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Abstract: The equal division of tropical cyclone (TC) trajectory method, the mass moment of the
TC trajectory method, and the mixed regression model method are clustering algorithms that use
space and shape information from complete TC trajectories. In this article, these three clustering
algorithms were applied in a TC trajectory clustering analysis to identify the TCs that affected the
South China Sea (SCS) from 1949 to 2014. According to their spatial position and shape similarity,
these TC trajectories were classified into five trajectory classes, including three westward straight-line
movement trajectory clusters and two northward re-curving trajectory clusters. These clusters show
different characteristics in their genesis position, heading, landfall location, TC intensity, lifetime
and seasonality distribution. The clustering results indicate that these algorithms have different
characteristics. The equal division of the trajectory method provides better clustering result generally.
The approach is simple and direct, and trajectories in the same class were consistent in shape and
heading. The regression mixture model algorithm has a solid theoretical mathematical foundation,
and it can maintain good spatial consistency among trajectories in the class. The mass moment of the
trajectory method shows overall consistency with the equal division of the trajectory method.

Keywords: tropical cyclone; data mining; South China Sea; trajectory clustering

1. Introduction

Tropical cyclones (TCs) are a type of intense atmospheric cyclonic eddy generated over warm
tropical oceans [1]. They are one of the most globally devastating natural catastrophes and usually
have a considerable socio-economic impact for countries in TC-prone areas [2–4]. The South China Sea
(SCS), which is the largest semi-enclosed marginal sea in the Northwest Pacific, is also an active region
of TCs. Approximately 13.2% of the TCs formed in the Western North Pacific (WNP) were generated
in the SCS [5]. In addition, more than 60% of the TCs in the WNP affect countries and areas located
around the SCS [6]. Previous studies have primarily focused on WNP TCs in general [7–14], whereas
relatively few studies have focused on the specific characteristics of TCs affecting the SCS. With the
rapid social economic development and population growth in the areas around the SCS, it is important
to gain a better understanding of how TC behaviour affects the SCS.
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TC landfall locations are primarily determined by their trajectories [15]; therefore, identifying the
rules of TCs trajectories represents one of the most important aspects of TC disaster protection [16].
Previous studies have found that the characteristics of these TC trajectories can be better understood
by classifying them into several clusters [9,11,14]. For example, by classifying TC trajectories
into three types (straight-moving storms, re-curving-south storms, and re-curving-north storms),
Harry and Elsberry [11] illustrated the relationship between TC trajectory types and anomalous
700-mb large-scale circulation patterns and TC genesis locations. Hodnish and Gray [9] investigated
features of environmental wind fields at all levels of the troposphere that are related to TC re-curvature
by categorizing TCs into four patterns: non-re-curving cyclones, sharply re-curving cyclones, gradually
re-curving cyclones and left-turning cyclones. Lander [14] discussed the effects of the reverse
orientation of the summer monsoon trough of the WNP further north and east than normal for
TC motion by classifying TC trajectories into four major patterns: straight moving, re-curving, north
oriented and SCS oriented.

However, the results of previous studies were relatively qualitative and descriptive; therefore,
more effective quantitative methods are needed to better understand the behaviour of TC trajectories.
The numerical clustering method includes objective characteristics and represents a quantitative
data-mining method that is widely applied in many areas, including public transportation [17,18],
the humanities and social sciences (e.g., Twitter events) [19–21], and environmental pollution [22–24].
Compared with other clustering objects, TCs with different lifetimes generate tracks with different
lengths; thus, they cannot be analysed through the direct use of common clustering methods.
To overcome this shortcoming, different methods have been proposed. Some studies included
special trajectory points and the K-means clustering method [25] to perform cluster analyses of
TC trajectories. Based on the geographical position of TCs at their maximum intensity and terminal
position, Elsner and Liu studied the WNP and the North Atlantic TCs by classifying them into three
clusters [10,26]. Blender used six-hourly trajectory point positions over three days to cluster trajectories
of extratropical TCs in the North Atlantic [27], and Corporal-Lodangco and Leslie clustered TCs
affecting the Philippines based on their genesis, maximum intensity, and decay point positions [28].

However, these methods are exclusively based on limited special points of the TC track, and
Gaffney [29] suggested that this method is not desirable for resolving the problem because the features
of TC trajectories should be expressed by the entire TC trajectory [29,30]. To overcome the deficiencies
of these methods, Gaffney proposed a Finite-Mixture-Model (FMM) clustering algorithm [29,31], which
has been utilized in many TC trajectory clustering analyses of the WNP [30,32], the North Atlantic
Ocean [33,34], the Eastern North Pacific Ocean [35], and the North Indian Ocean [36]. Nakamura et al.
proposed the use of two mass moments of TC trajectory, namely, the centroid and the variance (x-, y-,
and xy-directions), for TC trajectory clustering. These two mass moments reflect the TC position and
shape separately and constitute a vector of five scalar components per TC track. By applying the
mass moments to the K-means clustering method, a reliable clustering result of six clusters for the
North Atlantic TCs were obtained [34]. Kim also solved this problem and analysed the WNP TCs
by dividing each trajectory into M segments of equal length [6]. Through sufficient density of equal
dividing sample points, the original position and shape character of each trajectory can be retained.
Therefore, the common clustering method can be used to cluster the re-sampled TC tracks.

