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Abstract: The Sentinel-1 mission provides frequent coverage of global land areas and is hence able to
monitor surface water dynamics at a fine spatial resolution better than any other Synthetic Aperture
Radar (SAR) mission before. However, SAR data acquired by Sentinel-1 also suffer from terrain effects
when being used for mapping surface water, just as other SAR data do. Terrain indices derived from
Digital Elevation Models (DEMs) are easy but effective approaches to reduce this kind of interference,
considering the close relationship between surface water movement and topography. This study
compares two popular terrain indices, namely the Multi-resolution Valley Bottom Flatness (MrVBF)
and the Height Above Nearest Drainage (HAND), toward their performance on assisting surface
water mapping using Sentinel-1 SAR data. Four study sites with different terrain characteristics
were selected to cover a very wide range of topographic conditions. For two of these sites that
are floodplain dominated, both normal and flooded scenarios were examined. MrVBF and HAND
values for the whole study areas, as well as statistics of these values within water areas were
compared. The sensitivity of applying different thresholds for MrVBF and HAND to mask out
terrain effect was investigated by adopting quantity disagreement and allocation disagreement as the
accuracy indicators. It was found that both indices help improve water mapping, reducing the total
disagreement by as much as 1.6%. The HAND index performs slightly better in most of the study
cases, with less sensitivity to thresholding. MrVBF classifies low-lying areas with more details, which
sometimes makes it more effective in eliminating false water bodies in rugged terrain. It is therefore
recommended to use HAND for large scale or global scale water mapping. However, for water
detection in complex terrain areas, MrVBF also performs very well.

Keywords: terrain index; water detection; synthetic aperture radar; thresholding; disagreement;
MrVBF; HAND

1. Introduction

Water contributes to all aspects of economic and social development. Water supply, sanitation,
and a healthy environment form the basis of successful poverty reduction and shared-growth
strategies, especially in developing countries [1]. The spatial distribution of surface water informs about
an important part of freshwater resources on Earth. Surface water bodies are dynamic in nature as they
shrink, expand, or change their appearance with time, owing to different natural and human-induced
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factors. Variations in water bodies have been known to have significant impacts on other natural
resources and human assets, and further influence climate change [2]. Under extreme conditions,
drastic changes of surface water could cause serious disasters such as floods and droughts—two
life-threatening and financially expensive natural disasters [3]. Therefore, it is crucial to understand
the extent of water bodies and master their dynamics over time.

Remote sensing provides an efficient way of monitoring surface water bodies. Ever since the first
remote sensing satellite was launched, it has been used for water detection [4]. There are generally two
types of remote sensors that are powerful for detecting water from space, namely optical sensors and
microwave sensors. The optical sensors utilize the low reflectance of water bodies in near infrared
channels to achieve delineation of water and land. The principle for water detection using microwave
sensors is based on the low backscatter signal of water surfaces. Both types of sensors have their
own advantages and disadvantages. The microwave sensors are able to penetrate cloud and some
vegetation cover, due to their much longer wavelength. Therefore, they can work under all weather
conditions and be effective in detecting water bodies beneath low vegetation.

Synthetic Aperture Radar (SAR) sensors have been widely applied in detecting and monitoring
water bodies due to their suitable spatial resolution, as well as the ability to penetrate cloud
and vegetation cover [5,6]. Until recently, SAR sensors had a relatively low temporal frequency
(about 24–35 days for acquisitions in the same geometric configuration) [7], which hinders the intensive
monitoring of surface water variation. The launch of the Sentinel-1A satellite in 2014 has improved
temporal frequency of acquisitions (every 3–12 days in Europe), associated with a 20 m spatial
resolution. The launch of the Sentinel-1B satellite in 2016 further improved the temporal frequency to
3–6 days. Sentinel-1 data can be freely downloaded by every user from the Scientific Data Hub of the
European Space Agency (ESA).

