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Abstract: The detection of ships in optical remote sensing images with clouds, waves, and other
complex interferences is a challenging task with broad applications. Two main obstacles for ship
target detection are how to extract candidates in a complex background, and how to confirm targets
in the event that targets are similar to false alarms. In this paper, we propose an algorithm based
on extended wavelet transform and phase saliency map (PSMEWT) to solve these issues. First,
multi-spectral data fusion was utilized to separate the sea and land areas, and the morphological
method was used to remove isolated holes. Second, extended wavelet transform (EWT) and phase
saliency map were combined to solve the problem of extracting regions of interest (ROIs) from a
complex background. The sea area was passed through the low-pass and high-pass filter to obtain
three transformed coefficients, and the adjacent high frequency sub-bands were multiplied for the
final result of the EWT. The visual phase saliency map of the product was built, and locations of
ROIs were obtained by dynamic threshold segmentation. Contours of the ROIs were extracted by
texture segmentation. Morphological, geometric, and 10-dimensional texture features of ROIs were
extracted for target confirmation. Support vector machine (SVM) was used to judge whether targets
were true. Experiments showed that our algorithm was insensitive to complex sea interferences and
very robust compared with other state-of-the-art methods, and the recall rate of our algorithm was
better than 90%.

Keywords: ship detection; extended wavelet transform; phase saliency map; multiple features
analysis; SVM classifier; complex sea conditions

1. Introduction

Ship targets are a key objective of maritime surveillance and wartime combat, and the automatic
detection and identification of ships is of great practical significance with wide applicability in both
civilian and military domains. There have been many previous studies on ship detection in synthetic
aperture radar (SAR) images. These kinds of methods have advantages in that they are little affected by
weather and time, but they are limited due to low SAR image resolution and a long revisit period [1–3].
In recent years, with the rapid development of optical remote imaging technology, some researchers
have paid more attention to the detection of ships with optical images due to their higher spatial
resolution and more detailed spatial contents, when compared with SAR images [4–8].

In comparison to SAR detection algorithms, ship detection algorithms (based on optical
remote-sensing images) are more recent. At present, the methods for ship detection can be generalized
from three aspects: sea and land separation, candidate target positioning, and false alarm removal.
In the first stage, separation methods aim to separate the sea from the land area quickly by using
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intensity threshold segmentation, regional growth, and prior geographic information [9,10]. The main
purpose of the second stage is to search out all candidate regions that include ship targets as much as
possible, based on gray-level analysis, shape and edge features, and machine vision perception [11–13].
Reference [11] proposed a discrimination mechanism of sliding window pixels at the stage of ROIs
positioning and selected ship candidates by morphological filtering. Reference [12] located small ship
candidates through a Bayesian decision. Previous work on distinguishing ships from false alarms
have mainly used the advantage of some machine learning methods [14–16], such as support vector
machine (SVM) and neural networks, by extracting features and binary classification.

Due to optical imaging conditions, cloud cover, wake, noise, and other interferences, it is difficult
to distinguish between the ships and the background, and ship targets can even submerge in the
complex background. This has resulted in little work done in the field of detecting ships under complex
sea surfaces. The saliency segmentation framework has been used to find potential suspicious targets
under the premise that the separation of land and sea is handled in advance, and the structure-LBP
(Local Binary Patterns) feature was proposed to confirm real ships [17]. Characteristics of gray and
texture features have been adopted to extract potential target areas, and to remove false alarms, several
geometrical features have been extracted during post-processing and SVM was used to train and
predict the uncertain ship targets [18]. A ship detection method with broken cloud interference was
proposed in Reference [19], and the double-parameter constant false alarm rate (CFAR) was used to
detect ROIs. This method uses the gray-scale difference of the search window and the target window
to position, so the model is less robust when the image brightness changes suddenly, or the target edge
is quite blurred.

In summary, the complexity of optical images increases the difficulty of detection and while most
of the proposed methods perform well with image of simple sea–land situations, there is still room
for improvement. To further investigate the problems arising from optical panchromatic images, a
hierarchical method is utilized in this paper, including three stages: pre-processing, prescreening, and
post-processing. The outline of this paper is organized as follows. Section 2 details the method of ship
extraction, and focuses on how to use the proposed method to locate ROIs in cluttered scenes and to
select features to eliminate false alarms. Section 3 shows the parameter selection for our method, the
experimental results of ship detection performed on remote sensing images, and compares our results
with other methods. Finally, Section 4 provides a discussion and the conclusions of our study.