TCs that affect the SCS include not only the TCs forming locally in the SCS but also the TCs
forming in the WNP and then migrating into the SCS. Therefore, it would be more appropriate to
incorporate all these TCs in the TC trajectory analysis to obtain a more comprehensive understanding
of the trajectory characteristics of TCs that affect the SCS. However, few studies have focused on
the unique TC trajectory characteristics of the SCS, especially using quantitative numeric clustering
methods [37,38]. In this paper, we use the three abovementioned methods based on full TC trajectory
information to perform TC trajectory clustering and analyse the TC trajectory patterns that affect the
SCS. Comparisons of the results of these methods are performed, and their differences are analysed.



ISPRS Int. J. Geo-Inf. 2017, 6, 210 3 of 22

2. Research Methods

2.1. Research Data

In this paper, the best-track dataset for TCs from 1949 to 2014 provided by the China
Meteorological Administration (CMA) was adopted. This dataset provides the longitude and latitude
for the spatial location, the maximum sustained wind velocity, and lowest pressure near the centre of
TCs every six hours in the WNP (to the north of the equator and the west of longitude 180◦ E, including
the SCS) since 1949. Because there are more observations of TCs in the continental and surrounding sea
areas of China, this dataset has more advantages in the areas surrounding China and the SCS [39,40].

The spatial range in this study is within the region (105◦–125◦ E, 0◦–27◦ N), which covers the
entire SCS and the surrounding areas and countries. When a TC generated in the WNP passes through
this region, it is selected as a TC that has an impact on the SCS. Only TCs with a maximum wind
velocity (vmax) above the tropical storm threshold (17.2 m/s ≤ vmax) were adopted. Overall, 946 TC
trajectories were selected. We also conducted a clustering analysis for the TC trajectories after 1972, the
year in which satellite observation techniques began to be used. According to the results, there are no
essential differences in the analysis results compared with data recorded since 1949, lending credibility
to the trajectory data of the TCs recorded in the dataset.

2.2. Equal Division of TC Trajectory Method

Equally dividing a trajectory into M parts is a simple and straightforward method of processing
trajectory data of different lengths. In the actual application, the equivalent trajectory division points
can be extracted using available tools, such as the ICurve.QueryPoint method of the ArcGIS Engine.

For random variables that obey the Gaussian distribution, more than 99% of the values of the
random variable are contained in the range of (µ − 3σ, µ + 3σ), where µ is the average, and σ is the
standard deviation of the random variable. According to the central limit theorems, the lifetime of a TC
can be assumed to obey the Gaussian distribution. The statistical result shows that the average lifetime
of TCs in the dataset is µ = 178 h, and the standard deviation is σ = 80 h. Because the TC trajectory
obtains each sampling point for every six-hour time interval, we selected 80 equal division sample
points for each TC track. Therefore, the coordinate points of each TC trajectory are organized into a
1 × 160 row vector, Trji = [x̃1, ỹ1, · · · , x̃80, ỹ80]1 × 160. The ensemble of all TC tracks in the dataset
will constitute a k × 160 matrix, X̃k = [Trj1, · · · , Trjk]

T , and k = 946 is the number of TC trajectories.

2.3. Mass Moment of the TC Trajectory Method

Using the mass moment of the trajectory, the shape and length of the entire trajectory can be
comprehensively considered in the clustering process. This method includes two mass moments, the
first of which is represented by the coordinates (x, y) for the central point position of the trajectory.
The equation is as follows:

M1 =
1
A

∫
w(r)rdxdy =

1
∑n

i=1 w(ri)
∑ n

i=1w(ri)ri, (1)

where r is the coordinate vector (x, y) for a point on the trajectory, w(r) is the value corresponding to
the selected weight variable (such as the intensity of TC) at that point, and A is a constant represented
by the integral of the selected weight variable on the overall trajectory. The form of the polynomial
sum on the right side of the equation is an approximate simplified calculation of this value using n
discrete observation points in the trajectory. M1 is the geometric centre of the trajectory, representing
its location.

The second matrix represents the variance of coordinates x, y of the trajectory, and the
corresponding mathematical form is as follows:
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M2 =
1
A

∫
w(r)(r−M1)2dxdy =

1
∑n

i=1 w(ri)
∑ n

i=1w(ri)(ri −M1i)
2. (2)

The variable symbols in this equation are equivalent to the corresponding symbols in the equation
for M1 [34]. In this paper, we cluster the TC trajectories according to the shape characteristics of the
trajectory, and the value of w at different points is set to one. The expression form of matrix M2 is

M2 =

[
σ2

x σxy

σyx σ2
y

]
. This matrix corresponds to a variance ellipse that represents the shape of the

trajectory. The long axis of the ellipse reflects the direction and range for the maximum distribution
of the trajectory points, and the short axis of the ellipse reflects the degree of concentration for the
distribution of the trajectory points in this direction. The angle of the long axis is determined by the
covariance, which reflects the overall moving trend of the trajectory.

Through this transformation, each trajectory is expressed by a five-dimensional vector, i.e.,[
x, y, σ2

x , σ2
y , σxy

]
. For the coordinate elements and variance elements in the vector to have the same

order of magnitude, the variables must be normalized. In addition, we assign the weight for each
coordinate variable as ρ1 = 0.5/2 and the weight for each variance variable as ρ2 = 0.5/3. Thus, the
position and shape factors of the trajectory have the same effect on the clustering results.

