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Abstract: In recent years, using smartphones to determine pedestrian locations in indoor
environments is an extensively promising technique for improving context-aware applications.
However, the applicability and accuracy of the conventional approaches are still limited due to
infrastructure-dependence, and there is seldom consideration of the semantic information inherently
existing in maps. In this paper, a semantically-constrained low-complexity sensor fusion approach is
proposed for the estimation of the user trajectory within the framework of the smartphone-based
indoor pedestrian localization, which takes into account the semantic information of indoor space and
its compatibility with user motions. The user trajectory is established by pedestrian dead reckoning
(PDR) from the mobile inertial sensors, in which the proposed semantic augmented route network
graph with adaptive edge length is utilized to provide semantic constraint for the trajectory calibration
using a particle filter algorithm. The merit of the proposed method is that it not only exploits the
knowledge of the indoor space topology, but also exhausts the rich semantic information and the
user motion in a specific indoor space for PDR accumulation error elimination, and can extend the
applicability for diverse pedestrian step length modes. Two experiments are conducted in the real
indoor environment to verify of the proposed approach. The results confirmed that the proposed
method can achieve highly acceptable pedestrian localization results using only the accelerometer
and gyroscope embedded in the phones, while maintaining an enhanced accuracy of 1.23 m, with the
indoor semantic information attached to each pedestrian’s motion.

Keywords: indoor localization; indoor semantic augmented route network graph; PDR; particle filter;
location-based services

1. Introduction

In the past few years, the range of location-based services has been progressively extended
from outdoor to indoor environments, as well as to applications such as path finding, emergency
planning, and object tracking. This implies a demand for more accurate and robust indoor and outdoor
localization and tracking technology on mobile devices. The outdoor localization services can be
provided by GPS with a reliable accuracy, but in indoor spaces which are GPS-denied, alternative
technology needs to be explored. Many existing indoor localization methods rely on dedicated
infrastructure such as Wi-Fi access points [1], ultrasonic networks [2], synthetic aperture radar (SAR) [3],
Bluetooth [4], ultra-wideband (UWB) [5,6], or magnetic fields [7]. However, this is often expensive and
labor-intensive for large-scale deployment and suffers from discontinuous tracking during pedestrian
movement. Moreover, the computational complexity involved in the algorithms is another challenge
when applied to resource-limited smartphones.

Recently, the pedestrian dead reckoning (PDR) approach has become a promising solution to
indoor localization; it estimates the distance and heading measurements of every step from the
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accelerometer and gyroscope embedded in smartphones to obtain a continuous trajectory. However,
the error accumulation caused by low-cost sensors makes the PDR method alone unable to achieve
acceptable accuracy. To solve this problem, many combination approaches are explored. Some of the
approaches rely on frequent external position fixes (e.g., Wi-Fi access points) [8]. Some exploit the
compatibility of human motion patterns and map information to determine the possible trajectory [9].
Others use sensor fusion methods such as Kalman filters [10] or particle filters [11] to account for the
measurement uncertainty.

Among these approaches, combing the particle filter algorithm and map constraints to estimate
the appropriate PDR result has been widely used for its effectiveness and ease of use. In these
approaches, non-wall-crossing constraint is often used to eliminate invalid particles in position
updating iterations [12–14]. However, in such cases, the map information is often insufficiently
used, resulting in poor convergence. To exploit deeper map information, there are also methods that
utilize the indoor skeleton map (e.g., Voronoi graph) to recover the indoor topological structure for
indoor localization [15–17], which can achieve a lower complexity while maintaining an accuracy
of a few meters. However, the fixed edge length assumption (e.g., equal to the average pedestrian
step length) and the constraint of the pedestrian position to be at the nodes of the graph of these
methods may not be applicable for diverse pedestrian step lengths. Moreover, the conventional
approaches estimated the localization result using only the geometric coordinates, while the semantic
location—which can provide potential compatibility of user locations with the indoor structure—is
ignored. Goodchild [18] argued that human cognition is based on named places rather than the
geometrical space of latitude and longitude. Therefore, the semantic accuracy should be considered as
an important component of indoor localization, rather than purely providing sub-meter accuracy.

In this paper, an adaptive smartphone-based semantically-constrained indoor localization method
is proposed, overcoming the inferiority of infrastructure-dependence and pure geometric-dependence
problem. Differing from the previous methods which totally rely on the geometric constraints of maps,
the semantic information (which comply with the human cognition of indoor space and imply the
indoor space occupancy) is incorporated into the proposed semantic augmented route network graph.
By constructing each node with the indoor landmark (e.g., corners, doors, stairs) and each edge with the
routes between the landmarks, the semantic augmented route network graph was then input as a prior
map for the trajectory calibration using a particle filter algorithm, providing geometric (location, length
of edges), topological (connectivity and orientation), and semantic information (human cognition).
In this way, the rich semantic information can be exploited to avoid the localization errors caused by
purely depending on geometric coordinates in the conventional methods. Furthermore, in order to be
applicable to diverse user step lengths, the adaptive edge lengths of the proposed route network graph
are adopted according to the user motion and space continuity. Based on the semantic constraints and
conformance information imposed by the constructed graph, an enhanced particle filter is adopted
to simultaneously calibrate the PDR trajectory whenever it is estimated from the smartphone sensor,
which can achieve a high-accuracy pedestrian trajectory estimation in terms of both semantic and
geometric accuracy.

The remainder of this paper is organized as follows. Section 2 briefly reviews related works.
Section 3 explicitly introduces the proposed method, including the definition and extraction of the
semantically-augmented route network graph based on a prior floorplan, the PDR algorithm that
tracks the user trajectory from the smartphone inertial sensors, and the graph match-based particle
filter. The experimental results and comparisons are presented in Section 4. Finally, the conclusions are
drawn in Section 5.

2. Related Works

Nowadays, the most prominent techniques for indoor localization have been built upon positioning
hardware, including wireless modules (e.g., Wi-Fi, Bluetooth, ultra-wideband (UWB)) and motion sensors
(e.g., accelerometers, gyroscopes, and compasses) [19]. The methodology involved can be categorized
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into triangulation, fingerprinting, and PDR. The triangulation technique estimates the location of a target
using the distances or angles between the target and beacons. The fingerprinting approach computes
the location on demand by matching the online signal fingerprints with those collected and stored in the
database in the offline phase. Although the used methodologies vary, both methods have in common that
they rely on wireless signals that share time-varying and multipath characteristics, and require intensive
human labor in calibration and maintenance. In contrast, the PDR algorithm—advanced by lightweight
micro-electro-mechanical systems (MEMS) sensors—has become a practical indoor localization approach
with handheld devices [20]. However, the low-cost nature of the sensors can cause significant drift and
bias in long-term tracking tasks. In order to solve this problem, many efforts have been devoted to
body-fixed sensors (e.g., foot-mounting [21–23] and waist-mounting [24]), or to furnishing the intrinsic
algorithms (step detection and heading estimation) that directly affect the localization result, regardless of
the different smartphone placements and user motions [25–29].

