it cannot account for the spatial
autocorrelation of burglary incidents. Based on the NB model, BHM was proposed to address spatial
dependence among the adjacent zones by Besag et al. [42]. An error term and a conditional autoregressive
prior are incorporated into the link function. The model specification is presented as follows:

ln(λi) = β0 + β1 ln(POPi) +
p

∑
k=2

βkXik + θi +∅i (3)

where ∅i is the spatial autocorrelation. The conditional autoregressive prior used by previous
studies [43,49] is adopted in this study:

∅i = N

(
∑j ∅jωij

∑jωij
,

1
∑j τiωij

)
(4)

in which ωij is spatial adjacent matrix. If I and j share a border, ωij = 1, otherwise ωij = 0.
τi is assumed to be a gamma prior with (0.5, 0.0005) as used in the literature [49,50]. The Markov
Chain Monte Carlo (MCMC) algorithm could be used to estimate this model instead of the maximum
likelihood estimation.

2.3. Geographically Weighted Poisson Regression (GWPR)

GWPR, proposed by Nakaya [51], was employed in this study to control for the spatial
heterogeneity. The GWPR model, a variant of GWR for Poisson distribution data, has been used
in road safety analysis [52]. The framework of GWPR is as follows:

ln(λi) = β0(ui, vi) + β1(ui, vi) ln(POPi) +
p

∑
k=2

βk(ui, vi)Xik (5)

where (ui, vi) is the geographical coordinates of the centroid of spatial unit i. βk(ui, vi) is the coefficient
of the kth explanatory variable for zone i, which is a function of the centroid of spatial unit i. This allows
the parameter βk to vary across the area, and then the spatial heterogeneity is addressed. βk can be
calculated by:

(ui, vi) =
(

XTW(ui, vi)X
)−1

XTW(ui, vi)Y (6)
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where β̂(ui, vi) is the vector of coefficients for spatial unit i, W(ui, vi) is an n by n matrix for spatial
weight, which is presented as:

W(ui, vi) =


wi1 0 . . . 0
0 wi2 . . . 0

. . . . . . . . . . . .
0 . . . . . . win

 (7)

where wij(j = 1, 2, . . . , n) is the weight given to area I during the calibration procedure for area i.
In GWPR, the regression coefficient associated with one spatial unit is estimated by the

observations in the nearby units. This process is repeated for all spatial units. The weight of each unit
is determined by the distance between it and the regression unit. Therefore, the observation closer
to the regression unit has more influence on the coefficient estimation than the observations farther
away. The magnitude of the influence is determined by the spatial weight matrix wij, which can be
calculated by Gaussian or Bi-square kernel functions as follows:

Gaussian:
wij = exp

(
−1

2
∗
(

dij

bi

)2
)

(8)

Bi-square:

wij =


(

1 −
(

dij
bi

))2
if dij < bi

0 otherwise
(9)

where dij is the Euclidean distance between the centroids of unit i and j; bi is known as the bandwidth.
The result is largely determined by the bandwidth. As such, it is important to select a suitable
bandwidth. The AIC (Akaike Information Criterion) is employed as the criterion for bandwidth
selection. The lower the AIC value, the better the model fit.

2.4. Goodness of Fit

In order to compare the above-mentioned models’ performance, three evaluation criteria were
employed to assess the goodness-of-fit of each model: R2

d, mean absolute deviation (MAD), and mean
square error (MSE). The following is a detailed description of these criteria.

2.4.1. Mean Absolute Deviance (MAD)

The MAD measure is provided to evaluate model performance, which is the sum of the absolute
differences between the predicted and the observed burglaries divided by the sample size. A smaller
value of MAD means better model performance on average.

MAD =
∑N

i=1
∣∣Ŷi − Yi

∣∣
N

(10)

2.4.2. MSE

MSE is another measure to assess model performance, which is the average of the squared
differences between the predicted and observed burglaries divided by the sample size.

MSE =
∑N

i=1
(
Ŷi − Yi

)2

N
(11)

Similar to the MAD measure, a smaller value of MSE suggests better model fitness.

2.4.3. R2
d

Non-linear models such as the negative binomial do not provide an overall model fitness measure
such as R2. Based on the standardized residuals, Cameron and Windmeijer [53] proposed an indicator:
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R2
d = 1 −

∑N
i=1

(Yi−Ŷi)
2

Ŷi

∑N
i=1

(Yi−Y)
2

Y

(12)

where Ŷi and Y are the predicted burglaries obtained by the aforementioned models and the average
burglary frequency, respectively. Yi is the observed number of burglaries per spatial unit. Here, N is
the number of spatial units.