Kim [6] suggested that compared with hard clustering methods such as K-means, fuzzy clustering
methods allow each object to belong to all clusters with assigned corresponding membership
coefficients (ranging from 0 to 1) that evaluate the degree to which an object belongs to each of
clusters. Thus, fuzzy clustering can better manage fuzzy datasets such as TC trajectories, which are too
complex to determine the potential boundaries and discrete different patterns. Chu [41] also argues
that the fuzzy c-means (FCM) algorithm is more suitable for TC track data. Therefore, in this paper,
the FCM clustering algorithm is selected to perform cluster analyses of TC trajectories in both the mass
moment method and the equal division method.

2.4. Mixed Regression Model Method

The mixed regression model uses the linear combination of a finite number of density functions
to express the distribution of data, and the Expectation Maximum (EM) algorithm is used to perform
the clustering analysis of the trajectory data. In the regression mixture model, coordinates x and y of
each observation point in the trajectory are expressed in the form of a p-order polynomial function
with respect to observation time t, z = βptp + βp−1tp−1 + · · ·+ β1t1 + β0. The form of the function for
the regression polynomial fitting of each trajectory is as follows:

zi = Tiβ + εi, (3)

where zi = [X, Y]ni × 2, X, Y are the column vector of the x coordinate and the y coordinate for the
trajectory, respectively; Ti is the ni × (p + 1) Vandermonde determinant; and β is the (p + 1) × 2
matrix of the regression coefficients. The first column in the matrix is the regression coefficient of the x
coordinate on the TC trajectory, the second column is the regression coefficient of the y coordinate. εi is
the ni × 2 error term that obeys the normal distribution; its average is 0, and ni is the number of points
in the trajectory. According to the number of observation points in the trajectory, ni can take different
values. Based on the qualitative artificial method and the quantitative analysis used to determine the
fitting results for the TC trajectory, Gaffney suggested that the quadratic polynomial has the best fitting
result for the TC trajectory [42]. Therefore, quadratic polynomials are typically used for clustering
analyses of TC trajectories. In this paper, we also adopt the quadratic polynomial method to perform
the clustering analysis of TCs in the SCS.

The conditional density function for the ith trajectory is as follows:

p(zi|ti, θ) = f (zi|Tiβ, ∑) = (2π)−ni/2exp

[
−1

2
tr(zi − Tiβ)

−1

∑(zi − Tiβ)
′
]

. (4)
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According to the definition of the mixture model, when there are k functions of probability density,
the probability density function of the trajectory i is as follows:

p(zi|ti, ψ) = ∑ K
k αk pk(zi|ti, θk) = ∑ K

k αk fk(zi|Tiβk, ∑ k). (5)

For the dataset that contains n typhoon trajectories, Z = {z1, · · · , zn}, the overall probability
density is the product of the different trajectory probability densities in set Z, such as Equation (6),
where Ti = {t1, · · · , tn} is the observation time of different typhoon trajectories:

p(Z|T, ψ) = ∏ n
i ∑ K

k αk fk(zi|Tiβk, ∑ k). (6)

Using the observed coordinate data of TC trajectories and the EM algorithm, the probability for
each trajectory as the member of the kth density function is obtained. By dividing the trajectory into
the function with the largest probability, the clustering of TC tracks is achieved.

2.5. Selection of the Number of Clusters

Determining the optimum number of clusters is an important process performed in clustering
analysis. To determine the optimum number of clusters, Figure 1 shows the coefficients of variation
index values obtained by the equal division of the trajectory and the mass moment of the trajectory
methods. The coefficient of variation represents the ratio between the standard deviation and the
average of the total distances of all the TC trajectories to their cluster centres, and this value reflects
the overall degree of dispersion for TC trajectories to their class centres. Smaller values for the
index correspond to better clustering results. The index shows that when the number of clusters is
set to five or six, relatively good clustering results can be obtained. We also used indices such as
average similarity [43], the partition index [44], and the log-likelihood index [30], and a comprehensive
comparison of different indices was performed to determine the optimum number of clusters [45].
All these indices showed consistent results with the coefficient of variation index. Compared with
previous studies on the clustering analysis of TCs in the entire WNP, both Camargo [30] and Kim [6]
selected seven as the optimum number of clusters. However, this paper includes only the TCs that
affect the region of the SCS. Therefore, by summarizing the above analyses, we select five classes as
the optimum number of clusters.
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Figure 1. Variation of the coefficients of variation index with the number of clusters. The left side
shows the result of the equal division of the trajectory method, and the right side is the result for the
mass moment of the trajectory method. (a) Equal division of the trajectory method. (b) Mass moment
of the trajectory method.

3. Results

3.1. Clustering Results for the TC Trajectories

The clustering centre represents the overall characteristics and tendency of elements in the class.
Figure 2 shows the clustering centres obtained by various clustering methods. This figure shows
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that the clustering centres of the equal division of the trajectory method (Figure 2a) and the mixed
regression model method (Figure 2b) are both curved, representing the average spatial location and
moving features of their class. The results for the mass moment of the trajectory method (Figure 2c)
show the average of variance ellipses for the different element trajectories in the class, and the average
ellipses provide an expression of the spatial distribution of the trajectory. To facilitate the comparison
among the results of the three methods, classes with similar location and shape properties are sorted
into the same group, and a class number is assigned and sequentially marked as class A, class B,
class C, class D, and class E.