2. Proposed Method

2.1. A Whole Process

When considering the complex background of various interferences, we allowed more suspicious
targets in the pre-screening stage and stripped out false alarms as much as possible in the
post-processing stage. Figure 1 shows the flowchart of our proposed detection algorithm. First,
we rapidly separated the sea from the land using multi-spectral information. Second, in this stage, a
novel method of ROI extraction based on EWT was conducted, and the transformation result was used
to construct a significant map of the phase spectrum. Next, we obtained a binary image by dynamic
threshold segmentation to locate the ROIs. Finally, at the post-processing stage, besides commonly
used shape and gray distribution features, the texture feature of the Gray Level Co-occurrence Matrix
(GLCM) and the rotation-invariant unified local binary pattern of improved LBP (LBPriu2

N,R) were
introduced to improve the adaptability and robustness of the training model for different types of
remote sensing images. We used the SVM classification approach (based on multiple extracted features)
to distinguish between ships and non-ships to remove most of the false alarms.
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Figure 1. Flowchart of our proposed detection algorithm.  

2.2. Pre-Processing Stage 

For a given image, we performed sea–land segmentation using spectral fusion. Multispectral 
images (produced by the same camera with optical remote sensing images) have different reflection 
characteristics at different wave bands, so have different digital numbers. The reflection of water 
gradually weakens from the visible wavelengths to the infrared wavelengths. The absorption of 
water is stronger in the near-infrared band; however, the reflection of vegetation is strongest in this 
band. Thus, we made full use of this information to separate the sea and land by using the 
Normalized Difference Water Index (NDWI) [20], and its formula is 
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where i  and j  are the row and column on the multispectral image. G (i,j)ρ  and ρNIR (i, j)  
represent the digital number of green band and near-infrared band, respectively. On the sea surface, 
the digital number of the green band ( ρG (i, j) ) is much larger than that of the near infrared band  
( ρNIR (i, j) ). While on the land, ρG (i, j)  is less than ρNIR (i, j) . NDWI  is within −1–+1, img sea  is a binary 
image after segmentation, and ndwiT  is the threshold got by statistics. Based on those natures, the 
sea–land region is divided initially by NDWI . As shown in Figure 2b, white and black areas denote 
the sea and land, respectively. Red oval circles are holes resulting from the segmentation. We 
removed hollows in the land and islands in the sea by the morphological corrosion and expansion 
method, so the broken areas were combined into one object as shown in Figure 2c. In addition, the 
method could remove some thick clouds, as shown in Figure 3. 
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Figure 2. Land-sea segmentation based on multi-spectral fusion. (a) Multi-spectral original image; (b) 
land-sea segmentation; and (c) hole filling.  

Figure 1. Flowchart of our proposed detection algorithm.

2.2. Pre-Processing Stage

For a given image, we performed sea–land segmentation using spectral fusion. Multispectral
images (produced by the same camera with optical remote sensing images) have different reflection
characteristics at different wave bands, so have different digital numbers. The reflection of water
gradually weakens from the visible wavelengths to the infrared wavelengths. The absorption of water
is stronger in the near-infrared band; however, the reflection of vegetation is strongest in this band.
Thus, we made full use of this information to separate the sea and land by using the Normalized
Difference Water Index (NDWI) [20], and its formula is

NDWI(i, j) =
ρG(i, j )− ρNIR(i, j)
ρG(i, j) + ρNIR(i, j)

, (1)

imgsea(i, j) = 1 NDWI(i, j) >= Tndwi
imgsea(i, j) = 0 NDWI(i, j) < Tndwi

, (2)