3. Study Area and Data

The crime in China has been increasing since the economic reform in the 1970s [54]. Burglary is
the largest category of crime in China, accounting for 67.83% of total crime events [55]. Most previous
burglary studies have focused on developed countries since the crime data are difficult to obtain in
developing countries such as China. The crime data are confidential in many Chinese cities; therefore,
the true name of the city is removed, and we call it ZG here.

3.1. Study Area

ZG is located in the southeast of China, the largest central city in Southern China. ZG covers an
area of about seven thousand square kilometers and has attracted a large number of people for work
due to the rapid economic development. More than sixteen million people lived in this city in 2015,
about half are migrants from other cities or provinces.

Spatial units of different scales have been used in crime research, for example, countries, cities,
census tracts, neighborhoods, and street segments. A typical city of China is divided into a number
of small units named Police Station Management Areas (PSMAs). Each PSMA has a corresponding
police station for the region’s crime prevention and control. There are 215 PSMAs in ZG, and crime
incident data were aggregated into PSMAs in this analysis.

3.2. Data

The residential burglary data were obtained from the 110 reporting system of the municipal public
security bureau; 110 is the emergency call for crime in China, similar to 911 in the U.S. Each record
comes with many attributes, such as the unique number, the date, the name of the police station, and the
crime category. These records were aggregated into PSMAs according to which police station it belongs.
A three-year data set from 2013 to 2015 was used in this study. A total of 150113 burglaries were extracted
from the reporting system (Figure 1). The number of burglaries in each PSMA varies from 0 to 3547.
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The explanatory variables used in this study were selected according to the routine activity
theory [56] and social disorganization theory [57]. The routine activity theory claims that the
concurrence of three determinants: attractive targets, absence of guardianship, and motivated offenders,
will lead to a crime. The social disorganization theory argues that crimes are more likely to occur
in socially disorganized neighborhoods. Nine variables were selected based on these two theories,
which are described in detail as follows.

Income has been selected as the attractiveness for offenders in the literature since the motived
criminals want to obtain as much as possible through a burglary [35,58]. Since there are no such data
in the sixth census report of China, the percentage of large households which have an area greater
than 120 m2 was used as a proxy for the household income instead. The level of education measures
the variation in the education structure of the crime-prone population, but its impact was found to be
mixed in the literature [14,58].

Guardianship can be divided into two categories including social guardianship and physical
guardianship. The length of time that people stay at home can be seen as the social guardianship for
an area. As such, the population below six or above sixty was used to represent social guardianship
since these two groups spend more time at home than other age groups.

Residential instability has been employed as a measure to assess social disorganization in previous
studies [3,16]. The percentage of renters and the percentage of migrants were included as two indices
for the residential instability in this research.

Accessibility is important in the process of choosing a place to commit a crime [16]. The bus line
density and bus stop density were used as indices for accessibility. The density of bus stop/bus lines
was calculated as the total number of bus stops/bus lines divided by the road length in a PSMA. Table 1
provides the descriptive statistics of these variables. Multicollinearity between variables might lead to
biased parameter estimates. A collinearity test was carried out before further analysis, and the results
are shown in Table 2. The correlation coefficients between all variables are less than 0.7; therefore,
there is no strong correlation between these variables.

Table 1. Summary of Variable and Descriptive Statistics.

Variables
N = 215

Minimum Maximum Mean Standard Deviation

Burglary 0 3547 698.2 668.17
Households with house area equal

to or greater than 120 m2 (%) 0 72.3 21.87 16.5

Renter (%) 0 87.73 28.63 21.73
People from other provinces (%) 0.46 73.6 21.69 15.79
Population aged less than 6 (%) 0.6 8.7 4.84 1.36
Population aged 60 or over (%) 0.3 19.33 9.52 4.29

Junior middle school (%) 7.97 89.3 55.22 17.68
University or above (%) 1.1 88.97 17.68 14.06

Bus line density 0 16.16 2.83 2.712
Bus stop density 0 1.97 0.45 0.26
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Table 2. Results of the Correlation Matrix.