In general, the different algorithms all obtain three classes of westward straight-moving
trajectories and two classes of northward re-curving trajectories for the TCs affecting the SCS. The class
centres of the three straight-moving classes are sequentially shifted east from the SCS basin to
approximately 150◦ E. Therefore, the corresponding average length of the trajectory also gradually
increases (Table 1). Among them, class A and class B are the two main classes: the sum of the elements
in these two classes account for more than 50% (Table 2). For the two re-curving classes, the average
length of the trajectories in class D is less than the average length of the trajectories in class E (Table 1).
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Figure 2. Clustering centres of the tropical cyclone (TC) trajectory obtained by different clustering
algorithms: (a) clustering centre for the equal division of the trajectory method, (b) clustering
centre for the mixed regression model method, and (c) clustering centre for the mass moment of
the trajectory method.

Table 1. Statistics for the length of the tropical cyclone (TC) trajectories in each category.

TC Trajectory
Class

Equal Division of the
Trajectory Method

Mixed Regression Model
Method

Mass Moment of the
Trajectory Method

Average
Length

(km)

Standard
Deviation

(km)

Average
Length

(km)

Standard
Deviation

(km)

Average
Length

(km)

Standard
Deviation

(km)

Class A 1804.77 824.79 1939.48 900.28 2014.61 1007.87
Class B 3297.24 971.83 3429.85 966.40 3318.78 1066.28
Class C 4604.63 1297.13 5118.53 1275.13 5239.34 1416.27
Class D 4049.65 1846.76 5216.37 1945.33 3812.19 1529.89
Class E 7526.23 2210.65 4331.05 2545.40 8489.51 1930.25
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Table 2. Number of TC trajectories in the different classes and the proportion relative to the total
TC number.

TC Trajectory
Class

Equal Division of the
Trajectory Method

Mixed Regression Model
Method

Mass Moment of the
Trajectory Method

Number of
Trajectories
in the Class

Percentage
Number of
Trajectories
in the Class

Percentage
Number of
Trajectories
in the Class

Percentage

Class A 227 24% 260 27% 261 28%
Class B 266 28% 208 22% 243 26%
Class C 203 21% 119 13% 186 20%
Class D 166 18% 163 17% 204 21%
Class E 84 9% 196 21% 52 5%
Overall 946 100% 946 100% 946 100

Although classes in the same group show great consistency in their spatial character, some
differences remain. These differences will be analysed in detail in the following discussion.

3.2. Trajectory Features of Different TC Classes

Figure 3 shows the TC trajectories contained in the different classes and the corresponding class
centres. The clustering results for the same group obtained by the different clustering algorithms are
placed on the same row, and the corresponding frequency distribution of the heading of TC trajectories
in the class is shown at the lower part. This frequency, which reveals the heading distribution of TC
movement at a 10◦ interval, is an accumulation of the angle between any two adjacent points in the
TC trajectory.

The TC tracks in classes A, B, and C are primarily in found a straight westward movement.
From the perspective of spatial distribution, these straight-moving classes are primarily distributed
in the region to the south of 30◦ N. Class A is primarily concentrated in the region of the SCS, i.e.,
the trajectories were generated locally in the SCS. The trajectories contained in class B and class C
represent TCs generated in the WNP that move into the SCS. The heading frequencies for these three
categories show obvious single-peak distribution and are primarily distributed in the range near 280◦.
In addition, different clustering algorithms show relatively high consistency in their clustering results.

The class centre curve pattern for class D and class E show that these two classes are re-curving
TC classes: TCs in these two classes move to high latitudes after turning near the SCS. The overall
movement distances of the trajectories in class E are greater, reaching approximately 60◦ N. In addition,
these two classes both have a relatively large spatial distribution range. Moreover, the frequency
distributions of heading for these two classes are the double-peak distributions in the northwest and
northeast direction. However, the heading frequency distribution of trajectories in class D (middle of
Figure 3d) obtained by the mixed regression model shows a significant single-peak structure moving in
the northwest direction. In contrast, the results obtained by the equal division of the trajectory method
and mass moment of the trajectory method have two obvious peaks in the northwest and northeast
directions, indicating that for class D, obtained by the mixed regression model, western movement is
the predominant moving trend for TCs, although the class centre curve pattern shows a northward
re-curving motion pattern.
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Figure 3. (a–e) TC trajectory clustering results and corresponding heading frequency distribution of
TC movement obtained by the different trajectory clustering methods.

3.3. Genesis Locations of Different TC Classes

The spatial location of TC generation is connected—to a certain extent—to the movement mode
of its trajectory [11]. It can be seen from the kernel density distribution (KDE) of the genesis positions
(Figure 4) that the spatial distribution of TC genesis locations for three westward straight-moving
classes (classes A, B, and C) obtained through different methods are essentially consistent (Figure 4a–c).
The average longitudes for the genesis locations of classes A, B, and C are approximately 118◦ E,
135◦ E, and 150◦ E, respectively (Table 3), which corresponds to the three major source regions
for TC generation in the WNP, namely, the SCS basin, the Philippine Basin, and the Mariana
Islands [46], respectively.

