
 International Journal of

Geo-Information

Article

On the Statistical Distribution of the Nonzero Spatial
Autocorrelation Parameter in a Simultaneous
Autoregressive Model

Qing Luo 1,2 , Daniel A. Griffith 3 and Huayi Wu 1,2,*
1 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,

Wuhan University, Wuhan 430079, China; luoqing11@whu.edu.cn
2 Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China
3 School of Economic, Political, and Policy Sciences, The University of Texas at Dallas, Richardson, TX 75080,

USA; dagriffith@utdallas.edu
* Correspondence: wuhuayi@whu.edu.cn; Tel.: +86-27-6877-8311

Received: 27 October 2018; Accepted: 6 December 2018; Published: 12 December 2018
����������
�������

Abstract: This paper focuses on the spatial autocorrelation parameter ρ of the simultaneous
autoregressive model, and furnishes its sampling distribution for nonzero values, for two regular
square (rook and queen) tessellations as well as a hexagonal case with rook connectivity, using
Monte Carlo simulation experiments with a large sample size. The regular square lattice directly
relates to increasingly used, remotely sensed images, whereas the regular hexagonal configuration
is frequently used in sampling and aggregation situations. Results suggest an asymptotic normal
distribution for estimated ρ. More specifically, this paper posits functions between ρ and its variance
for three adjacency structures, which makes hypothesis testing implementable and furnishes an
easily-computed version of the asymptotic variance for ρ at zero for each configuration. In addition,
it also presents three examples, where the first employed a simulated dataset for a zero spatial
autocorrelation case, and the other two used two empirical datasets—of these, one is a census block
dataset for Wuhan (with a Moran coefficient of 0.53, allowing a null hypothesis of, e.g., ρ = 0.7) to
illustrate a moderate spatial autocorrelation case, and the other is a remotely sensed image of the
Yellow Mountain region, China (with a Moran coefficient of 0.91, allowing a null hypothesis of, e.g.,
ρ = 0.95) to illustrate a high spatial autocorrelation case.

Keywords: simultaneous autoregressive model; spatial autocorrelation parameter; nonzero null
hypothesis; sampling distribution; asymptotic variance

1. Introduction

Spatial autocorrelation (SA) is a common phenomenon of spatial data analyses, where there is a
common naive hypothesis that SA is zero (e.g., [1–3]) for datasets involving, for example, georeferenced
demographic, social economic, and remotely sensed image variables. A more reasonable postulate
would be nonzero SA. Gotelli and Ulrich [4] (p. 171) also pointed out that one of the important
challenges in null modeling testing in ecology is “creating null models that perform well with . . .
varying degrees of SA in species occurrence data”. This is a challenge that is not unique to ecology.
A main problem hindering the positing of a nonzero SA hypothesis, or varying degrees of SA, is the
unknown sampling distribution of the SA parameter, which may be denoted by ρ of the simultaneous
autoregressive (or SAR, which is called the “spatial error model” in spatial econometrics [5] (p. 5))
model in this paper. This parameter quantifies the degree of self-correlation in the error term (e.g., [6]
(p. 42, which can be rewritten as Equation (1)); as when it deviates further from zero, its distribution
becomes more skewed and peaked, and its variance decreases. Figure 1 shows this phenomenon,
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where its connectivity matrix comes from the Wuhan census block data that are employed in the
moderate SA case. Four histograms with density curves for different ρ values of 0, 0.5, 0.9, and
0.99 reveal that as ρ increases, the distribution moves further from zero (see the red reference line
perpendicular to the horizontal axis), and its shape becomes narrower.
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To gain an understanding of the complications related to figuring out the sampling distribution
of the test statistic under the nonzero hypothesis, it is always enlightening to look back to Pearson’s
r (i.e., correlation coefficient) in standard statistics and the autocorrelation coefficient in time series
models, because the SA coefficient resembles the “auto” version of the former, and extends the latter
from a uni-direction (time dimension) to a multi-directions (space dimension) case. A parallel to what
is commonly done in spatial scenarios is that a routine null hypothesis often sets the (auto)correlation
coefficient to zero in classical statistics or time series (e.g., [7,8]). In order to test the nonzero correlation
coefficient in standard statistics, a Fisher’s Z-transformation is used so that the transformed statistic is
approximately normally distributed and its variance is stabilized (e.g., [9] (pp. 55–56); [10] (p. 487); [11]).
However, for the original ρ, the distribution becomes skewed as ρ approaches its extreme values.
Fortunately, Provost [12] suggests closed-form representations of the density function and integer
moments of the sample correlation coefficient to furnish a solution for the distribution problem. For
time series autocorrelations, the research on a statistical distribution of a nonzero coefficient was
developed from a more practical viewpoint. For example, Ames and Reiter [13] established the
distribution of autocorrelation coefficients in economic time series by using empirical datasets so that
hypothesis testing for the significance of (auto)correlation among economic variables could have “a
more appropriate basis” (p. 638) than the null hypothesis on a basis of zero (auto)correlation. More
recent literature [14] pertaining to this topic focused on the effect of the nonzero coefficient on the
distribution of the Durbin-Watson test estimator. Similarly to the time series literature, studies on the
distribution of the nonzero autocorrelation coefficient/parameter are rare in spatial statistics. One
related work dates back to 1967, in which Mead [15] verified that the Fisher’s Z-transformation did
not help to obtain a stabilized variance, and even its generalized form could only help in instances of a
very small ρ (i.e., 0, ±0.05, ±0.1). This earlier work provides evidence that the variance problem seems
to be a major obstacle for establishing a sampling distribution for nonzero ρ. This paper furnishes a
possible solution for this problem by representing the variance of ρ̂ as a function of ρ, and validates
the asymptotic normality of this distribution through Monte Carlo simulation experiments. Moreover,
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it also establishes a function between ρ and the Moran Coefficient (MC, also known as Moran’s I, [16]),
which bridges the most widely used SA statistic and spatial autoregressive model.