Although achievements have been made, the PDR method alone still cannot provide reliable
long-term pedestrian tracking. Therefore, many prior attempts focus on combining multiple methods
to compensate each other’s drawbacks. Lee et al. [30] combined PDR with Wi-Fi by using the absolute
localization provided by Wi-Fi to determine the initial position as well as fix the long-time accumulation
drift of PDR. Similarly, Jin et al. [31] proposed to reduce the uncertainty of the PDR result based on
sparse and partial locations sampled from the available wireless signals. In addition to this, this map
information and particle filter are often combined with PDR to enhance the accuracy by implying
possible routes and barriers, thus eliminating invalid particles [8,32]. Bojja et al. [33] extended the
particle filter to three dimensions and combined it with collision detection techniques to navigate and
localize vehicles in a parking garage. Other probabilistic approaches, such as the Kalman filter [10]
and conditional random field (CRF) [34], are often used instead of a particle filter to reckon the
appropriate localization.

To improve the localization accuracy, incorporating contextual information derived from a
map has become a significant research aspect. Specifically, the map information includes coarse
information such as the corridors and the boundaries of rooms, and high-level information such
as the geometric, topological, and semantic relationships, as well as the landmarks that depict the
interior structures of a room [12]. In terms of the level to which a map is exploited, the methods can be
classified as landmark matching, trajectory matching, and graph matching methods. Landmarks are
distinguished features or unique signatures that can be easily observed in the environment, including
seed landmarks (e.g., elevators and staircases) and organic ones (e.g., magnetic anomaly spots) [12].
Wang et al. [13] detected landmarks with a smartphone by recognizing the measurement fluctuation in
the accelerometer when the user enters an elevator, the sudden rise in the gyroscope when turning
a corridor corner, or the unusual reading in the magnetometer when passing a magnetic anomaly
spot. Combined with map information, the user trajectory determined by PDR can be recalibrated
when sensing a landmark. Chen et al. [10] incorporated the user motion state (e.g., going up elevators,
walking, stationary) into classifying the landmarks, and combined this with PDR to achieve a more
robust localization performance. However, this method does not consider the topological information.

In contrast, trajectory matching aims to obtain a globally optimal estimation by taking into
account the geometric structures, such as the straight corridors. Bao et al. [14] computed the geometric
similarity between a trace of the user trajectory and the map (the length of the straight line and the
angle of turning) to reference the latest corner, and hence eliminated the error caused by gyroscope
noise. Khan et al. [32] defined pathways (e.g., hallways) and barriers (e.g., walls) that the user can
traverse and cannot pass, respectively. Combined with the particle filter, PDR, and Wi-Fi scans, these
methods can achieve zero-effort calibration for Wi-Fi fingerprinting. However, this method may fail
when the constraints are sparse.

Studies have suggested that graph models can be used in indoor localization by providing the
necessary geometric (e.g., space layout) as well as non-geometric cues (e.g., landmarks) when people
navigate in space [15]. Jensen et al. [15] and Bercer and Dürr [35] extended this from outdoor to
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indoor localization by constructing indoor location models. The location model representing the
indoor topology at different levels offers a uniform data management infrastructure for different
positioning technologies. Based on this, Park and Teller [9] decoded the user trajectory with a sequence
of low-level motions (e.g., standing still, walking straight, going upstairs, turning left, etc.) estimated
by the smartphone’s inertial sensors. Then, the indoor locations are determined with respect to a
discrete route map by constructing a hidden Markov model (HMM state model). Zhou et al. [16]
adopted the same idea of examining the conformance between an activity sequence and a prior
route-based graph. Wasiq et al. [36] used motion information from accelerometer and directions
from magnetometer and gyroscope to achieve localization in sparse Wi-Fi environments. Similar to
our method, Hilsenbeck et al. [17] undertook data fusion of a pedometer and Wi-Fi in a graph-based
representation of the indoor environment. Compared with the previous graph-based localization
method, our proposed method has the advantage of constructing the graph with adaptive sample
rate of varying edge length to allow multiple step length modes and promoting semantic accuracy in
addition to pure geometric accuracy.

3. Methodology

In this section, we discuss the proposed localization method that uses map information and
mobile phone inertial sensors to obtain a precise user trajectory in an indoor environment. Figure 1
depicts the framework of the proposed method.
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Figure 1. Overview of the framework of the semantic augmented route network-based indoor
localization method proposed in this paper. PDR: pedestrian dead reckoning.

3.1. PDR Trajectory Estimation

The coarse user trajectory is first referenced by the PDR algorithm through step detection, step
length estimation, and heading estimation. In our work, the initial location is assumed to be provided
by the user.

3.1.1. Step Detection

Based on the repetitive pattern of the accelerometer when the user walks, we apply the two
threshold peak detection algorithms to identify true peaks (steps) and eliminate false ones. The two
thresholds, ∆a and ∆t, are defined as:

• ∆a: minimum acceleration magnitude that determines a peak; and
• ∆t: minimum time duration between two steps.
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The former declares that only the peak magnitudes that exceed the threshold ∆a can be regarded
as true steps. While the latter provides the constraint that two consecutive peaks must surpass the
time threshold ∆t. The two thresholds can eliminate false steps that are caused by noise or random
user movement. This is illustrated in Figure 2, which is a truncated waveform from a yaw acceleration
signal when the user traverses through space with the smartphone held in hand. The false peaks occur
frequently as a lower peak near the true one, either in small or large magnitude. The small magnitude
false peaks are removed for violating the threshold ∆a when executing peak detection. The large ones
are eliminated for not satisfying the frequency regulation ∆t, which is in accordance with human
step modes. As a consequence, when applying the two threshold peak detection algorithm to the
yaw acceleration signals collected by the smartphones, the true user steps can be accurately detected.
Note that these two thresholds are not uniform for all situations, and they vary according to the user,
the environment, and the footwear. As a consequence, a training process of the user holding the
smartphone and walking for a certain distance is needed to approximate the most appropriate value.
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Figure 2. An example of peak detection on yaw acceleration waveforms: the ∆a and ∆t thresholds are
shown in the orange and green dashed lines, respectively. The red circles show the detected true steps.
The peak labeled by an orange circle is identified as false because it is too small in magnitude, while
the green one conforms to the magnitude requirement, but is too short in time duration.