However, for the TC trajectories in classes D and E, considerable differences are observed.
Figure 4d shows that the spatial distribution of TC genesis locations for class D obtained by the
equal division of the trajectory method and mass moment of the trajectory method is relatively
scattered and primarily restricted to the west of 140◦ E, with the main concentration in the Philippine
Basin, the SCS, and the area around Taiwan Island. Moreover, the average longitude for the genesis
locations is located near 130◦ E (Table 3). In contrast, for class D obtained by the mixed regression
model method, the TC genesis location is more concentrated and primarily distributes to the east
of 140 ◦E, near the region of the Mariana Islands. According to the previous analyses, the class D
obtained by the mixed regression model method is a mixed cluster, containing both straight and
re-curving TC trajectories forming to the east of 140◦ E, and shows a significant west-moving trend
Figure 3d). Compared with class C obtained by the mixed regression model method, which is also
a class that primarily contains west straight-moving TC trajectories forming to the east of 140◦ E,



ISPRS Int. J. Geo-Inf. 2017, 6, 210 10 of 22

the main difference is that the average latitude of TC genesis positions in class D are located in a
more northerly position, located at approximately 12◦ N. Class C is located at approximately 7◦ N
(Table 3). Therefore, classes C and D obtained by the mixed regression model generate a division of
western-moving TCs based on latitude difference, which leads to the member TCs in class C obtained
by the mixed regression model method representing only 13% of the overall number of TCs, relatively
less than the results obtained by the other two methods (Table 2).

The spatial distributions of TC genesis locations in class E (to the left and right of Figure 4e)
obtained by the equal division of the trajectory and the mass moment of the trajectory methods are
more dispersive, and they are widely distributed from the SCS to 150◦ E. This means that TCs in this
class present shapes that are more similar in trajectory than the genesis positions. In comparison, class
E (seen in the middle of Figure 4e) obtained by the mixed regression mode shows more consistency in
spatial distribution of TC genesis positions and is relatively similar to that of class D (seen on the left
and right of Figure 4d) obtained by the equal division of the trajectory method and the mass moment
of the trajectory method.
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Figure 4. (a–e) kernel density distribution of genesis locations for the TC trajectories in the different
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Table 3. Average longitude and latitude coordinates of the starting TC trajectory points in
different classes.

TC Trajectory
Class

Equal Division of the
Trajectory Method

Mixed Regression Model
Method

Mass Moment of the
Trajectory Method

Longitude Latitude Longitude Latitude Longitude Latitude

Class A 117.38 14.914 118.99 14.47 118.90 14.72
Class B 134.01 11.81 135.94 10.79 135.09 10.28
Class C 148.93 9.78 150.84 7.87 150.04 9.62
Class D 130.67 16.06 142.38 12.43 130.66 17.00
Class E 132.75 13.75 127.75 17.05 132.96 13.89

3.4. Landfall Locations for Different TC Classes

Landfall locations are directly associated with TC disasters. Therefore, to obtain a better
understanding for landfall rules of TCs in different classes, a hot-spot analysis of landfall locations
was performed for different TC categories. The analysis identified statistically significant spatial
clusters of hot spots and cold spots, which correspond to frequent landfall locations and infrequent
landfall locations, respectively. The analytical results are shown in Figure 5. In the figure, the red areas
indicate frequent landfall locations, and the green areas indicate infrequent landfall locations. Figure 5
shows that the frequent landfall locations for different classes of TCs can be divided into two types.
The frequent landfall locations for westward straight-moving TCs are the surrounding countries and
regions of the SCS to the south of 22◦ N. The frequent landfall locations for northward re-curving TCs
are located in the eastern coastal region of China to the north of 22◦ N.

From the perspective of different trajectory categories, for TCs in class A (Figure 5a), the frequent
landfall locations are primarily concentrated in the coastal regions of South China and the northern
region of Vietnam. The Philippines is an obvious infrequent landfall location. For TCs in classes B
(Figure 5b) and C (Figure 5c), the most obvious frequent landfall locations are concentrated along the
coast of the Philippines; the coastal regions of South China and Vietnam are comparatively infrequent
landfall locations. Compared to the average latitude of the genesis location of TCs in class C obtained
by the equal division of the trajectory and the mass moment of the trajectory methods, the class C
genesis location obtained by the mixed regression model is located in a more southerly position
(Table 3), and therefore, it does not form a significant frequent landfall location in the north of Luzon
Island, unlike class C obtained by the other two methods.

The frequent landfall location for class D is mainly concentrated in the eastern and southeastern
areas of China. Because class D obtained by the mixed regression model is a mixed TC trajectory class
with a dominant westward heading, the frequent landfall location for this class occurs more to the
south, extending only to Zhejiang Province in China (in the middle of Figure 5d). In contrast, the
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frequent landfall location of class D obtained by the other two trajectory clustering algorithms extends
further northward and reaches Jiangsu Province of China (on the left and right of Figure 5d).

The frequent landfall location of class E obtained by the mixed regression model (in the middle of
Figure 5e) is consistent with that of class D obtained by the equal division of the trajectory and the
mass moment of the trajectory methods (on the left and right of Figure 5d) for their similarity in TC
trajectory shape and genesis position, as mentioned in the previous section. However, class E obtained
by the equal division of the trajectory and mass moment of the trajectory methods forms only a finite
frequent landfall location in the eastern coast region of China.
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confidence level of 90%; 0 indicates that the results are not significant.