Household with
House Area Equal

to or Greater
than 120 m2

Renter
People from

Other
Provinces

Population
Aged Less

than 6

Population
Aged 60
or over

Junior
Middle
School

University
or above

Bus Line
Density

But Stop
Density

Household with house area
equalto or greater than 120 m2 1

Renter −0.523 1
People from other provinces −0.102 0.671 1
Population aged less than 6 0.352 −0.365 −0.272 1
Population aged 60 or over −0.138 −0.458 −0.625 0.052 1

Junior middle school 0.424 −0.195 0.221 0.276 −0.153 1
University or above −0.271 0.07 −0.256 −0.258 0.034 −0.664 1

Bus line density −0.476 0.163 −0.181 −0.214 0.371 −0.572 0.386 1
But stop density −0.311 0.317 0.092 −0.179 0.012 −0.387 0.214 0.635 1
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4. Results and Discussion

Three models were estimated for burglaries based on the previously mentioned methodology.
This section compares model performance among the three models and discusses the factors that
significantly influence burglaries in ZG.

4.1. Model Comparison

MAD, MSE and R2
d were calculated to compare the performance of the three models. Results in

Table 3 shows that BHM is the strongest model with the lowest MAD, MSE and highest R2
d, followed by

GWPR and NB, respectively. It is not surprising that the two spatial models, which take into account
spatial correlation and heterogeneity, respectively, perform better than the non-spatial model.

Table 3. Comparison between Models.

MAD MSE R2
d

NB 94.84 22,490.82 0.71
GWPR 47.99 5138.62 0.88
BHM 15.45 472.90 0.95

The Moran’s I statistics for all three model residuals are shown in Table 4. The model residuals of
the negative binomial are significantly autocorrelated (p < 0.01), implying spatial correlation exists in
the residuals and this will produce biased parameter estimates. With respect to the residuals of BHM
and GWPR, no significant spatial autocorrelation is found. The results suggest that it is important to
explicitly model the spatial effects to enhance model fitness, and that is why the two spatial models
outperform the non-spatial model.

Table 4. Moran’s I Test of Model Residuals.

Moran’s I

Z-Score p-Value
NB 3.83 0.00

BHM −0.87 0.51
GWPR −0.84 0.40

The clustering pattern of residuals from the non-spatial model can be explained from the spatial
distributions of dependent and independent variables. As summarized in Table 5, all variables show
significant clustering patterns in space (p < 0.01), which might be caused by the clustered urban form.
This again reinforces that the spatial effects should not be ignored in the models. The two significant
HH local clusters and one LH outlier in the LISA map (Figure 2) imply that spatial dependence and
heterogeneity exist and should be taken into account.

Table 5. Moran’s I Statistics for Explanatory Variables.

Variables Moran’s I Expected Index Z-Score p-Value

Burglary 0.140 −0.004 8.066 0.000
Household with house area equal

to or greater than 120 m2 0.485 −0.004 27.144 0.000

Renter 0.141 −0.004 8.073 0.000
People from other provinces 0.257 −0.004 14.5 0.000
Population aged less than 6 0.221 −0.004 12.53 0.000
Population aged 60 or over 0.833 −0.004 46.335 0.000

Junior middle school 0.455 −0.004 25.575 0.000
University or above 0.606 −0.004 33.807 0.000

Bus line density 0.749 −0.004 42.047 0.000
But stop density 0.156 −0.004 8.968 0.000
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4.2. Parameter Estimation Comparison

The results of parameter estimation are shown in Table 6. The mean of the estimated coefficients
is provided for NB and BHM. The minimum, lower quartile, median, upper quartile, and maximum of
coefficients in GWPR are presented.

A comparison of BHM with GWPR and NB reveals that the coefficients of these three models are
similar in magnitude and sign except for the sign of the resident with junior middle school education.
This variable has a negative coefficient with no significance in the non-spatial model, but it turns out
to be positive in the two spatial models. One possible explanation may be that the parameter estimate
in the NB model is not accurate due to its failure to account for the spatial effects.

The percentage of large households is not significant in BHM. The impact of income on residential
burglary is not consistent in the literature. Tseloni and Wittebrood [59] reported that income has a
positive impact on burglary in the United Kingdom while the impact was negative in the United States.
The study conducted by Malczewsk and Poetz [60] showed that areas with high burglary rates could
be either poor or rich neighborhoods. In this research, the income is not a significant factor.

The bus line density and bus stop density are two indices for accessibility of an area.
The relationship between accessibility and burglary also varies in the literature. Some studies found
that areas with less accessibility may be at a higher risk to be victimized [61,62]. Others showed
that accessibility was positively correlated with burglary [63], which is supported by the result
from the BHM model. The positive relationship may be explained by the rational choice theory [56],
which argues that offenders usually select households with higher accessibility as a target because of
shorter entry and exit time. Higher accessibility of an area facilitates criminals to come and go easily,
and this would motivate potential offenders.