where i and j are the row and column on the multispectral image. ρG(i, j) and ρNIR(i, j) represent the
digital number of green band and near-infrared band, respectively. On the sea surface, the digital
number of the green band (ρG(i, j)) is much larger than that of the near infrared band (ρNIR(i, j)).
While on the land, ρG(i, j) is less than ρNIR(i, j). NDWI is within −1–+1, imgsea is a binary image after
segmentation, and Tndwi is the threshold got by statistics. Based on those natures, the sea–land region
is divided initially by NDWI. As shown in Figure 2b, white and black areas denote the sea and land,
respectively. Red oval circles are holes resulting from the segmentation. We removed hollows in the
land and islands in the sea by the morphological corrosion and expansion method, so the broken areas
were combined into one object as shown in Figure 2c. In addition, the method could remove some
thick clouds, as shown in Figure 3.
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Figure 3. Land-sea segmentation result of the sea covered by thick clouds. (a) The original image; 
and (b) the result of land-sea segmentation. 
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As the sea surface is greatly influenced by weather, capture conditions, sea waves, and other factors, 
wakes and intensities of ships differ under different imaging conditions. To solve this problem, this 
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Extended Wavelet Transform, PSMEWT).  
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Discrete wavelet transform (DWT) has the strong ability to characterize the local characteristics 
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the input image. The horizontal and vertical coefficients on adjacent scales are the same as the 
original image, without resolution reduction. Meanwhile, based on the propagation properties of 
signals and noise between different scales, we multiply the absolute value of horizontal 

Figure 3. Land-sea segmentation result of the sea covered by thick clouds. (a) The original image; and
(b) the result of land-sea segmentation.

2.3. Prescreening

The location of ROIs under complex sea conditions is the core of the target detection algorithm.
As the sea surface is greatly influenced by weather, capture conditions, sea waves, and other factors,
wakes and intensities of ships differ under different imaging conditions. To solve this problem, this
paper proposed the use of EWT; thus, on this basis, we constructed a significant map of the phase
spectrum to locate the ROIs. This method is referred to as PSMEWT (Phase Saliency Map Based
Extended Wavelet Transform, PSMEWT).

2.3.1. The Theory of the Proposed PSMEWT Method

Discrete wavelet transform (DWT) has the strong ability to characterize the local characteristics of
the signal in the time and frequency domain, which is useful in detecting the transience or singularity
of the signal [21]. DWT is based on the idea of a tree-structure filter, which is implemented through
the loop iteration of image down-sampling and filtering. The relationship between the adjacent scale
decomposition factors is expressed as

cj(k) = cj−1(k)gHj−1, (3)

dj(k) = dj−1(k)gGj−1, (4)

where Hj and Gj denote the low pass and high pass quadrature mirror filter, respectively. g denotes an
image; and cj and dj denote the decomposition factors of the scale of j.

However, the process of DWT reduces spatial resolution of the original image, which can be
harmful for image target detection and recognition. Thus, this paper proposed EWT. First, we made
an image pass through the low-pass H(z) and high-pass G(z) filters to obtain three transformed
coefficients of low frequency coefficients Xj(z1, z2), the high frequency vertical detail D2

j(z1, z2), and
the horizontal detail D1

j(z1, z2). The calculation process is

Xj(z1, z2) = H(zj
1)H(zj

2)Xj−1(z1, z2)

D1
j(z1, z2) = G(zj

1)Xj−1(z1, z2)

D2
j(z1, z2) = G(zj

2)Xj−1(z1, z2),
(5)

where z1 and z2 represent horizontal and vertical directions, respectively. Xj−1(z1, z2) denotes the
input image. The horizontal and vertical coefficients on adjacent scales are the same as the original
image, without resolution reduction. Meanwhile, based on the propagation properties of signals and
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noise between different scales, we multiply the absolute value of horizontal high-frequency coefficients
D1

j(z1, z2) and vertical high-frequency coefficients D2
j(z1, z2) to reduce the influence of image noise

on target detection and enhance the edge gradient value of targets, simultaneously. The calculation
process of EWT is shown in Figure 4.
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As the Harr wavelet basis has the simultaneous advantages of orthogonality and symmetry, there
is no displacement on the same breakpoint at different scales [21]. This paper used the Harr wavelet
basis for EWT, H(Z1) = H(Z2)

′ = [1/
√

21/
√

2], G(Z1) = G(Z2)
′ = [−1/

√
21/
√

2]. The main feature
of this method was to enhance the contrast between the ships and the background.