Several methods for mapping surface water bodies from SAR imagery have been developed.
Visual interpretation is always one reliable and simple approach [8] except that it can be time
consuming and subjective. Other popular methods include active contour models [9], texture-based
segmentations [10], and grey-level thresholding [11]. Among all these methods, grey-scale thresholding
is still the most commonly used approach to detect water areas using SAR imagery [12], due to its
efficiency and acceptable accuracy. All pixels with a backscatter value lower than a specific threshold in
an intensity image are classified as water. This threshold can be optimized using the Otsu algorithm [13],
or through careful manual adjustment.

Bearing in mind the multiple advantages, there are also disadvantages using SAR for surface
water detection. A serious and inevitable one is the terrain effect, because SAR sensors acquire data in
a side-looking geometry. Therefore, mountains and hills may block the transmission and reception of
microwave pulses, and thus introduce shadows and blind areas on SAR images. This usually impacts
the water detection algorithms, especially when using grey-scale thresholding method, because the
blocked areas also have low backscatter just as water surfaces do [14].

Surface water has a close relationship with the topography because of its fluid characteristics.
Terrain information is thus useful in assisting water detection. There are many studies that have
employed Digital Elevation Models (DEMs), digital representations of ground surface topography
or relief, in detecting water bodies from remote sensing imagery [15–17]. More and more DEM data
sources are becoming accessible, including Shuttle Radar Topographic Mission (SRTM) DEM with up
to 1 arc-second resolution and TanDEM-X with 12 m resolution. High quality global terrain datasets,
such as Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation
Model (ASTER GDEM) with 30 m resolution, are now available, which promotes the application of
DEMs in assisting mapping surface water globally [18]. However, in most of these studies, DEM data
are generally used for identifying those lower areas where water is more likely to be presented, or for
estimating water level. The elevation itself is not ideal for helping delineating terrain shadows from
water bodies, because shadow areas could be located in low areas and water could be held in high
places sometimes.
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Many terrain indices [19–22] have been developed in order to build up a stronger connection
between water presence and topography. Most of these terrain indices can generally be categorized
into two groups, valley bottom based and drainage based. A classic and popular one in the first group
is the Multi-resolution Valley Bottom Flatness (MrVBF) proposed by Gallant and Dowling [23]. It tries
to identify valley bottoms using a slope classification constrained to convergent areas, which is more
likely to be occupied by water than simply low places. It has been used as an important data layer
for mapping water bodies from remote sensing imagery in many studies [24–26]. A representative
index in the drainage based group is the Height Above Nearest Drainage (HAND) index, which was
presented by Rennó et al. [27] and implemented by Nobre et al. [28]. This index also attracted a lot of
attention and has been applied in many water detection studies [5,29–31].

This study aims to conduct a comprehensive comparison on MrVBF and HAND indices, especially
on their ability to assist surface water mapping using Sentinel-1A dual-polarized SAR data. A number
of study sites with different topographic features under different inundation scenarios will be selected
to showcase this comparison. Through this study, we are trying to elaborate the appropriate usage of
these indices for the purpose of better surface water mapping, especially with SAR data.

2. Materials and Methods

2.1. Study Sites

Rivers and lakes are two major types of surface water bodies. It is thus important that both types
of water bodies are included in the study. Rivers that have experienced dramatic water change and
lakes that are located in the mountainous areas are especially helpful for demonstrating the effect of
terrain indices on water mapping. Therefore, four sites located in Europe were selected, as shown
in Figure 1. Study sites 1, 2, and 3 are all in Wales, United Kingdom. Site 1 includes a section of
River Dee which is on the upstream of Chester, as well as its floodplain area. Site 2 covers a section of
River Severn at Shrewsbury along with its floodplain area. Both river sections experienced sharp flow
dynamics in December of 2015. Site 3 is in the northwest part of Wales. It includes a part of Snowdonia
National Park and Coed Y Brenin Forest Park with an average elevation over 350 m. This site has
several main water bodies such as Lake Vyrnwy, Llyn Tegid, Llyn Trawsfynydd, Afon Tryweryn,
Llyn Brenig, and Alwen Reservoir. Site 4 is to the north of Milan, covering a section of the border
between Switzerland and Italy. It is a mountainous area with an average elevation over 1600 m. Main
water bodies in this site include Lago Maggiore, Lago di Lugano, Lago di Como, and Brienzersee.
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2.2. SAR Data