3.5. Intensity and Lifetime of Different TC Classes

The distribution of maximum intensity levels reached by the TCs in the various classes
over the lifetime of the TC is shown in Figure 6. TCs are categorized into tropical storm
(TS, 17.2 ≤ vmax ≤ 32.6 m/s), typhoon (TY, 32.7 ≤ vmax ≤ 50.9 m/s) and super typhoon (STY,
vmax ≥ 51.0 m/s) categories according to their grade of maximum wind. For all the TCs shown in Figure 6,
the proportion of tropical storms and typhoons is essentially the same: both account for approximately
40% of the overall TCs. The proportion of TCs reaching the level of super typhoon is approximately 20%.

There are some differences in the intensity distribution of TCs in different classes. Among these
results, relatively high consistency in the intensity distribution tendency of TCs can be seen in the
clustering results obtained by the equal division of the trajectory method (Figure 6a) and the mass
moment of the trajectory method (Figure 6c). The maximum intensity level of the TCs in class A is
relatively low because of the limited spatial scale of the SCS basin and the influence of the surrounding
land. The tropical storm type accounts for the vast majority (>70%) of the TCs in class A, followed
by the typhoon level, which accounts for approximately 26%; however, few super-typhoon TCs are
observed in this class. The TCs in classes B and D are similar, and the proportion of tropical storm and
typhoon-level TCs is essentially the same and comprises the vast majority of TCs (>80%) in the classes.
A few super-typhoon TCs occur in classes B and D.

In class C, the super-typhoon TCs and typhoon TCs account for the vast majority (>80%).
One significant difference is that the proportion of super-typhoon TCs in this class exceeds the
proportion of the other two types of TCs, accounting for more than 40%. The TCs in class C have
longer moving distances and lifetimes in general because of their easternmost genesis regions near the
Mariana Islands (on the right side of Figure 6a); therefore, these TCs are more likely to reach higher
intensities [47–49]. The opposite situation is true for TCs in class A, which have the shortest lifetime
and lowest strength distribution.

The average lifetime is longest for class E TCs. Therefore, TCs in this class also have a relatively
strong intensity. The proportion of TCs reaching typhoon intensity is approximately 50%, and the
proportion of super typhoons exceeds 20%. The proportion of super typhoons that is relatively lower
than class C may be related to the re-curving north movement of TCs in class E, where cooler sea
surface temperature inhibits the development of intense TCs [50].
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Figure 6. The statistics of intensity distribution and lifetime of TCs in different classes obtained by the
different trajectory clustering methods. The histograms on the left side of the figure show the intensity
distribution of TCs in different classes; the corresponding boxplot on the right side shows the lifetime
statistics of TCs in the classes. The line and the diamond within the box represent the median value
and the mean value of the lifetime of TCs in the class, separately. (a) Intensity and lifetime statistical
results obtained by equal division of the trajectory method; (b) Intensity and lifetime statistical results
obtained by mixed regression model method; (c) Intensity and lifetime statistical results obtained by
mass moment of the trajectory method.

For TCs in classes obtained by the mixed regression model (Figure 6b), the intensity statistical
results exhibit different features. The intensity of TCs in class D also have the highest proportion
of strong TC intensity, similar to that of TCs in class C. This is an embodiment of the similarity of
TCs in intensity distribution in these two classes, which show a relatively high consistency in the
trajectory movement trend and genesis position. The lifetime statistics show that the TCs in class
D are the second-longest (on the right of Figure 6b) among the TC groups obtained by the mixed
regression model. The northward re-curving TCs in class E show similarity in intensity distribution
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and lifetime to those in class D obtained by the equal division of the trajectory and the mass moment
of the trajectory methods. Both of these classes have main genesis locations restricted to the west of
140 ◦E concentrated in the Philippine Basin and the SCS. The tropical storm and typhoon-level TCs
comprise the vast majority (~90%), and the average lifetime is approximately seven days, which is
close to the total average value.

3.6. Seasonal Distribution of Different TC Classes

The seasonal distribution for class A (Figure 7a) is primarily concentrated in June–November,
and relatively high consistency is reached for the results obtained by the different algorithms for this
class. TCs in class B obtained by the equal division of the trajectory method (on the left of Figure 7b)
are primarily distributed from July–November. The relatively larger spread time is likely related to
the relatively high sea surface temperature of the Philippine Sea, which are higher than 26 ◦C [30].
In contrast, for class B obtained by the mass moment of the trajectory method (on the right of Figure 7b),
more TC activities are observed for October–November. The average genesis position statistic results
show that TCs in class B obtained by the mass moment of the trajectory method are located in a
relatively more southerly location than those obtained by the equal division of the trajectory method
(Table 3). This reflects that the average generation position of TCs in the WNP gradually moves
northward from June to August and begins to retreat southward beginning in September [6,51].

For the TCs in class C obtained by the equal division of the trajectory and the mass moment of
the trajectory methods, the seasonal distribution has obvious double peaks in July, August, October
and November (left and right of Figure 7 c). This distribution follows the straight-moving TCs, which
are mostly distributed in the early and late stages of the TC season in the WNP [6,51]. The northward
re-curving moving trajectory of class D is primarily concentrated during July-September (on the left
and right of Figure 7d). Although class D obtained by the mixed regression model method has a similar
form of seasonal distribution (in the middle of Figure 7d), it is important to remember that this class is
a mixture class and contains numerous westward straight-moving TC trajectories. Compared to the
genesis position with class C, which was also obtained by the mixed regression model method, TCs in
class C shifted more southward (Table 3). In addition, the seasonal distribution of class C displays
a pronounced winter active mode concentrated in October-December (in the middle of Figure 7c).
Accordingly, these two classes obtained by the mixed regression model method together also reflect
the north-south oscillation of the genesis positions of TCs with the change of seasonality in the WNP.