Although past studies indicated that residential instability was not significantly associated
with burglary [16,64], residential instability measured by the proportion of renters turned out to be
significant in BHM. According to the social disorganization theory, homeowners are more concerned
about the community security than renters; they are willing to improve the community instead of
moving to another place like the renters. Thus, it is not a surprise that areas with more renters are at a
higher risk of burglary. A few studies conducted in western nations also confirmed this finding [65,66].

Areas with a greater proportion of migrants are more prone to burglary. These people without local
urban registration cannot share the equal opportunity for education and health services. According
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to the study conducted by Appleton and Song [67], most of the migrants are dissatisfied with their
current status. ZG has a “floating population” of about 8 million, most of whom have limited education
attainment and low income. Since these people cannot provide adequate security for their homes,
they are more likely to be victims.

The percentage of residents with a bachelor’s degree or higher shows a significantly negative
association with burglary, meaning a neighborhood dominated by residents with high education
experiences less burglary. A similar conclusion was reached in other studies [14,68]. Very often, highly
educated people can afford to improve their home security systems, such as surveillance cameras and
alarms, which in turn would reduce the possibility of being victimized because of the enhanced high
physical guardianship.

Table 6. Model Results.

Variable NB BHM
GWPR

Mean Min Lwr Med Upr Max

Intercept −5.022 −5.968 −6.952 −14.124 −8.792 −6.207 −5.090 −1.116
Households with house area

equal to or greater than 120 m2 0.019 0.004 0.003 −0.028 −0.007 0.004 0.011 0.030

Renter 0.012 0.003 0.006 −0.021 −0.001 0.007 0.013 0.044
People from other provinces 0.004 0.006 0.002 −0.067 −0.013 0.002 0.021 0.054
Population aged less than 6 0.014 0.007 0.112 −0.163 0.024 0.086 0.200 0.495
Population aged 60 or over −0.039 −0.012 −0.037 −0.203 −0.083 −0.031 0.016 0.084

Junior middle school −0.014 0.001 0.015 −0.059 −0.011 0.008 0.040 0.133
University or above −0.029 −0.022 −0.005 −0.067 −0.023 −0.011 0.010 0.082

Bus line density 0.036 0.002 0.095 −0.102 −0.002 0.051 0.164 0.489
Bus stop density 0.646 0.060 0.073 −1.371 −0.276 0.112 0.460 1.226

Note: the bold values are significant at the 95% significance level.

5. Conclusions

Because spatial autocorrelation and spatial heterogeneity are two important issues for crime
modeling, many efforts have been made to address these two issues independently. However,
it is not clear that controlling for a particular spatial effect will yield a stronger model. In this study,
we quantitatively examined these two spatial effects in residential burglary modeling. Two different
spatial techniques, GWPR and BHM, were used to address spatial heterogeneity and spatial
autocorrelation, respectively, and they were compared to a non-spatial NB model. The BHM model was
identified as the best model with the lowest MAD, MSE and highest R2

d. This empirical study suggests
that modeling spatial dependence yields a better modeling result than modeling spatial heterogeneity.

It should be clarified that the intention of this research is not to prove that the BHM model always
outperforms the GWPR model. Instead, we want to show that the spatial effects will be introduced
when the individual data are aggregated, and it is important to model the spatial effects explicitly.
The impact of these two spatial effects on the model fitness may vary with the datasets, and therefore,
which spatial effect should be accounted for is the first issue to be addressed.

This research also identified important factors related to residential burglaries in a large city of
China. The results reveal that the percentage of renters, percentage of people from other provinces,
bus stop density, and bus routine density have a significantly positive impact on the number of
burglaries. The percentage of people with a bachelor’s degree or higher has a significant yet negative
correlation with burglary. Analyzing crime at a fine scale, such as at the PSMA scale, has great practical
value because it can provide local operational decision support for law enforcement.

There are some limitations in this study. First, the mechanisms of these three models are different.
Both NB and BHM are confirmative models, while GWPR is an explanatory model. Therefore, the three
criteria used for comparison may not be complete. Assessment statistics for cross-comparison will be
an important topic for future studies. Second, this analysis was based on the cumulative data over
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a three-year period, but the temporal dimension was not considered in the model. Further research
will consider the spatial-temporal lag effect of burglary to expand our understanding of the linkage
between residential burglary and sociodemographic and physical characteristics of a neighborhood.
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