3.1.2. Step Length Estimation

Many algorithms are available to model step length by exploiting the walking frequency, the walking
velocity, or the acceleration. We adopt the Weinberg model [20] to calculate the step length:

length = K · 4
√

amax − amin (1)

where amax and amin are the maximum and minimum values of the yaw acceleration samples,
respectively. K is a constant determined by training. Our approach takes K = 0.46 as the initial
value. Since step length exhibits variation even with the same individual in the same walk, we add a
random error δ (uniformly distributed in the range of ±10%) to the stride length.

3.1.3. Orientation Estimation

Orientation estimation (the forward direction of the user) has been a difficult component in PDR
systems because the user direction may not align with the direction of the smartphone (e.g., a user
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puts the phone vertically in a pocket or rotates it randomly when holding it in the hand). Most of
the existing approaches using non-fixed smartphone inertial sensors either assume that the heading
misalignment remains constant during the walking process and compromise the value to obtain the
right direction afterwards, or assert map knowledge and other information to recalibrate the error.
Similarly, we use the graph matching method discussed in the next section to calibrate the bias between
user direction and smartphone direction, and focus on the accurate estimation of device orientation
from the inertial sensors.

Our work assumes that the smartphone is held in the hand with it pointing in the forward
direction. Then, the angular rate reading from the gyroscope is used to calculate the orientation
quaternion at each step. The orientation quaternion (including the Euler rotation vector roll-pitch-yaw
(ϕ, θ, ψ) between two successive epochs and a scalar component) from the gyroscope is then utilized
to approximate the orientation update. The orientation update model from the device frame to the
navigation frame can be interpreted as:

Qn
d,k+∆T = Qn

d,k ⊗ qk→k+∆T (2)

where qk→ k+∆T is the rotational quaternion between the two epochs k and k + ∆T, ∆T is the sampling
period (the sampling rate of gyroscope in our case), and Qn

d,k and Qn
d,k+∆T are the orientation

quaternions of epoch k and k + ∆T, respectively.
The mathematical derivation of the quaternion update can be expressed as follows:

1. Initialization: the magnitude of the angle rotated within one sample time:

‖∆θk‖2 = ‖Ωk∆T‖2 = ∆θ2
x,k + ∆θ2

y.k + ∆θ2
z,k (3)

where Ωk is the angular rate returned by the gyroscope at time stamps k, and ∆T is the time
duration of one sampling.

2. Quaternion update: calculate the rotation of one sample time from the device frame to the
navigation frame:

Qk+∆T = Qk + [(cos
‖∆θk‖

2
− 1)I + (

1
‖∆θk‖

sin
‖∆θk‖

2
S)]Qk (4)

where:

S = Ωk · ∆T =


0 ∆θz,k −∆θy,k ∆θx,k

−∆θz,k 0 ∆θx,k ∆θy,k
∆θy,k −∆θx,k 0 ∆θz,k
∆θx,k ∆θy,k ∆θz,k 0

 (5)

We rewrite the factor as:

sk =
1

‖∆θk‖
sin
‖∆θk‖

2
(6)

ck = cos
‖∆θk‖

2
− 1 (7)

Consequently, Equation (4) can be rewritten as:

Qk+∆T = Qk +


ck sk · ∆θz,k −sk · ∆θy,k sk · ∆θx,k

−sk · ∆θz,k ck sk · ∆θx,k sk · ∆θy,k
sk · ∆θy,k −sk · ∆θx,k ck sk · ∆θz,k
sk · ∆θx,k sk · ∆θy,k sk · ∆θz,k ck

Qk (8)
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3. Rotation matrix calculation: given the orientation quaternion Qk+∆T =
{

q1,k, q2,k, q3,k, q4,k
}

,
the rotation matrix from the device frame to the navigation frame at timestamp k + ∆T can be
expressed as:

Rn
d,k+∆T =

 q2
1,k + q2

2,k − q2
3,k − q2

4,k 2(q2,kq3,k − q1,kq4,k) 2(q2,kq1,k − q1,kq3,k)

2(q2,kq3,k + q1,kq4,k) q2
1,k − q2

2,k + q2
3,k − q2

4,k 2(q3,kq4,k − q1,kq2,k)

2(q2,kq1,k − q1,kq3,k) 2(q1,kq2,k − q3,kq4,k) q2
1,k − q2

2,k − q2
3,k + q2

4,k

 (9)

4. Angle calculation: the angle at timestamp k + ∆T can be extracted from the rotation matrix as:
rollk = arctan(R20,k/R22,k)

pitchk = arcsinR21,k
yawk = arctan(−R01,k,/R11,k)

(10)

Figure 3 is an example of walking a rectangular route with four 90◦ turns, finally returning to the
starting point. The orientation change truth of straight walking are treated as 0◦ and turn as 90◦. Three
kinds of headings are exploited to describe the heading. The first one is the orientation change during
one step (Figure 3a). The second is the accumulated heading, which depicts the heading estimation
with respect to the magnetic north (the starting orientation) (Figure 3b). The third is the orientation
change accumulated over three steps (Figure 3c). In Figure 3a, it can be observed that the straight
walking route shows slight fluctuation (noise) with a range less than 10◦, and the four turns are clearly
identified and demonstrated. The accumulated heading in Figure 3b explicitly shows the heading
pattern, which verifies that the slight noise in straight walking has no negative impact on the heading
result. Although the accumulated heading differs from the true orientation, it can be calibrated in
the following steps. The orientation change over three steps are used for turn detection, which are
described in the next section.

3.1.4. Turn Detection

Turns are an important indicator for connecting two user motions and space structures. We exploit
a sliding window algorithm to infer the user’s possible turns (as shown in Figure 3). It can be seen in
Figure 3a,b that it is difficult to detect the turns using the first two methods in; the first is susceptible to
different participants, and the second can rarely observe a step when a turn is taken within several
steps. While (c) models a step, it is usually conducted in three steps, which is the most appropriate
way for turn detection. As a consequence, we deem a turn as detected if it exceeds the threshold (40◦

in our training) and the last three headings are not a turn.

i f ϕ = ϕe − ϕs

{
≥ threshold and last three are not turn

otherwise
is a turn

is a non-turn
(11)

where ϕe is the heading angle at the end of the sliding window and ϕs is the heading angle at the start
of the sliding window. Taking Figure 3b as an example, the first detected turn over the sliding window
is ϕ = ϕe − ϕs = 60− (−30) = 90 ≥ 70 (we set the threshold to be 70◦). In a real situation, the turning
events are not necessarily limited to standard right-angle turns, as U-turns and slightly curved turns
may also exist. The former can be solved analogously by setting a higher threshold, and the latter can
be incorporated into the route structure.
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orientation change over three steps.