Second, we constructed a phase significance map from the results of the EWT to locate the ROIs
as the frequency domain significance map is suitable for detecting small targets in sparse scenes,
and ships are small–scale targets in a large number of sea data [22]. The method is able to quickly
remove large areas of the background and improve the detection rate of the algorithm. We conducted
a Fourier transform of the results of the EWT, and calculated the phase spectrum. Next, a Fourier
inverse transform of the phase spectrum was performed. Finally, we used a Gaussian smoothing filter
on the result. The calculation process of the significance map is

f (u, v) = F[I(x, y)], (6)

P(u, v) = angle(F(I(x, y))), (7)

S(x, y) = g(x, y) ∗ ‖F−1[exp(i ∗ P(u, v))]2‖, (8)

where F and F−1 represent the two-dimensional Fourier transform and inverse transform, respectively.
P(u, v) is the image of phase spectrum. S(x, y) denotes the significant map after transformation. g(x, y)
denotes the Gaussian low-pass filter function. I(x, y) is the result of the EWT.

Finally, we used the adaptive dynamic threshold method to segment the phase significant map to
obtain the positions of the ROIs. The threshold is calculated as

T = ms + k× δs, (9)

img_bw(x, y) =

{
1, S(x, y) ≥ T
0, S(x, y) < T

, (10)

where ms and δs represent the mean and variance of the phase significant map, respectively. k is an
empirical adjustment coefficient. T indicates the threshold of dynamic segmentation. img_bw is a
binary image. After threshold segmentation, one centroid point was used to express adjacent regionals.
With this point as the center, the image was cut into many suspicious target slices.

As seen in Figure 5, Figure 5a is the original image of the ship in clouds, and Figure 5b is the
three-dimensional show of the phase significant map after PSMEWT transformation. We can see that
the significant value of the target was significantly higher than the background. Figure 5c is the result
of threshold segmentation and we located the ROI denoted by the green box in Figure 5d.
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Figure 5. The result of localization of ROI based on PSMEWT. (a) The original image; (b) the phase
significant map; (c) the binary image after adaptive dynamic threshold method; and (d) the localization
of the ROI.

2.3.2. Comparative Experiments of Different Location Algorithms

• Comparison between DWT and EWT

To verify the validity of the proposed EWT in this paper for location of the ROIs, DWT and EWT
were performed on the same image. Figure 6a is an image containing two ships submerged in a thick
cloud. Horizontal and vertical high frequency components of the DWT are shown in Figure 6b,c,
where there is no clear boundary between the coefficients of targets and the background. After the
multiplication of adjacent high frequency sub-bands by EWT transformation, the target coefficient was
significantly prominent, which made it easy to detect targets, as shown in Figure 6f.

• Comparative experiments between PSMEWT and traditional localization methods on different
sea conditions

Optical remote sensing images with a 2–5 m resolution downloaded from Google Earth were used
as experiment images. The localization method of PSMEWT proposed in this paper was compared
with common localization methods, including the Otsu-based threshold segmentation method and the
Canny-based edge detection method.

Figure 7 shows the original images to be detected, and the experimental results of the three
algorithms are shown in Figures 8–11. The image becomes a binary image after Otsu processing
(as shown in Figure 8a,b), and the white areas denote suspicious positions that the algorithm has
located. For Figure 8a, this algorithm is insufficient to locate targets in such cases. As shown in
Figure 9a,b, the phenomenon of boundary confusion existed between the Canny results of target
and background, and was invalid in suspected target positioning. Figures 10 and 11 show the
three-dimensional significant maps and positioning results after PSMEWT. Compared with traditional
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methods, the PSMEWT method could successfully extract all ships under complicated scenes and
avoid missing potential candidates.
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2.4. Post-Processing

Post-processing is conducted to gather features of slice images to further weed out false alarms.
One key issue was to find efficient feature descriptors to characterize ship targets. By using the
above-mentioned steps, we could obtain the center of mass points from the ROIs, and use these
points as the starting points to spread around and extract contours of slice images using the texture
segmentation method presented in Reference [23]. Next, features were extracted from the obtained
contours and original slices for SVM training, as shown in Figure 12. In this paper, three types of
10-dimensional features were extracted from one slice, including size, shape, and texture features. The
detection model was established from the training samples of ships and false alarms through SVM
offline training.
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The shape features used in the training included length, width, area, and perimeter. Furthermore,
we selected three morphological features to eliminate false alarms, including length–width ratio,
compactness, and rectangularity. They can be calculated as

RH = H/W, (11)

RT = P2/S, (12)

RR = S/(H×W), (13)

where H is the length of the connected area; W is the width of the connected area; P is the perimeter of
the contour; and S is the number of the connected area points.