The seasonality distribution of TC activity in class E (on the left and right of Figure 7e) exhibits
a bimodal pattern and is concentrated during the conversion from spring to summer and summer
to fall in May, June, August, September, and October. This seasonal distribution reflects the seasonal
distribution of the extratropical transition of TC in the WNP, which is related to large-scale circulation
modes and high-altitude trough activity in the mid-high latitude region over the WNP [52,53].
The statistical analysis indicates that 82% of the TCs in class E obtained by the equal division of
the trajectory method experienced an extratropical transition process, and 94% of the TCs in the
class obtained by the mass moment of the trajectory method experienced an extratropical transition
process. The seasonal distribution of class E obtained by the mixed regression model method has
more similarity to that of class D obtained by the equal division of the trajectory method and the mass
moment of the trajectory method. This result is consistent with the similarity of class features for these
classes as analysed previously.
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Figure 7. (a–e) Seasonal distributions of TCs in different classes according to the different trajectory
clustering methods.
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4. Discussion

In this paper, three clustering methods were applied to analyse the trajectory of TCs that affect
the SCS. Among these methods, the equal division of the trajectory method and the mass moment
of the trajectory method preprocess the original trajectory data into a structure that can express
the characteristics of the original trajectory and satisfy the data-processing requirements of normal
clustering algorithms. In contrast, the mixed regression model method can conduct clustering
operations on the original trajectory data with different lengths based on a special mathematical
regression model.

The form of the clustering centre provides a preliminary understanding of the overall
characteristics of the elements in the class. The TC cluster centre obtained by different methods
are different (Figure 2). Among these cluster centres, the mass moment of the trajectory method
obtains a variance ellipse class centre, which provides a good expression of the spatial distribution
of the trajectory. Both the equal division of the trajectory method and the mixed regression model
method acquired a line-type class centre. However, the class centre for the mixed regression model still
produced curve lines in the cases of classes A and B (Figure 2b), even though these classes primarily
consist of straight-moving TC trajectories. This observation produces a confusing expression for the
TC trajectory mode of the classes. However, the class centres acquired by the equal division of the
trajectory method provide a relatively simple and clear expression (Figure 2a) corresponding to the
TC trajectory mode of classes A and B. The reason may be that the mixed regression model method is
essentially based on a quadratic polynomial curve fitting process, which may be more susceptible to
the effect of abnormal trajectories in the class. Thus, the cluster centre takes the form of a curve, and it
cannot accurately reflect the overall characteristics of TC trajectories in the class. In contrast, the class
centre obtained by the equal division of the trajectory method is a result of an averaging operation of
all TC trajectory data in the class. Therefore, the influences of abnormal trajectories in the class are
eliminated by the averaging process. In addition, the cluster centre can better embody the overall
tendency of the moving trend of TCs in the class.

The previous analysis shows that differences are observed in the results obtained from the different
models. These differences reflect the methods’ individual features. Table 4 summarizes the main
characteristics of the different algorithms. For the equal division of the trajectory method, the velocity
information contained in the original trajectory cannot be retained after the equal division of the
trajectory is performed. The mass moment of the trajectory method retains the velocity information of
the original trajectory, at least to an extent. However, this transformation process also produces biases
in the space and shape information expression of the TC trajectory and may induce some deviation in
the clustering result. Figure 8 shows a re-curving trajectory mixed in the straight-moving trajectory
class C obtained by the mass moment of the trajectory method. The left side of the figure shows the
original observation points of the TC trajectory, and the right side is the equal division point of the
trajectory. It can be seen from Figure 8a that when the TC moved to a high latitude, the accelerated
velocity caused a decrease in the number of observation data points in the trajectory obtained in the
same time interval; therefore, the central point of the trajectory is more to the south and closer to the
side of the trajectory with dense sampling points. In addition, the long axis direction of the variance
ellipse is consistent with the distribution direction of the dense trajectory points. In Figure 8b, because
the equal division sampling points are uniformly distributed, the central point is shifted to the north,
closer to the geometric centre of the trajectory, and the variance ellipse indicates the overall distribution
trend of the trajectory. Therefore, the central point and the variance ellipse are more susceptible to the
sample points in the trajectory, which may influence the clustering result and result in some mixture
of trajectory types in the TC trajectory cluster. However, the overall clustering results show that,
for TC trajectory, it is not the velocity but the shape and spatial location that are the main factors in
determining the clustering results. This finding is consistent with the previous view [6,30]. Moreover,
in comparison, relatively high consistency is observed for the clustering results obtained by the mass
moment of the trajectory method and the equal division of the trajectory method.
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The mixed regression model method has a solid theoretical mathematical basis. The clustering
operation can be conducted for the original trajectory data without preprocessing. By expanding the
dimension of the polynomial coefficient matrix, this method can conveniently add variable factors
that are likely to play a role in clustering results into the model. Through regression fitting, the
clustering results show relatively good concentration for the TC spatial location. However, the
quadratic polynomial used to fit the TC trajectory will likely cause a mixture of the various types of
TC trajectory. Figure 9 shows the quadratic polynomial fitting of the TC trajectories with different
movements contained in class D according to the mixed regression model method. The red trajectory
represents the fitted quadratic polynomial curve. For the straight trajectory and the re-curving
trajectory with relatively high local similarity, we can achieve a relatively good fit through the same
quadratic polynomial curve.
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To compare the trajectory motion modes in the clustering results obtained by the various
algorithms, cosine similarity statistics between the trajectories in the different classes were conducted
(Table 5). The statistical results show that, in general, the algorithms all obtain relatively good TC
trajectory clustering results. The results of the equal division of the trajectory method are more
consistent in TC trajectory movement, especially for the re-curving trajectories in classes D and E.
The average cosine similarities of these two classes are 0.988 and 0.987 for the equal division of the
trajectory method. For the mixed regression model method, the similarities are 0.981 and 0.982, which
are the lowest among these three methods. The statistical results are significant at the 0.05 level.