For study sites 3 and 4, where the water bodies are mainly lakes and ponds whose water extents
are relatively stable within a short time period, only one image was selected for each site. For the
floodplain dominated sites (1 and 2), images that captured a flood event were also selected. Hence,
in total, six cases were analyzed in this study, as listed in Table 1. River Dee in study site 1 experienced
a flood event at the end of December 2015, thus its floodplain experienced a water expansion between
3 December 2015 and 27 December 2015. River Severn at Shrewsbury encountered a water level rise at
the start of December, therefore, the floodplain site 2 had shrinking water bodies between these two
dates. A code of (A) or (B) was given to each of these dates. Interferometric Wide (IW) Swath mode
Sentinel-1 data for these study sites on the selected dates were downloaded from the ESA Scientific hub
website (https://scihub.copernicus.eu/dhus/). Their swaths are displayed in Figure 1. These data
are C-band dual-polarization (VV, VH) SAR data. They are standard Level-1 Ground-Range Detected
High (GRDH) Resolution product generated from Level-0 data using the ScanSAR technique by ESA.

Table 1. Synthetic Aperture Radar (SAR) images selected for each study site.

Study Site Code for Study Case Data of Acquisition Sensor Mode Pass Incident Angle Resolution

1
Study site 1(A) 3 December 2015 Interferometric

Wide Swath
Descending 33.258–35.266 5 × 20 m

Study site 1(B) 27 December 2015

2
Study site 2(A) 3 December 2015 Interferometric

Wide Swath
Descending 31.051–35.012 5 × 20 m

Study site 2(B) 27 December 2015

3 Study site 3 27 December 2015 Interferometric
Wide Swath Descending 34.928–38.910 5 × 20 m

4 Study site 4 16 May 2015 Interferometric
Wide Swath Ascending 32.067–43.855 5 × 20 m

2.3. DEM Data

The most commonly used and freely available DEM is the SRTM DEM, which covers 85% of the
Earth’s surface. In this study, both 3 arc-second (3s) and 1 arc-second (1s) spatial resolution SRTM
DEMs were used. Two key properties of a DEM, the horizontal resolution and the vertical accuracy,
are important in surface water mapping [32]. Vertical errors of the SRTM DEM are ±16 m and ±6 m
for absolute and relative accuracy, respectively. The horizontal positional accuracy is ±20 m at a 90%
confidence level [33]. Strozzi, et al. [34] compared the 1s SRTM DEM to an aero-photogrammetric
DEM at a high-elevation mountain site in the Swiss Alps, and identified an average height difference
of 7 m, a standard deviation of height difference of 36 m, and maximum errors of up to 285 m. Also
using an aero-photogrammetric DEM as the reference, Kääb [35] found a standard deviation of the
height difference of ±20 m, with maximum vertical deviations of −193 m and +143 m. Other studies
in relatively flat terrain reported a Root Mean Square Error (RMSE) of SRTM DEM data of about 10 m
in comparison with shuttle laser altimeter data [36]. Both 1s and 3s SRTM DEMs are stored in Integer
type, which means the minimum elevation difference is 1 m.

3. Methodology

3.1. Calculation of MrVBF Index

The MrVBF index can be used for identifying valley bottoms at a range of sizes and slopes. It does
not rely on a prior identification of channels and can depict unchanneled valley areas including perched
swamps and lake wetlands [23]. It is an index that integrates the flatness and lowness characteristics
of valley bottoms. Flatness is measured by the inverse of the terrain slope. Lowness is measured by a
ranking of elevation with respect to a circular surrounding area. In order to identify different scales of
valley bottoms, the flatness and lowness calculation are carried out through a series of scales. Both
the measures of flatness and lowness were scaled to the range between 0 and 1, and then multiplied
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ISPRS Int. J. Geo-Inf. 2017, 6, 140 5 of 16

to construct the MrVBF index (Figure 2). MrVBF values range from 0 to a positive integer value.
Increasing MrVBF values indicate a reduction in slope and broadening of the valley.