This paper contributes to the literature by establishing properties of the sampling distribution of
nonzero ρ, supplementing the asymptotic variance known for zero ρ in a regression framework. Its
results also pertain to the conditional autoregressive (CAR) model, which is called the conditionally
specified Gaussian (CSG) in spatial econometrics [17] (pp. 197 and 201), as well as the autoregressive
response (AR) model, which is called the spatial lag model in spatial econometrics [5] (p. 5). A SAR
model can also be written as a CAR model (e.g., [18] (p. 149); [19] (p. 123); [20] (p. 68)), both SAR and
AR are of second-order (i.e., they also specify spatial correlation in terms of neighbors of neighbors),
and their pure SA versions with no independent variables are the same model. The focus is on the
SAR here because it is the most commonly used specification in spatial statistics, and the SAR uses the
row standardized spatial weights matrix W, not matrix C (see Section 2).

It is also necessary to explain the motivation of this paper from a more general perspective.
Because Cliff and Ord [21] systematically introduced hypothesis testing for the existence of SA latent
in spatial data, SA-related research, in terms of both its theoretical and applied aspects, has flourished
in a wide range of domains employing datasets with geographical or locational information. Sokal
and Oden [22,23] introduced SA into biology, which inspired biologists to take SA into account in
their work because most biological or ecological datasets are closely related to geographical locations.
Legendre [24] constructed a paradigm for ecologists to describe and test for SA, as well as to introduce
spatial structure into ecological models. Other fields dealing with SA include, for example, spatial
epidemiology (see [25] for a thorough overview), spatial econometrics (e.g., [26]), and urban planning
(e.g., [27]), which often use Geographical Information Science (GIS, [28]) methods or tools. In all of
these domains, testing the existence or presence of SA is a solved problem, where the next question
which naturally arises is how the degree of SA could be tested. This paper furnishes an answer to
this question.

This article consists of five sections. Section 2 presents model specification and parameter
estimation. Section 3 furnishes the sampling distribution of the SA parameter estimate. Section 4 gives
one simulated example for zero SA by setting the null hypothesis to be ρ0 = 0, as well as two empirical
examples. Empirical analyses from over the years disclose that most socio-economic/demographic
attributes have a degree of correlation ranging from 0.4 to 0.6, which indicates a relevant range for ρ

within 0.65 to 0.85 [29]; thus, a moderate SA case sets the null hypothesis as ρ0 = 0.7, whereas a strong
SA case sets the null hypothesis as ρ0 = 0.95. Section 5 presents conclusions and discussion. There are
also appendices with some supplementary materials.

2. Model Specification and Parameter Estimation

This paper focuses on the SAR model and its SA parameter ρ. The first use of the word simultaneous
as a descriptor of an autoregressive model was by Whittle [30], whose seminal article introduced an
expression known as the SAR model for two-dimensional stationary processes. Concomitantly with the
development of spatial statistics, the SAR model was frequently used by geographers, econometricians,
ecologists, and other spatial researchers as one of the very popular specifications for describing
georeferenced data.