The above analyses suggest that the equal division of the trajectory method provides a simple and
direct solution to the problem. This algorithm also reaches a relatively better clustering result from the
standpoint of the characteristic expression and consistency of the TC trajectory movement in the class.
For the mass moment of the trajectory method, the spatial distribution of TC trajectories in different
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classes is well displayed through a variance ellipse form class centre. It may be somewhat difficult to
select the proper length of the clutter centre for the mixed regression model method to more accurately
express the characteristics of TC tracks in the class. A relatively greater mixture of different types of TC
trajectories may be caused in the clustering result. However, a relatively high spatial concentration of
TC trajectories in the clustering result is achieved with this algorithm, which may be a priority option
in the case of TC trajectory spatial consistency being retained.

Table 4. Comparison of three clustering methods for the trajectory.

Clustering
Method

Equal Division of the
Trajectory Method

Mixed Regression Model
Method

Mass Moment of the
Trajectory Method

Type of
method

Combination with the general
clustering model after the

transformation of the
original trajectory

Cluster the original
trajectory data based on the

mathematical model

Combination with the general
clustering model after the

transformation of the
original trajectory

Model
complexity Simple Complicated Relatively complicated

Information
contained

Spatial location and shape
information of the trajectory

Original complete trajectory
information

Spatial location, shape
information and some velocity
information of the trajectory

Clustering
results

Trajectory shape consistency is
relatively good

Trajectory spatial consistency
is relatively good

Essentially similar to the equal
divide method

Class centre Average trajectory in the class Quadratic curve Variance ellipse

Table 5. Cosine similarity statistics of TC trajectories in different classes obtained by the various
trajectory clustering methods.

Clustering
Method

Equal Division of the Trajectory
Method

Mixed Regression Model
Method

Mass Moment of the Trajectory
Method

Mean Maximum Minimum Mean Maximum Minimum Mean Maximum Minimum

Class A 0.991 1.000 0.914 0.990 1.000 0.924 0.991 1.000 0.914
Class B 0.993 1.000 0.944 0.994 1.000 0.963 0.992 1.000 0.928
Class C 0.992 * 1.000 0.950 0.991 * 1.000 0.939 0.986 1.000 0.898
Class D 0.988 1.000 0.911 0.981 1.000 0.877 0.986 1.000 0.922
Class E 0.987 * 1.000 0.940 0.982 1.000 0.885 0.987 * 1.000 0.940

Note: The asterisk * indicates the difference is not significant at the 0.05 level.

5. Conclusions

In this article, three trajectory clustering algorithms were applied to analyse the trajectories of
TCs that affected the SCS from 1949 to 2014. Based on the complete spatial position and trajectory
shape information of the TC trajectories, five trajectory clusters were obtained, including three western
straight-line movement trajectory clusters and two northward re-curving trajectory clusters.

The TC trajectories in different clusters show different characteristics in their properties, such
as lifetime, strength, movement distance, landfall location, and seasonality distribution. For the
TCs in class A, which were generated in the most western region, within the SCS, the intensity is
weaker overall. The TCs in class C, which were generated in the most eastern region at approximately
145 ◦E near the Mariana Islands, have the highest proportion of super-typhoon grade TCs for their
longer movement distance and extended lifetimes. The landfall location analysis shows that the
northward re-curving TCs were primarily concentrated along the coasts of the eastern provinces of
China. Two landfall types are observed for the westward straight-moving TCs. For the TCs in class A,
the landfall locations were primarily concentrated in the coastal regions of South China and north of
Vietnam. For the TCs from the WNP in classes B and C, the most affected area was the Philippines.

The monthly activity frequency distribution of TCs in classes A and B were primarily distributed
during June–November. There are no obvious peak seasons for the TCs generated east of the
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Philippines in class B. For the TCs in class C, two obvious peak seasons are observed in the early and
late stages of the TC season. The northward re-curving TCs in class D are primarily concentrated
in the period from July–September. In contrast, the TCs in class E obtained by the equal division
of the trajectory and the mass moment of the trajectory methods are primarily concentrated during
the conversion from spring to summer and summer to fall, reflecting the seasonality distribution
characteristics of TCs experiencing extratropical transition.

A comparison of the results obtained by these trajectory-clustering algorithms shows that the
equal division of the trajectory method provide a better clustering result generally. The class centre
provides a simple and clear expression for the pattern of TC tracks in the class. In addition, the heading
of TC tracks maintains a relatively good consistency in the class. The results obtained by the trajectory
mass moment algorithm are more consistent with the results obtained by the equal division of the
trajectory method. The mixed regression model method, which presents higher sensitivity in the
trajectory position, can obtain TC clusters with a more concentrated spatial distribution.
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