There are six key parameters in calculating MrVBF from DEM data, the initial threshold for
slope (Ts), the lower and upper thresholds for elevation percentile (TeL, TeU, respectively), the shape
parameter for slope and elevation percentile (Ss, Se, respectively), and the maximum resolution (Rm).
The calculation of MrVBF has been implemented in SAGA-GIS, with an interactive interface for
parameter input.
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The MrVBF algorithm was originally developed using 1s resolution DEMs, but can be applied
at any resolution, provided appropriate adjustments are made. The link between size and flatness of
valley bottoms is incorporated into the algorithm by reducing the slope threshold by a factor of 2 at
each step, and it is assumed that the relationship between slope threshold, resolution, and MrVBF
value does not vary between landscapes or with DEMs of different resolutions. If the DEM resolution is
substantially different from 1s, the initial slope threshold (Ts) must be adjusted to retain the relationship
between slope and resolution. In this study, Ts for 1s DEM was set to be 16%, while that for 3s was set to
be 8%, as suggested by Gallant and Dowling [23]. The other parameters used the same default values.

3.2. Calculation of HAND Index

The HAND index is generated using two sets of procedures. The first one is to condition the input
DEM data, fixing sinks, defining flow paths, calculating an accumulated area map, and defining the
drainage networks based on the accumulation map. The second procedure uses local drain directions
and the drainage network to generate the nearest drainage map. Each pixel on this map is spatially
associated with all DEM pixels draining into it. Then, each DEM pixel will have an elevation difference
with its associated nearest drainage pixel. This elevation difference is assigned as the HAND index
value for this DEM pixel, therefore, the unit of HAND value is meter.

The HAND model programme includes embedded routines for processing the DEM, filling
sinks, and generating flow direction for each cell in the DEM using the so-called D8 approach [37],
and routines for determining flow paths and the drainage network, as well as routines for calculating
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the height difference between each DEM pixel and its nearest drainage pixel, which is defined from the
drainage network (Figure 3). This workflow has been implemented as Topography Tools in ArcGIS.
These tools were employed in this study to generate HAND images from 1s and 3s SRTM DEMs.

Theoretically, the HAND value for drainage pixels is 0, and all the other pixels should have a
HAND value great than 0, with a higher value indicating more unlikely to be held by water [27], while
with a HAND value that is closer to 0, it is easier to be inundated by water. Inherited from the DEM
data, the minimum difference of a HAND value is also 1 m.
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3.3. Water Mapping

Selected Level-1 Sentinel-1 GRDH images were preprocessed and resampled into 10 m pixel
spacing grid backscatter images using the SAR Geophysical Retrieval Toolbox (SGRT) [38] developed by
Vienna University of Technology. SGRT is written in Python programming language and includes some
external software modules, in particular ESA’s Sentinel-1 toolbox (S1TBX) for SAR data geocoding,
radiometric corrections, and calibration. 3s SRTM data were employed for SAR terrain correction.

Reference water maps for each of the study cases were derived by manually thresholding
both VV and VH backscatter data. Referring to a high-resolution Google Earth image, Sentinel-2,
and Landsat images, some masking and digitalization work was also carefully conducted to improve
the thresholding results. The final results were employed as the “actual” water maps for each
study case.