At the same time, we used the contrast and correlation of the GLCM [24] to describe texture, as
calculated below

M_contrast = ∑
i

∑
j
(i− j)2Pij, (14)

M_correlation = ∑
i

∑
j

Pij
(i− µ)(j− µ)

σ2 , (15)

where Pij is an element of GLCM; µ is the average of GLCM, µ = ∑
i

∑
j

i · Pij; and σ2 is the standard

deviation, σ2 = ∑
i

∑
j
(i− µ)2Pij.

In addition, the difference in texture distribution was described by calculating the histogram
variance of LBPriu2

N,R. LBPriu2
N,R is the rotation-invariant unified local binary pattern of the improved

LBP [25], and can detect the basic attributes of a local texture image such as bright spots and dark
spots. It can be calculated as

LBPriu2
N,R =


N−1
∑

n=0
s(gn − gc)i f (U(LBPN,R) <= 2)

N + 1otherwise
, (16)

where s(x) is the binary sign function; U(LBPN,R) is the number of exchanges between 0 and 1 (N-digit
binary figures), N = 8, R = 1. gc and gn denote the value of the center pixel value and neighbor pixels,
respectively.

As ships are usually thin and long, we used simple shape features such as area, length, width,
and RT to directly eliminate more obvious false alarms, for example, islands and big clouds. When
considering the texture distribution, LBPriu2

N,R and GLCM were introduced to strengthen the ability to
describe ships and non-ships. Figure 13 shows extracted samples of the SVM training from space-borne
optical images where Figure 13a gives various ship samples, and Figure 13b shows several typical
false-alarm samples. We randomly extracted ships, waves, and clouds from their training samples, and
each sample size was 20. We calculated the variance value of the LBPriu2

N,R histogram and the correlation
value (M_correlation) of GLCM, obtaining the results seen in Figure 14. The statistics chart of LBPriu2

N,R
histogram variance is shown in Figure 14a, and the ship texture distribution was greatly different. In
contrast, the texture of waves and clouds changed slowly. It can be seen in Figure 14a that the value
of ships (red line) was far above the values of the clouds and waves (green line and blue line). The
correlation of GLCM was used to measure the similar degree of GLCM elements in the row or column
directions. When the matrix elements of GLCM were uniform, the absolute value of correlation was
very high; however, if the matrix elements of GLCM varied widely, it was relatively low. As we can
see in Figure 14b, the correlation value is negative and the absolute value of correlation of clouds and
waves is larger (green line and blue line) than that of ships (red line).
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It was easy to find that features in use were effective enough to distinguish ships from false alarms
by the statistical experiments mentioned above. Both shape and texture attributes of the candidate
slices were adopted to SVM classification, and the combined features could improve the adaptability
and robustness of the training model.

3. Experimental Results and Performance Comparison

To evaluate the applicability of the algorithm, three groups of images were downloaded from
Google Earth: a quiet sea with a sea surface with few interferences (Group 1); a textured sea with
visible swell or thick cloud (Group 2); and a cluttered sea, the sea surface with many interferences
(Group 3). The spatial resolutions ranged from 1 to 5 m. The proposed method was implemented in
C++ with Intel (R) Xeon (R) CPU at 2.40 GHz and 64.0 GB RAM.

We used metrics of Recall and Precision to quantitatively evaluate the algorithm’s performance.

Recall = TP
TP+FN × 100%

Precision = TP
TP+ FP × 100%

, (17)

where TP is the number of correctly identified targets; FP is the number of background objects mistaken
as targets; and FN is the number of targets mistaken as background objects.
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3.1. Parameter Selection

Due to the different resolutions of the experimental images and various image conditions, texture
and other characteristic values differed across images of various resolution. To achieve a low missing
rate, we set different thresholds. SVM was adopted as the basic classifier in our two-class classification
problem. We selected the training set through two steps. The first step screening was performed in
principal computer (PC). We detected ROIs from the optical images and obtained slices of candidates
by the proposed PMEWT method. We calculated simple shape features of each slice, including
length, width, area, compactness, and rectangularity. We conducted a secondary artificial screening of
candidates that met the threshold conditions. We set different thresholds based on different image
resolutions. Using 2 m resolution images as an example, the ranges of length, width, area, and
perimeter were set to 200–20, 70–10, 14,000–200, and 540–60, respectively. Length–width ratio ranged
from 1.25 to 16, rectangularity ranged from 0.4 to 1, and compactness was greater than or equal to 15.
Those thresholds set at different resolutions were defined by summarizing many ship candidates and
reading related references. The second step screening was performed by humans. For slices selected
by PC, we classified them via an artificial mechanism, and selected ship and non-ship targets. There
was a total of 1050 samples, including 480 ship slices, 260 cloud slices, 230 wave slices, and 80 other
slices, with 480 total positive samples and 570 negative samples. Out of these totals, we randomly
selected 336 positive samples and 399 negative samples as the training set based on 70% of all slices,
and the others were selected as the test set.