3.2. Semantic Augmented Route Network Graph Generation

In this part, we describe the construction of semantic augmented route network graph. As users
tend to follow a dedicated path to a destination instead of randomly walking in the indoor space, we
assume that the semantic augmented route network contains all possible user paths. For example,
if you want to walk from room 79 to room 48 (in Figure 4), you must walk through door 79, take
the path along the corridor to the north, and pass door 79 to get to the destination. During the
process, the route network not only imposes constraints, including (a) geometric constraints (i.e., the
explicit walking distances and turn angles); (b) topological constraints (i.e., the spatial layout and path
continuity); and (c) semantic constraints (i.e., the agreement of the space type and motion type), but
also implies a hypothesis about which path the user is likely to use. In this way, we extract the semantic
augmented route network from the floorplan as a node-edge abstraction of the indoor space, where the
nodes model the predefined locations (landmarks, e.g., corners, doors, and points of interest), and the
edges represent the connections that make it possible to move through these locations. Considering
the semantic information and the user motion modes, the result is a route network that contains edges
for traveling along the corridors and for entering the rooms on both sides, and nodes as landmarks
that calibrate the biased trajectory and provide semantic labels, as shown in Figure 4.
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The proposed semantic augmented route network has the following properties:

1. Semi-metrical. We remove the irrelevant degrees of freedom by extracting a one-dimensional
skeleton from the floorplan, while keeping the necessary metrical information for localization
by labeling the length of the corridors and representing the rooms as abutting points with range
buffers. In this way, the computational complexity is reduced.

2. Motion-associated. Given the spatial relationships between indoor entities (e.g., rooms, corridors,
and corners) and the user’s activity events (e.g., turning left and turning right), we can narrow the
user path to the specific route in the graph or recalibrate the biased trajectory by recognizing the
events. The adaptive edge length also extends the graph to be applicable to multiple user modes.

3. Semantically-augmented. The route network represents the connectivity and accessibility
of indoor space by defining the transition probabilities between connected nodes, and the
semantic information attached to each node and edge provide extra semantic accuracy to the
calibration result.
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Figure 4. The route network extracted from a floorplan: (a) the second floor; and (b) the third floor.
The corridors (represented with the red lines) are the middle skeleton lines with orientation constraint.
The rooms (brown points) are represented by points with range buffers. The open areas (multiple brown
points) are the same as the rooms, while implicitly having an orientation constraint of eight neighbors.
The stairs connect two floors with a range of the starting point and the end point corresponding to
the two floors. The yellow points on the edges define the locations facing a choice of turning into the
room or walking along the corridor. The red points represent the doors connecting the rooms and the
corridors or transitions connecting two floors.

3.2.1. Indoor Structure Adaptive Extraction

Previous works have suggested that localization accuracy depends on the sample rate of the
graph model, by either adopting a uniform sample size or assuming that the edge length is roughly
equal to the average pedestrian step length [17]. However, the uniform sample size approach usually
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suffers from an under- or over-estimation problem, and the step length varies according to height,
gender, and even the environment, making it unsuitable for practical use. Our proposed method
adapts the sample size to the structure of the space while taking the smoothness and continuity of user
motion into consideration. This is achieved by representing the points as the features indicating the
doors of a room or the corners to take a turn, and the edges as the middle skeleton of the corridors
connecting all the feature points. In order to precisely describe how the semantic augmented route
network is applied to the MM process, we take the example of the corridor region on floor 2 to further
explain the data structure of the graph (see Figure 5 and Table 1).
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Figure 5. The semantic augmented route network graph in the corridor region. The red line is the
corridor skeleton indicating the potential user path. The yellow points segment the corridor line by
connecting it with the possible turns into a room. The red points represent doors connecting two regions.
The brown points indicate two-dimensional areas such as rooms or larger open areas. The numbers
indicate the length of the lines.

Table 1. Example of the data structure of the corresponding graph in Figure 5.

Type Index X_cor Y_cor Z_cor Neighbors Neighbor Direction
N, S, W, E

Neighbor Distance
dN, dS, dW, dE

Corridor 28 −8.87 15.03 1.39 3, 29, 19 1, 1, 0, 1 d28,29, d28,3, 0, d28,19
Area 47 −6.52 15.03 1.39 0 Door direction Room range
Stair 1.39 Start and end point Height of one step
Door 19 −7.02 15.03 1.39 28, 47 0, 0, 1, 1 0, 0, d19,28, d19,47

For corridors and doors, the neighbor direction indicates whether the corresponding direction
has a neighbor or not. The neighbors refer to the neighbor indexes in four directions, if it has
the neighbors. The neighbor distance means the distance from the node to its neighbors in the
corresponding directions. For areas (consisting of rooms and open areas), neighbors refers to the
number of doors sharing the same space, and the neighbor directions are the corresponding door
directions. The neighbor distances represent the range of the area with minimum and maximum
coordinates. For stairs, the neighbor direction is the start and end point, and the neighbor distance is
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the height of one step. Specifically, the start and endpoint are represented with a portal that connects
the two regions. Doors are the most common portal type, while the neighbor distance is the step length
buffer (defined as 1 m).

3.2.2. User Motion Compatible Context

Since the graph intrinsically contains all possible user paths in the indoor space, the user motion
is semantically compatible with the route network graph. The possible user motion models in indoor
spaces can be summarized as follows (see Figure 6):

1. Walk along the corridor (M1)

The user walks approximately along a straight line. The turning angle is set to zero. The total
distance traveled can be estimated by recognizing and counting the user steps. A slightly curved path
can also be viewed as straight-line walk in our case, because the graph depicts the long corridors as
sections, and the angles between these sections have been implicitly considered.

2. Walk from corridor to area (M2)

An area and a corridor are usually connected with a portal. We utilize a 1 m × 1 m square buffer
centered with the portal to determine whether the user encountered the portal. Once the user entered
the buffer, the buffer analysis is triggered to relocate his/her position as the portal. This motion can
either contain a turn or not.

3. Walk from area to corridor (M3)

The opposite motion to M2.