4. Results and Discussion

4.1. MrVBF Value vs. HAND Value

Both 1s and 3s SRTM DEM data of the selected four study sites were used to generate MrVBF and
HAND images using the aforementioned approaches. They are all displayed in Figure 4. The original
DEMs are also displayed for reference. All images are stretched using histogram equalization for a
better visual effect. For the DEM images, darker color represents lower elevation. For MrVBF images,
darker color stands for higher MrVBF value. For HAND images, darker color means lower HAND
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value. The values of these MrVBF images range from 0 to 7, with maximum values varying from
different sites and resolutions. The maximum MrVBF value in a 3s image is generally lower than that
in a 1s image for the same site, because the MrVBF values derived from 3s DEM in the first processing
step correspond to those derived in the second step when using a base 1s resolution, according to
Gallant and Dowling’s algorithm [23]. For the relatively flatter sites, the maximum MrVBF may be even
higher than those of the mountainous areas (site 3 and 4). The HAND images keep more information
from the original elevation. Values of HAND images range from 0 m to several hundred meters,
depending on the original terrain of the study sites.

ISPRS Int. J. Geo-Inf. 2017, 6, 140 7 of 16 

 

values varying from different sites and resolutions. The maximum MrVBF value in a 3s image is 
generally lower than that in a 1s image for the same site, because the MrVBF values derived from 3s 
DEM in the first processing step correspond to those derived in the second step when using a base 1s 
resolution, according to Gallant and Dowling’s algorithm [23]. For the relatively flatter sites, the 
maximum MrVBF may be even higher than those of the mountainous areas (site 3 and 4). The 
HAND images keep more information from the original elevation. Values of HAND images range 
from 0 m to several hundred meters, depending on the original terrain of the study sites. 

 
Figure 4. One arc-second (1s) and three arc-second (3s) Shuttle Radar Topographic Mission (SRTM) 
DEM data for all four study sites, along with MrVBF and HAND images derived from them. 

It can be seen from Figure 4 that all images show similar patterns for each site. Low-lying areas, 
which are dark in the DEM images, generally have high MrVBF values and low HAND values. 
HAND images keep more topographic patterns than MrVBF images. MrVBF images have higher 

Figure 4. One arc-second (1s) and three arc-second (3s) Shuttle Radar Topographic Mission (SRTM)
DEM data for all four study sites, along with MrVBF and HAND images derived from them.

It can be seen from Figure 4 that all images show similar patterns for each site. Low-lying areas,
which are dark in the DEM images, generally have high MrVBF values and low HAND values. HAND
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images keep more topographic patterns than MrVBF images. MrVBF images have higher contrast in
mountainous sites (3 and 4) while lower contrast in others. For both indices, higher resolution images
embrace more details and more complicated texture than their corresponding lower resolution images.

For a better comparison, both MrVBF and HAND indices were normalized to [0, 1] using the
Min-Max Normalization. In particular, HAND index was normalized inversely with the maximum
HAND value assigned a value of 0 and the minimum HAND value set to be 1. Then, normalized
MrVBF and HAND indices would have similar meanings, which is higher value indicating higher
possibility to be covered by water. Histograms of the normalized index images were generated
and displayed in Figure 5. The maximum values of all y-axes (frequency) were set to be 25 for a
better visualization of the histograms. It can be seen from Figure 5 that the distribution patterns
of normalized MrVBF values and HAND values are quite different. The distribution of HAND
values is more continuous than that of MrVBF values, with most of the pixels having values close to
1 (normalized value). The distributions of MrVBF values usually have several small peaks across the
whole value range, with each peak representing the valley bottom pixels at one level of resolution.
For sites 3 and 4, a large number of normalized MrVBF values are gathered near 0.
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Scatterplots were produced to compare normalized MrVBF and HAND indices pixel-by-pixel
(Figure 6). A red line representing the 1:1 relationship was drawn in each plot for reference. It can
be seen from Figure 6 that normalized MrVBF is generally smaller than normalized HAND values;
most of the scatter points occur under the 1:1 red line. In the up-right corner where scatter points
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represent pixels with the highest probability of water presence, HAND values are more concentrated
to 1. This means that more pixels in the HAND image are able to acquire the highest water presence
likelihood, while the MrVBF values of these pixels have a relatively higher variation.
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4.2. MrVBF Value vs. HAND Value within Water Areas