Prior to training, we linearly normalized each feature to the range (0, 1). The main advantage of
normalization was to avoid feature attributes in greater numeric ranges dominating those in smaller
numeric ranges. We chose the radial basis function (RBF) as the kernel function as it nonlinearly maps
samples into a higher dimensional space, so it could handle cases when the relationships between
class labels and attributes were nonlinear [26]. There are two key parameters for the RBF kernel: c
and γ. c is the penalty parameter of the error term; and γ is the parameter of the kernel formula. We
obtained the best parameters through the cross-validation method [26] and set c = 1 and γ = 0.7. In
addition, the parameter Tndwi used in sea–land segmentation was set to 0.3. The parameter k in the
adaptive dynamic threshold method was set to three. Based on the experience of multiple experiments,
we calculated the values of GLCM in four directions (0◦, 45◦, 90◦, 135◦), and then used the mean value
as the final parameters of each slice.

3.2. Contrastive Experiments

We carried out experiments on 290 images with a 2048×4096-pixel size. We tested our approach
on three groups of different sea surfaces (which have been previously explained at the beginning
Section 3). The total number of ship targets in Group 1, Group 2, and Group 3 was 133, 143, and
78, respectively; the number of detected targets in Group 1, Group 2 and Group 3 was 135, 151, and
90, respectively; and the number of real targets in Group 1, Group 2 and Group 3 was 130, 131, and
64, respectively.

We can see from Table 1 that with an increasing number of interferences, the value of Recall and
Precision decreased slightly from Group 1 to Group 3, but the average of Recall could reach up to
90.46% for different sea surfaces, and the average of Precision was 84.72% even in the case of very
complex sea surfaces. These results demonstrate the effectiveness and applicability of our method.

Table 1. Detection results of our method in various situations.

Different Situations Recall Precision

Quiet sea 97.74% 96.30%
Textured sea 91.61% 86.75%
Clutter sea 82.05% 71.11%
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To verify that the proposed method had a positive impact on ship detection, we compared our
method with the state-of-the-art methods proposed in References [17,18] on Recall and Precision. These
experiments were conducted on 290 images of the different situations above-mentioned, including the
quiet sea, textured sea, and cluttered sea. The Recall and Precision of the method used in Reference [17]
were 87.65% and 80.47%, respectively, while the Recall and Precision of the method in Reference [18]
were 80.08% and 78.92%, respectively. In contrast, our method achieved a detection effect with
higher accuracy.

Here, we present one contrastive result of the three methods. As shown in Figure 15a, the image
is of four ships on the sea covered by thin clouds, where the contrast of target and background is
very low. Figure 15b,c are the three-dimensional map of horizontal transformation coefficients by
EWT and the three-dimensional map of vertical transformation coefficients by EWT, respectively.
We obtained the final result of the EWT by dot product of horizontal transformation coefficients
and vertical transformation coefficients, and the three-dimensional map is shown in Figure 15d. We
constructed a phase significant map and obtained a binary segmentation image, as shown in Figure 15e.
At this step, tone can obtain both the ships’ position and the locations of the non-ships simultaneously.
Finally, some false alarms were removed and the final ship targets confirmed, as shown in Figure 15f.
As we can see from Figure 15b, the raised positions are the locations of targets, and the contrast
of target and background was significantly enhanced after dot product of horizontal and vertical
transformation coefficients. This highlighted the targets from the background and made it easy to find
targets in the phase significance map. We located four ships accurately by binary segmentation of the
phase significance map and rejected two false alarms through features extracted from the ROIs. It also
showed the effectiveness of the features used in our paper. Although ships are weakly contrasted with
the background, our method achieved good detection results.