4. Turn at a corner (M4)

Turning happens when the direction obviously changes over a short period of time. It can be
regarded as pure heading change while staying on the route graph node with no transition move
between edges. Each turn observation is quantized to a multiple of π/4.

5. Walk in an open area (M5)

Since few constraints exist in open areas, we model the walk as the PDR trajectory result and
calibrate the route when encountering doors. Since PDR can perform well in short-time tracking,
it has no negative effect on the overall localization result. An open area may share more than one
door. In this situation, the locations of the doors and the range of the room are combined to determine
whether the user walks out of the open area.

6. Go upstairs and downstairs (M6)

Going upstairs and downstairs are marked by a vertical ascent or descent in height. This typically
involves straight walking and turn motions in terms of horizontal movement. Since the detailed
structures of stairs such as the tread numbers and the spiral directions are usually not available in the
floorplan, we simplify the process as three parts. Firstly, the walk along the direction given by the start
portal with the step length is the horizontal width of one individual stair, and the height movement
increase or decrease is the vertical height of each stair. Secondly, a U-turn follows at the spiral of the
stairs. Finally, the last half walk is the same as the first half, but with the opposite direction.

7. Stand still (M7)

Standing still involves little or no motion; for example, standing for a while or sitting in an office,
classroom, library, etc. Detection of standing can be used to pause the movements by counting no steps.



ISPRS Int. J. Geo-Inf. 2017, 6, 221 12 of 25

ISPRS Int. J. Geo-Inf. 2017, 6, 221  12 of 25 

 

 

(a) (b) (c) 

  

(d) (e) (f) 

Figure 6. User motion: (a) corresponds to M1, (b) corresponds to M2, (c) corresponds to M3, (d) 
corresponds to M4, (e) corresponds to M5, (f) corresponds to M6. The blue line roughly depicts the 
space structure, and the dashed yellow line simulates the real user walk through the spaces. 

As the user motion has a compatibility with the space usage, as described above, we can 
explicitly formulate the relationship between the space type (labeled by the localization semantic), 
the user motion, and the corresponding algorithms used to detect and distinguish them (see Table 2). 

Table 2. The relationship between space type, user motion, and the corresponding algorithms. 

Localization Semantic User Motion Algorithm
Corridor  M1, M2, M3, M4 Turning detection, buffer analysis 

Open area M3, M5 Turning detection, buffer analysis, range constraint 
Stair M6 Buffer analysis 
Door M2, M3 Turning detection, buffer analysis 

3.3. Graph Matching-Based Particle Filter 

In this section, we discuss how the aforementioned context-related motion is associated with 
the particle filter to infer pedestrian locations. The particle filter is a Monte Carlo implementation of 
a recursive Bayesian filter, which depends on neither linear nor unimodal distributions. The key idea 
of the particle filter is to make use of importance sampling and resampling technique to provide 
samples over a set of particles from a sequence of distributions defined upon state spaces [37]. The 
main parts of the particle filter algorithm during one iteration include: 

• Prediction: for each particle, the new state is predicted by sampling from the state transition 
probability distribution, given its current state: 

1~ ( | , )t t tx p x x M−  (12)

where tx  and 1tx −  are the respective particle states at times t  and 1t − . M  represents the 
control information; for example, the map knowledge of the environment. 

• Importance sampling: for any measurement, update each particle’s importance weight 
according to the measurement likelihood function, given its new state: 

1 ( | , )t t t tw w L z x M−= ⋅ (13)
where tw  and 1tw −  are the respective importance weights at the current and previous 
timestamps, and tz  denotes the current measurement. 

• Resampling and particle updating: resampling is carried out when the effective sample size 
falls below a specified threshold (50% of the particle number in our case). Therefore, high 

Figure 6. User motion: (a) corresponds to M1, (b) corresponds to M2, (c) corresponds to M3,
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space structure, and the dashed yellow line simulates the real user walk through the spaces.

As the user motion has a compatibility with the space usage, as described above, we can explicitly
formulate the relationship between the space type (labeled by the localization semantic), the user
motion, and the corresponding algorithms used to detect and distinguish them (see Table 2).

Table 2. The relationship between space type, user motion, and the corresponding algorithms.

Localization Semantic User Motion Algorithm

Corridor M1, M2, M3, M4 Turning detection, buffer analysis
Open area M3, M5 Turning detection, buffer analysis, range constraint

Stair M6 Buffer analysis
Door M2, M3 Turning detection, buffer analysis

3.3. Graph Matching-Based Particle Filter

In this section, we discuss how the aforementioned context-related motion is associated with the
particle filter to infer pedestrian locations. The particle filter is a Monte Carlo implementation of a
recursive Bayesian filter, which depends on neither linear nor unimodal distributions. The key idea of
the particle filter is to make use of importance sampling and resampling technique to provide samples
over a set of particles from a sequence of distributions defined upon state spaces [37]. The main parts
of the particle filter algorithm during one iteration include:

• Prediction: for each particle, the new state is predicted by sampling from the state transition
probability distribution, given its current state:

xt ∼ p(xt|xt−1, M) (12)

where xt and xt−1 are the respective particle states at times t and t− 1. M represents the control
information; for example, the map knowledge of the environment.

• Importance sampling: for any measurement, update each particle’s importance weight according
to the measurement likelihood function, given its new state:

wt = wt−1 · L(zt|xt, M) (13)
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where wt and wt−1 are the respective importance weights at the current and previous timestamps,
and zt denotes the current measurement.

• Resampling and particle updating: resampling is carried out when the effective sample size
falls below a specified threshold (50% of the particle number in our case). Therefore, high
weights are duplicated and low ones are eliminated. Resampling the particles {xt, wt} to obtain
N equally-weighted particles {xt, 1

N } by duplicating only the particles with qualified weights:

{xt, wt} → {xt,
1
N
} (14)

where N is the number of particles with qualified weights and xt is the resampled particles.

Note that the above equations can be applied to particle filter procedures with occasion-specific
mathematical models or probability distributions. Therefore, the particle filter can be directly extended
to incorporate map knowledge and related motion information into the pedestrian tracking problem.
In addition, for each particle, Equations (12) and (13) are calculated iteratively, and hence the complexity
of the algorithm can be evaluated by O(N) (N is the number of particles) [17]. As a result, the number
of particles necessary for reliable target tracking is a critical factor with respect to the computational
complexity. Our proposed method reduces the number of particles needed by adopting the discrete
representation of the indoor floorplan. The following part depicts the method in detail.