The actual water areas were used as masks for each study case to statistically analyze MrVBF
and HAND values within them. Boxplots showing the minimum, first quartile (25%), median, third
quartile (75%), and maximum values are displayed in Figure 7. Median values were shown as red lines
inside the boxes. Outliers were also displayed, shown as black crosses. It is clear from Figure 7 that
distribution patterns of different resolutions are similar, both for MrVBF and HAND. MrVBF values of
both resolutions in water areas are distributed in the middle of the whole value range, varying from
different sites, though the median values of 3s MrVBF are generally smaller than those of 1s MrVBF.
In relatively flatter study sites, such as site 1 and 2, the median values as well as the whole box are
higher. Most of the HAND values in water areas are 0, which is why the box parts below the third
quartile are all overlapped with the horizontal axis. Maximum HAND values differ from sites. They
are generally higher in mountainous sites than in flatter floodplain sites.

We also calculated the standard deviations (SDs) of both MrVBF and HAND values within water
areas of each study case and listed them in Table 2. They indicate the variations of terrain index values
within water areas. It has to be noted that the SDs of MrVBF are not comparative to those of HAND,
because they have different units. We can see from Table 2 that SDs of MrVBF in different cases are
close, with relatively higher values in higher resolution. SDs of HAND in different cases have larger
variations than those of MrVBF. Study sites 3 and 4 have relatively higher SDs than the others, meaning
more fluctuations of HAND values within water areas in mountainous regions than in flatter regions.

Table 2. Standard deviations (SDs) of MrVBF and HAND values within water areas.

Study Site Code for Study Case SD of 1s MrVBF SD of 1s HAND SD of 3s MrVBF SD of 3s HAND

1
Study site 1(A) 1.301 2.754 1.043 11.669
Study site 1(B) 1.300 2.061 1.095 7.782

2
Study site 2(A) 1.340 5.748 1.178 4.911
Study site 2(B) 1.245 6.347 0.992 6.015

3 Study site 3 1.288 21.521 1.021 19.792

4 Study site 4 1.333 15.215 0.993 14.543
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4.3. Sensitivity of MrVBF and HAND Thresholding

Through careful adjustment while comparing with the actual water maps, the threshold for
delineating potential water was set to be −21 dB for VH or −17 dB for VV. These thresholds are able to
ensure that water bodies in all the study cases were almost fully mapped. However, large commission
errors in non-water areas are observed. The role of MrVBF and HAND index images is exactly to
remove these errors as much as possible. For a MrVBF image, pixels with smaller values have lower
probabilities of holding surface water, a lower limit thresholding on MrVBF is thus able to mask out
some of the commission errors. While for a HAND image, pixels with higher values represent lower
probabilities of water presence, an upper limit is then needed to threshold this image for reducing
commission errors. Assuming a threshold (ζ or δ) was used for a MrVBF or a HAND image to assist
surface water detection from a Sentinel-1 image here, the water areas would be derived based on one
of the following criteria.

• (VH < −21 dB and MrVBF > ζ) or (VV < −17 dB and MrVBF > ζ);
• (VH < −21 dB and HAND < δ) or (VV < −17 dB and HAND < δ).

It is obvious that different threshold values generate different water maps. It is thus necessary
to examine a series of thresholds to find the optimal one that helps deriving the best water map,
in comparison to the referencing water body areas. There are several indicators that are commonly
used to measure the accuracy of water mapping. Pontius and Millones [39] proposed a useful and
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simple approach for accuracy assessment that focuses on two components of disagreement between
maps in terms of the quantity and spatial allocation of categories, namely quantity disagreement
(Q) and allocation disagreement (A). Quantity disagreement is defined as ‘the amount of difference
between the reference map and a comparison map that is due to a mismatch in the proportion of
the categories’, whilst allocation disagreement is defined as ‘the amount of difference between the
reference map and a comparison map that is due to less than the optimal match in the spatial allocation
of the categories, given the proportions of the categories in the reference and comparison maps’,
according to Pontius and Millones [39]. It was believed that this measurement is superior to Kappa
coefficient because the value of both types of disagreements is more meaningful than a Kappa value
whose baseline is randomness. Therefore, in this study, these two disagreements and their summary,
total disagreement (TD), were employed as the indicator for accuracy, instead of the Kappa coefficient,
which has been widely used for decades [39].