Reference [18] combined the gray-scale difference map with the texture difference map to separate
targets from the background. The gray-scale difference map was obtained by subtracting the mean
value of one image from the original image. The larger values of the gray-scale difference map are more
likely to be targets. Local Walsh transform was used for the texture difference map. Coefficients of the
local Walsh transformation were constructed by the gray value difference between the center pixel and
eight other points in the neighborhood. False alarms were eliminated by basic shape features, such as
length, width, and area. As seen in Figure 15g, we used the method in Reference [13] to conduct binary
segmentation of the ROIs, where one ship target was detected and the other three were missed. There
are two reasons for this result. One is that both the gray-scale difference map and the texture difference
map use the gray difference value between the center point and neighborhood points. When the gray
difference of the whole image changes little, it is difficult to detect targets. The other cause is that it is
not sufficiently reliable to reject false alarms using only simple shape features in a complex scene.

Reference [17] integrated intensity distinctness and the significant map into the process of ship
detection. ROIs were obtained by dynamic threshold segmentation, and shape features and the
structure LBP of ships were used to determine whether the candidate was a real ship. The structure
LBP separately extracted LBP histogram features on different regions, including the prow, left hull,
right hull, and stern. As shown in Figure 15h, we used the method proposed in Reference [12] to obtain
binary segmentation of the ROIs. Two ship targets were detected and the other two were missed. At
the same time, one false alarm was detected. Influenced by the illumination and weather, the intensity
of ships is similar to that of the background. In such cases, the intensity difference is insufficient
to detect ships and it is difficult to highlight targets in the background despite combining intensity
distinctness with the significant map. Furthermore, structural LBP mainly suits big ships as there is no
significant difference in the LBP distribution of the prow, left hull, right hull, and stern when the ship
is small and relatively blurred. It is unreliable in distinguishing between small ships from similar false
alarms by the structural LBP.
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Figure 15. The ship detection results from the three different methods. (a) An image covered by
thin clouds; (b) the three-dimensional map of horizontal transformation coefficients by EWT; (c) the
three-dimensional map of vertical transformation coefficients by EWT; (d) the final results of the EWT;
(e) a binary segmentation image of phase significant map; (f) the detection results from our proposed
method; (g) the detection results by the method in Reference [18]; (h) the detection results by the
method in Reference [17].
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Due to space limitations, we only present four detected results of our method. Figure 16 shows
some typical sea surfaces. Figure 17 provides the corresponding processing results of the visual phase
saliency images, and Figure 18 shows the detected results of different cases.
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Figure 16a shows an image where one ship is half-shaded by clouds, whose texture and gray
value are similar to ships. Figure 16b is an image with very dramatic change in the partial area. Many
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wave fringes increase the false alarm targets. Figure 16c shows ships of low contrast on the sea surface,
which increases the difficulty of detection. Figure 16d is an image of a simple sea surface.

Figure 17 shows the results of sea area images processed through PSMEWT and dynamic threshold
segmentation, and white areas denote the ROIs. It is clearly observed from Figure 17 that the ROI
localization method based on PSMEWT is very accurate without missed alarms. This is because the
EWT method enhances the edge and contrast of targets, and makes the target position more prominent
by combining it with the significance map of phase spectrum. Although there were some false alarms
in the process of the land and sea separation and PSMEWT, the 10-dimension feature vectors adopted
by our method were effective enough to remove most of the false alarms, as shown in Figure 18.

4. Conclusions

Ships play an important role in both civil and military fields. Traditional methods do not perform
very well under a complex sea surface. We proposed a method named PSMEWT. Multi-spectral
information was first adopted in the sea–land segmentation to reduce the detection time consumption.
Then we constructed a visual phase saliency map based on the extended wavelet transform to
highlight the difference between ships and the background to locate ship candidates. In the process of
removing false alarms, aside from morphological and geometric features, we introduced the GLCM
and LBPriu2

N,R to more effectively eliminate false alarms, and the SVM classifier was adopted to conduct
offline training at the same time. Extensive experiments validated our method, which not only
outperformed the present ship detection methods on precision and recall, but was also robust for
complex background interference.

However, there is still room for improvement. There will be relatively more false targets when our
method is applied to small ships. The small size (only 10–20 pixels) of the ships in the images makes it
difficult to determine whether it is a ship through optical remote sensing images. Further study will
be required into methods to improve the precision and recall. In addition, the multi-spectral fusion
method was adopted in sea–land segmentation because our camera had many channels; however, it
can be replaced by other methods and will not affect the subsequent use of our algorithm.
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