3.3.1. Context-Augmented State Space

Previous approaches concerning the graph-based particle filter have typically been performed on
a continuous map with walkable areas and barriers. The state space is thus an (x, y) coordinate
representation of the particle location over the entire space. For the purpose of reducing the
computational complexity on smartphones, our approach relies on an abstract semantic augmented
route network consisting of potential motion-changing nodes and walkable edges. To augment
contextual information to the location reference process, the state space is extended to include the
structure and connectivity knowledge as follows:

1. Three-dimensional coordinate of particles loct = (x, y, z);
2. Start node and end node f IDt, tIDt;
3. Orientation deviation from last time θt; and
4. Pedestrian step length dt.

Given the input heading and step length observations, the human movement is modeled and
sampled by moving along the predefined connected edges on the graph. Therefore, each location
estimation output by PDR is matched to the most appropriate node or edge in the route network.
In this way, the state space is limited to the restricted region regarding only the semi-metric route
graph, thus reducing the number of particles needed. Furthermore, the inclusion of the heading and
step length in the state space means that the bias is instantaneously corrected at the completion of each
step, therefore avoiding error accumulation in PDR and leading to accurate and complexity-reduced
location estimation.

3.3.2. PDR-Based Particle Filter Model

We construct the PDR-based particle filter model by assuming that the motion follows the pattern
of the transitions along edges in the graph, which is explained in Figure 7. The state update is triggered
each time PDR outputs the motion estimation (heading and step length), which makes the filter run at
the step frequency. Whenever a step is detected, the particle samples a new state {loct, f IDt, tIDt, θt, dt}
from the state transition probability distribution, given the old state {loct−1, f IDt−1, tIDt−1, θt−1, dt−1},
the measured displacement zd,t (step length), and the current orientation estimate zθ,t. A user path
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must be continuous, as transitions are allowed only to nearby states that can be reached in one step.
Correspondingly, we rewrite Equation (12) for our proposed approach as:

{loct, f IDt, tIDt, θt, dt} ∼ p(loct, f IDt, tIDt, θt, dt
∣∣loct−1, f IDt−1, tIDt−1, θt−1, dt−1, zθ,t, zd,t) (15)

This equation can be directly related to the importance sampling equation p(xt|zi) . As explained
in Figure 7, the displacement probability and the orientation probability are independent of each other.
Therefore, p(xt|zi) is made up of two parts: the distance observation probability distribution and the
angle observation probability distribution.
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• Orientation: calculate all the edges connected with the current node with respect to their respective
directions relative to the particle’s orientation:

( f IDt, tIDt) ∼ p( f IDt, tIDt| f IDt−1, tIDt−1, θt) (16)

• Location: calculate the nearest node in the graph to the new location calculated by the sampled
edge and the particle’s displacement:

loct ∼ p(loct|loct−1, f IDt, tIDt, dt) (17)

The above steps decide the transition along the edges. If a transition is sampled, the particle
moves to the node at the other end of the edge or stays somewhere between two nodes (the user
locations are not restricted to nodes). Therefore, the likelihood function in our case is derived from
the joint measurement probability of two independent measurements: the edge (the orientation is
determined) and the displacement (the transition along the given edge):

L(zt|xt, M) ∼ p(zd,t, zθ,t
∣∣loct, f IDt, tIDt, θt, dt)

= p(zd,t
∣∣loct, f IDt, tIDt, θt, dt) · p(zθ,t

∣∣loct, f IDt, tIDt, θt, dt) (18)

= p(zd,t
∣∣loct, f IDt, tIDt, dt) · p(zθ,t

∣∣loct, f IDt, tIDt, θt) (19)

⇒ p( f IDt, tID| f IDt−1, tIDt−1, θt) · p(loct|loct−1, f IDt, tIDt, dt) (20)

Inspired by the above decomposition, the transition probability can be estimated by considering the
directional information from the motion observation. It is approximated by a Gaussian distribution with
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a mean of the difference between the observed orientation change θt and the direction turn defined in
the graph between two states θxt−1→xt , and a standard deviation of the gyroscope measurement error:

p( f IDt, tIDt| f IDt−1, tIDt−1, θt) ∼
{

1
ζ N(∆θt, σ2

e )

0
xt is connected with xt−1

otherwise
(21)

where ∆θt = θt − θxt−1→xt , and the standard deviation σe defines the degree to which the angle
mismatch between the true heading and the semantically-augmented route network is allowed (we set
it to 15◦). ζ is the number of neighbors that is connected with xt−1.

Given that the motion direction is fixed by the orientation measurement, the displacement
probability can be estimated under the assumption of taking a straight-line walk along the edge on the
graph. Specifically, it determines whether the user remains on the current edge or moves to the next
one when a new stride is taken.

p(loct|loct−1, f IDt, tIDt, dt) ∼
{

1
0

if dt + loct−1 ≤ tIDt−1

otherwise
(22)

If dt + loct−1 ≥ tIDt−1, the particles move out of the current edge and transfer to the next abutting
one according to the observed orientation.

For orientation sampling, we approximate these results using a Gaussian distribution around the
measured absolute orientation zθ,t:

p(θt|zθ,t) ∼ N(zθ,t, σ2
θ ) (23)

where σθ is the standard deviation learned from the errors by the built-in inertial measurement of
the gyroscope.

For the step length errors, we approximate these results using a Gaussian distribution around the
measured displacement zd,t:

p(dt
∣∣zd,t) ∼ N(zd,t, σ2

d ) (24)

where the standard deviation σd is learned from experiments with the user step length models.

4. Experimental Evaluation

In order to evaluate the performance of the proposed model, two sets of experiments were
conducted in the indoor space to verify its applicability to a complex environment and diverse
users, respectively.

4.1. Experimental Setup

The two experiments were performed in the building of the State Key Laboratory of Information
Engineering in Survey, Mapping and Remote Sensing (LIESMARS) at Wuhan University. This is
a four-level office environment consisting of typical indoor structure, including individual offices,
corridors, stairs, halls, and walls. Each level has an area of about 38 m × 51 m. The experiments were
conducted on the first and second floors of the building, which are connected by stairs to the south.
The participants of the experiments were asked to hold their smartphones in hand and behave as usual
when walking in the space. At the same time, the sensor readings were recorded and processed to
determine the user location. The smartphone used in the experiments was the Xiaomi 2 smartphone
(Xiaomi Inc., Beijing, China) running the Android 4.4 operating system. To obtain the ground truth at
the sampling time of the tracking system, we marked the ground with a 1 m grid on the pre-specified
route and used a camera to record the walking process. We then manually measured the locations
of each step of the pedestrians. In order to verify the proposed semantic augmented route network
localization approach, we first evaluated the performance of the approach in the complex indoor
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environment by conducting two experiments containing all kinds of scenarios of people traversing
the indoor space. We then invited six volunteers to walk along a predefined route and recorded their
trajectory while, in the meantime, exploring whether the proposed method is robust to diverse users
and brings additional improvement to the tracking performance.