We examined ζ values from 0 to the maximum value for a MrVBF image with a step of 0.1,
and plotted the corresponding TD in Figure 8. Considering HAND value greater than 100 stands for a
very high place where water is usually impossible to be hold, we only examined δ values from 0 to 100
with a step of 1, in order to reduce unnecessary computation. TD derived from using different δ values
on a HAND image were plotted in Figure 8 as well. The TD for each study case that was derived by
simply thresholding on VV or VH image without a terrain mask is also displayed in Figure 8, shown
as a constant horizontal line. Here, only those thresholding results of 3s images are displayed. Results
for 1s DEM showed a similar pattern.
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It is observed from Figure 8 that VV and VH perform similar in all of these study cases. When
no terrain mask is applied, water bodies mapped merely from either VV or VH images have close
accuracy. The biggest TD difference happens in study site 1(A), where TD thresholding on VH is about
3.4%, and on VV is about 2.5%. For the other study cases, the TD differences between VV thresholding
and VH thresholding are all less than 0.5%.

Almost all the choices of threshold values have a positive impact on surface water detection. Their
corresponding disagreements are lower than that of non-masked results, except when the threshold
for MrVBF is too high, the disagreement can be even higher than that of non-masked results. This is
because some correct water bodies would be masked out with an unreasonably high threshold. While
using HAND, as the threshold increases, the disagreement becomes closer to that of the non-masked
result, suggesting a weaker masking effect. All study cases demonstrate that involving terrain indices,
either MrVBF or HAND, improves the accuracy of water mapping. Total disagreement can be reduced
by as much as 1.6%, varying from different sites and methods.

4.4. Optimal Thresholds and Their Performance

Based on the analysis in Section 4.3, optimal thresholds for different cases with different
resolutions and different polarizations were identified and listed in Table 3. It is observed that
using 3s resolution terrain indices to assist water mapping generally produces a higher TD than using
1s terrain indices, although the difference is very small. Water mapping results with the highest
accuracies (lowest TD) for study sites 1(A), 1(B), 2(A), 2(B), and 3 used a 1s HAND image to mask VV
based water extent with thresholds of 2, 3, 3, 3, and 8 m. While for study site 4, the best result was to
mask VH based water extent with a threshold of 1.9 on 3s MrVBF image.

It is clear from Table 3 that based on VV or VH thresholding, with assistance from HAND or
MrVBF, accurate water mapping can be achieved with TD less than 3%. Optimal thresholds for
HAND are generally less than 4 m, optimal threshold for MrVBF varies depending on the study sites.
For floodplain dominated study sites (1 and 2), optimal threshold is relatively higher than that for
mountainous study sites.

Table 3. Optimal thresholds and corresponding total disagreements (TDs).

Study Case
1s MrVBF

(TD %)
1s HAND

(TD %)
1s MrVBF

(TD %)
1s HAND

(TD %)
3s MrVBF

(TD %)
3s HAND

(TD %)
3s MrVBF

(TD %)
3s HAND

(TD %)

VH Image VV Image VH Image VV Image

Study site 1(A) 5.0 (1.253) 1 (1.165) 2.8 (1.096) 2 (0.965) 4.0 (1.514) 1 (1.354) 2.9 (1.259) 1 (1.149)
Study site 1(B) 3.9 (2.147) 2 (1.917) 2.8 (1.824) 3 (1.642) 2.9 (2.714) 3 (2.401) 1.9 (2.240) 4 (2.064)
Study site 2(A) 2.8 (0.943) 2 (0.824) 2.7 (0.716) 3 (0.665) 1.9 (1.124) 2 (0.954) 1.8 (0.859) 2 (0.782)
Study site 2(B) 2.9 (0.847) 3 (0.801) 2.9 (0.683) 3 (0.675) 2.7 (0.918) 3 (0.847) 1.9 (0.736) 3 (0.710)

Study site 3 2.0 (0.662) 6 (0.578) 1.1 (0.640) 8 (0.548) 1.8 (0.611) 1 (0.580) 0.9 (0.591) 5 (0.561)
Study site 4 2.0 (0.627) 1 (0.820) 2.0 (0.678) 1 (0.869) 1.9 (0.480) 1 (0.586) 0.9 (0.541) 1 (0.623)

For most of the cases in Table 3, VV based water maps seem to have slightly higher accuracy
than VH based water maps. We notice that many studies [11,40] suggested that VH is better than
VV in terms of water body detection, because VV’s higher sensitivity to wind-induced water surface
condition makes it difficult to distinguish rough water surfaces and land. Our results suggest that the
different performances of VV and VH are more similar than expected.

A series of water maps (Figure 9) were derived from VH polarization images assisted with
3s terrain index masks based on the optimal thresholds (bolded) in Table 3. Water maps without
terrain mask, as well as actual water maps, were also displayed as references. As we can see from
Figure 9, there are a lot of commission errors in the original VH thresholding maps. Most of these
errors come from the terrain effect, which is even more obvious in mountainous sites. Through using
either a MrVBF or HAND mask with an appropriate threshold, most of these errors were eliminated.
The HAND mask looks slightly better than MrVBF mask in most of the cases except for study site 4.
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5. Conclusions

SAR data can be quite useful for surface water mapping, but the data also have several
disadvantages. Terrain effect is one of them that especially affects water mapping due to similar
image values in terrain shadow regions and over water bodies. However, elevation information



ISPRS Int. J. Geo-Inf. 2017, 6, 140 14 of 16

directly acquired from DEM is sometimes not suitable for assisting surface water mapping for two
reasons. First, shadow areas could be located in low areas and water could be held in high places
sometimes, which makes simply thresholding on elevation not reliable in delineating shadows and
water bodies. Therefore, we need some kind of terrain index that has stronger connections with water
presence than the original elevation. The second reason is that all DEMs have errors. However, when
using terrain indices such as MrVBF and HAND, the absolute height error of DEM becomes less
important, since we do not threshold against height in an absolute sense but rather are concerned with
the valley bottom flatness, or relative spatial change in elevation, to quantify likely water presence.

This study conducted a comprehensive comparison on MrVBF and HAND toward their ability in
assisting water mapping using Sentinel-1 C-band dual-polarized data. Through several case studies
with different geomorphic types and inundation scenarios, we achieved the following three findings.

• Both terrain indices are able to help improve water mapping significantly. HAND performs
slightly better than MrVBF in most of these cases.

• Optimal thresholds for both indices are not fixed. Adjustments are required to achieve optimal
results. HAND is less sensitive to different thresholds, which is a good quality when being applied
to larger areas with varied topography.

• MrVBF classifies low and flat areas with more details than HAND does. For example, those areas
that have a unique HAND value of 0 may have quite different MrVBF values, depending on the
scale of valley bottoms. This advantage makes MrVBF sometimes more effective in eliminating
false water bodies in mountainous areas.

These findings are able to provide guidance for terrain index selection and usage when using
DEM data for assisting surface water mapping from SAR imagery. It is suggested that for large scale
or global water mapping, HAND index would be a better choice as the auxiliary data to SAR imagery.
While for water mapping in complex terrain areas, MrVBF or a combination of MrVBF and HAND is
recommended. Using either index, the threshold should be carefully selected to achieve optimal water
mapping results. The results of this study are useful for other studies that apply SAR data for water
mapping, either regionally or globally.

Though it has been proven that simply thresholding on either VV or VH polarized image with the
assistance from terrain indices is able to derive water maps with high accuracy, we are aware that the
results could be further improved with more advanced water detection algorithms. For example, it is
believed that the rate of backscatter change with local incidence angle may provide a better means to
map the water extents than a single threshold on backscatter alone [41]. Therefore, our future work will
investigate robust water mapping methodologies that involve more variables, such as local incidence
angle, terrain indices, or any other useful information.
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