4.2. Applicability in a Complicated Indoor Environment

In a real-world setting, users usually carry their smartphones as they walk through various
sections of an indoor space. Moreover, they are likely to walk, stop, or go upstairs or downstairs; for
example, walking between locations of interest or dwelling at certain locations for a significant length
of time. Our experiment was aimed at emulating these practical scenarios in an office environment,
considering all the contexts defined before in our model. Therefore, the following two routes were
designed as the ground truth for verifying the performance of our approach, which are the combination
of all possible user movement modes, such as walking along the corridor, walking in the open area,
going in and out of the rooms, and going up and down stairs. Scenario (1): A enters the building from
the front gate and walks through the open area and corridor to go to their seat and then comes out of
the office to the lobby; Scenario (2): B walks upstairs from the first floor to the second floor and walks
around the lobby to the office door.

The PDR result is first calculated and the semantic augmented route is performed simultaneously
to calibrate its result. The result of PDR and the semantically-calibrated approach are as follows:

Figure 8 shows the result of the peak detection algorithm in PDR. In scenario one, the result
reveals 107 steps, whereas 110 true steps were taken. In scenario two, the result shows 126 steps, while
127 true steps were taken. It can be seen that the different motions, such as taking a pause, turning left,
or going upstairs, have no negative impact on the detection result. In summary, the peak detection
algorithm achieves an average accuracy of 97.86%. It can be seen that all of the algorithms have a
median error rate of less than 3%, and are more inclined to undercount than overcount. We attribute
this to the fact that the algorithms are unlikely to find multiple cycles where only one exists, but may
only find one cycle when multiple cycles exist. This is particularly likely to happen at the start and end
of a walk, where the steps typically have different properties (lower energy, longer duration, etc.).

Figure 9 demonstrates the heading estimation result of PDR. Figure 9a,b are the orientation
change during one step and the overall heading estimation of scenario one, respectively. Figure 9c,d
are the corresponding results of scenario two. North is defined as the reference direction (0◦), and
the angle increases gradually clockwise. As a result, it can be inferred from the figure that A starts
their route facing west, takes a slight turn to the north, walks for a while towards the north, then
turns slightly back to the west, walks for a second before a sharp U-turn to the east, and then keeps
this direction until the end. Similarly, B starts their route facing south, and after a second of straight
walking, they then make a U-turn to the north for a while, which is followed by three consecutive
turns to the east, to the south, and finally to the west. The turns can be easily detected during the
process. It can be seen that although random noise exists in the estimated orientation change during
one step, the accumulated heading can achieve an acceptable estimation result.



ISPRS Int. J. Geo-Inf. 2017, 6, 221 17 of 25
ISPRS Int. J. Geo-Inf. 2017, 6, 221  17 of 25 

 

0 10 20 30 40 50 60

-3

-2

-1

0

1

2

Time(s)

A
cc

e
le

ra
tio

n
(m

/s
2 )

Peak Detection

 

 

Original Signal
peaks:110

(a)

0 10 20 30 40 50 60 70

Time(s)

-4

-3

-2

-1

0

1

2

A
cc

el
er

at
io

n(
m

/s
2
)

Peak Detection

Original Signal
peaks:127

(b)

Figure 8. Peak detection of PDR: (a) the red circles indicate individual steps in scenario 1; and (b) the 
red circles indicate individual steps in scenario 2. 

Figure 10 shows the trajectories of the PDR and the semantically-augmented route network 
corrected path. In the first experiment, the mean localization errors of the PDR and route network 
graph-based MM were 1.76 m and 1.12 m, respectively. The adoption of the 
semantically-augmented route network therefore increased the accuracy by 36.4%. The PDR can 
provide a relatively accurate initial result (Figure 10a), but encounters orientation bias when 
coming out of the office after several minutes (Figure 10b). The semantically-augmented route 
network graph-based MM constrains the route to the predefined edge on the graph, and thus 
corrects the orientation bias. The output route is not continuous due to the map being predefined as 
discontinuous. This could be improved by either fixing the semantic augmented route network 
nodes or interpolating in the route to obtain a continuous route. In the second experiment, the mean 
localization errors of the PDR and route network-based MM are 2.68 m and 1.34 m, respectively. 
The accuracy is therefore increased by 50% when considering the map information. Figure 10c,d are 
the side-look and overlook graphs of route two. It can be seen that the single PDR algorithm has a 
step length problem when going upstairs, and the accumulated heading error leads the user 
trajectory to wall-crossing paths and wrong rooms, while the semantic augmented route network 
corrected method conforms well to the indoor graph and can achieve an average enhanced tracking 
accuracy of 1.23 m. The results show that our approach can accurately track the pedestrian trajectory in 
terms of a complicated combination of indoor user movement. 

Figure 8. Peak detection of PDR: (a) the red circles indicate individual steps in scenario 1; and (b) the
red circles indicate individual steps in scenario 2.

Figure 10 shows the trajectories of the PDR and the semantically-augmented route network
corrected path. In the first experiment, the mean localization errors of the PDR and route network
graph-based MM were 1.76 m and 1.12 m, respectively. The adoption of the semantically-augmented
route network therefore increased the accuracy by 36.4%. The PDR can provide a relatively accurate
initial result (Figure 10a), but encounters orientation bias when coming out of the office after several
minutes (Figure 10b). The semantically-augmented route network graph-based MM constrains the
route to the predefined edge on the graph, and thus corrects the orientation bias. The output route is
not continuous due to the map being predefined as discontinuous. This could be improved by either
fixing the semantic augmented route network nodes or interpolating in the route to obtain a continuous
route. In the second experiment, the mean localization errors of the PDR and route network-based
MM are 2.68 m and 1.34 m, respectively. The accuracy is therefore increased by 50% when considering
the map information. Figure 10c,d are the side-look and overlook graphs of route two. It can be seen
that the single PDR algorithm has a step length problem when going upstairs, and the accumulated
heading error leads the user trajectory to wall-crossing paths and wrong rooms, while the semantic
augmented route network corrected method conforms well to the indoor graph and can achieve an
average enhanced tracking accuracy of 1.23 m. The results show that our approach can accurately
track the pedestrian trajectory in terms of a complicated combination of indoor user movement.
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Figure 9. Orientation estimation result of PDR: (a) the orientation changes relative to the last step;
(b) the overall heading estimation relative to the starting time; (a) and (b) are the result for scenario 1;
(c) and (d) are the corresponding results of scenario 2.

4.3. Applicability for Diverse Users

In this experiment, we evaluate that the proposed approach can achieve satisfactory localization
result even to diverse users with different heights and step lengths. Six volunteers, including two
female and four male, were involved in our experiment. Their detailed information can be seen in
Table 3. The volunteers were asked to hold the smartphone and walk along a predefined rectangular
route in the lobby of the third floor of the LIESMARS building, whose total length is 40.85 m. The true
steps and smartphone sensor data of their walk were recorded at the same time. We first estimated
their PDR trajectory, and then applied the proposed calibration algorithm to demonstrate its validation
to diverse users and improve the localization accuracy with pedestrian invariant property.
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Table 3. The height and step length of six participants.

Participant F1 (Zhu) F2 (Zhou) M1 (Guo) M2 (Ma) M3 (Liu) M4 (He)

Height (cm) 165 165 174 170 175 172
Step Length (cm) 51 53 55 58 75 72

The PDR results of six volunteers are demonstrated in Figures 11 and 12. Specifically, Figure 11
shows the number of steps detected for each volunteer. Their true steps were 77, 80, 74, 70, 54,
and 57, respectively. Consequently, the average accuracy for step detection was 99.54%. Figure 12
demonstrates the heading estimation result of six volunteers. Three kinds of headings were recorded
in the experiments. The first is the estimated heading changes during one step, the second is the
estimated heading relative to the start orientation, and the last is the local heading change accumulation
in three steps. The direct way for turn detection is to either employ the first or the second heading.
However, the threshold for both headings are difficult to quantify, as the first is susceptible to different
participants and the second can rarely observe a step when a turn is taken within several steps. For that
reason, we chose the local heading accumulation in three steps for turn detection, since a turn is usually
taken within three steps. A turn is detected if it exceeds the threshold (40◦ in our case) and the last
three headings are not a turn. It can be observed in Figure 12 that three turns can be clearly detected
for each volunteer.

After obtaining the PDR estimation of each trajectory, the proposed semantic augmented route
network graph-based localization algorithm was applied simultaneously to calibrate the trajectory.
The corresponding results are demonstrated in Figure 13. The green line is the original PDR estimation,
and the red line is the calibrated result. It can be obviously observed that the route estimated by the
proposed method approaches the truth of the rectangular route around the lobby and adaptively
updates location when encountering corners, without orientation bias and accumulation error. As a
consequence, it can be concluded that the proposed work has the property of being scalable to different
people with different walking information, and can improve the localization accuracy by introducing
semantic constraints.

4.4. Computation Performance

This experiment was undertaken to verify the efficiency of the proposed method by evaluating the
average time required to complete a single update step for a single particle in the semantic augmented
route network graph based filter. In the proposed method, the semantic augmented route network
graph replaces the continuous indoor space with 237 feature points, reducing the state space of the
particle filter from two dimensions to one dimension and thus accelerating the time required for the
conversion of the particles. Compared with the traditional methods that demand almost 100 particles
to obtain an acceptable result [17], the proposed method can achieve a comparable result with only
20 particles, which indicates that the continuous filter case needs to apply the resampling five times
more than our solution, resulting in additional time consumption. The time required for a single
particle to complement a single update at a different indoor place on the ThinkPad X240 personal
computer (Lenovo Group Ltd., Beijing, China) is demonstrated in Table 4. The places to be evaluated
are the corridors, the stairs, the rooms, and the related user motions as defined in Section 3.3. This
is a normalized average obtained by running the filtering for the same route 10 times offline. The
result reveals that the time consumption for all the places is less than 1 ms, and the method fulfills the
requirement of low computational complexity.
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Figure 11. Step detection result of six volunteers: (a–f) are the detected steps for each volunteer,  
(a) F1 (Zhu); (b) F2 (Zhou); (c) M1 (Guo); (d) M2 (Liu); (e) M3 (Liu); (f) M4 (He). 

 

Figure 11. Step detection result of six volunteers: (a–f) are the detected steps for each volunteer, (a) F1
(Zhu); (b) F2 (Zhou); (c) M1 (Guo); (d) M2 (Liu); (e) M3 (Liu); (f) M4 (He).
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Figure 12. Heading estimation of six participants. The first column is the heading change relative to
the last time stamp. The second column is the heading change relative to the start orientation. The third
column is the third turn. (a) F1(Zhu); (b) F2(Zhou); (c) M1(Guo); (d) M2(Ma); (e) M3(Liu); (f) M4(He).
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Table 4. The time of a single update step for a single particle in different indoor places (unit: ms).

M1 M2 M3 M4 M5 M6

0.32 0.77 0.36 0.42 0.36 0.47

The first row represents the user motions defined in Section 3.3. The second row represents the time consumption
for each motion (milliseconds).

5. Conclusions and Future Work

In this work, we have proposed a semantically-augmented route network-based pedestrian indoor
localization approach using smartphones. Differing from the previous localization algorithms, the
proposed method exploits the topological and semantic information of the indoor environment, as well
as the compatibility of human motion and indoor structure to assist with and calibrate the pedestrian
trajectory. The context-enhanced particle filter which integrates the route network graph and the
PDR output is performed at a step frequency to sample the most appropriate indoor locations and
orientations. The effectiveness and efficiency of the method were confirmed in two sets of experiments
involving typical user movements in an indoor space of different users. The experimental results
showed that an impressive improvement in localization accuracy is achieved when incorporating
the semantic augmented route network graph. In conclusion, the proposed approach can achieve
high-accuracy localization of about 1 m while maintaining low computational complexity, with only
mobile phone inertial sensors and map information.
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In our future work, we will exploit the specific patterns of smartphone sensors (e.g., accelerometer)
in dedicated locations and user activity to identify landmarks for the initial location determination of
PDR; for example, use of the accelerometer to distinguish user activities such as sitting, walking, or
going upstairs, and to extend the limitation of holding the smartphone in hand to flexible placement.
Since the proposed method is easily extensible with other methods, this information could be
incorporated to achieve an even higher accuracy. Additionally, Wi-Fi signal could also be combined
with the proposed method to provide an absolute location correction source for the tracking.
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