This SAR model is specified as follows:

Y = ρWY + (I− ρW)Xβ + ε, (1)

where Y is a response variable whose realizations y1, y2, · · · , yn can be observations of a geographic
attribute (e.g., average house price) distributed across n regions, ρ is a SA parameter, W is a stochastic
version (row standardized) of the n-by-n (n2 entries) binary contiguity matrix C (the entry of the ith
row and jth column is 1 if region i and j are adjacent, and 0 otherwise)—both W and C reflect the
spatial adjacency of a geographical phenomenon, I is the n-by-n (n2 entries) identity matrix, X is a
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n-by-(m+1) (nm + n entries) matrix with m explanatory variables (i.e., covariates) and one unit vector
for the intercept, β is a coefficient vector of the order (m+1)-by-1, and ε is a n-by-1 white-noise error
term, which conforms to a standard multivariate normal distribution, ε ∼ MVN

(
0, σ2I

)
. In Equation

(1), Y appears on both sides of the equal sign, which is why the regression has the prefix, auto; when
the equation is rewritten for individual observations, n similar equations simultaneously appear.

Without loss of generality, X can be void of covariates and contain only the intercept term,
rendering a pure SA specification. Then, Equation (1) is reduced to:

Y = ρWY + β0(I− ρW)1 + ε, (2)

where 1 is the n-by-1 vector of ones contained in matrix X. Equation (2) is also known as a pure SAR
model, and is the specification employed in this paper. For the pure SAR specification, the error model
and lag model are equivalent.

The parameters that need to be estimated in an SAR model are ρ, β (for Equation (2), it is only
β0), and σ2. As pointed out by Ord [31] (p. 122), the least squares estimator of ρ is inconsistent, and
even if this problem is revised by choosing an auxiliary matrix, the estimator is less efficient than a
maximum likelihood estimator (MLE). Thus, ML estimation is a commonly used technique to estimate
ρ (e.g., [18,21]; [32]). Griffith [33] (pp. 176–177) provides explicit MLEs of these parameters, and
furnishes an equivalent form for the MLE of ρ that can be executed with the SAS code employed by
this paper, and |ρ| < 1 for square tessellation and the rook’s adjacency (for regular square queen,
and hexagonal adjacencies, see §3.1). However, a well-known problem of the MLE is the computing
burden of its logarithm determinant constituting its Jacobian term, i.e., ln(|I− ρW|), which becomes
especially troublesome when a sample size becomes large. Griffith [34–38] (This work includes finding
approximations of the Jacobian for regular, as well as irregular surface partitioning, exploring analytical
or approximated expressions of eigenvalues of matrix C and matrix W, and figuring out a simplified
algorithm for calculating MLEs for massive sample sizes. In addition, this work establishes criteria
to check the rationality of posited eigenvalue approximations, and to evaluate the Jacobian term
approximations. Analyses summarized in this paper are based upon these contributions.) contributed
some simplifications that reduced the computational burden of this factor. Another issue meriting
attention here is the sampling variance of the model estimated ρ (i.e., ρ̂SAR, which is simplified
to ρ̂ hereafter), because it measures the uncertainty or quantifies the precision of the ML estimate.
Capturing how this variance changes is helpful for evaluating the efficiency of the estimator; in
addition, it is always necessary to know at least the first- and the second-order central moments of a
sampling distribution of a parameter estimator so that statistical inference can be conducted. Ord [31]
(p. 124) suggests an asymptotic variance-covariance matrix of ρ and σ2, from which an expression of
the asymptotic variance of ρ̂ can be obtained. This lays the foundation for exploring the analytical
expression of the sampling variance of ρ̂ in this paper.

Another approach that can be used to estimate the SA parameter is the general method of moments
(GMM) furnished by, among others, Kelejian and Prucha [39,40]. Walde et al. [41] present a thorough
comparison between GMM- and MLE-based methods for very large-data spatial models, and suggest
employing the former. A very important reason that led them to choose the GMM for large spatial data
model estimation was that the GMM had a “directly computable” (p. 164) standard error of ρ, which is
also implemented in a MLE framework in this paper. Section 3 describes this implementation in detail.

3. The Sampling Distribution of ρ̂

Before discussing the sampling distribution, it is necessary to introduce three surface partitionings
on which all works of this paper are based: a regular square tessellation with rook connectivity (squares
A and B are defined to be neighbors if they have a common edge), a regular square tessellation with
queen connectivity (squares A and B are defined to be neighbors if they have a common edge or
a common vertex), and a regular hexagonal tessellation with rook connectivity (hexagons A and
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B are defined to be neighbors if they have a common edge). There are definitely many types of
geographical configurations, e.g., some theoretical types that have been discussed in [42], a more
practical one that is used to construct grids for the earth’s surface (i.e., ISEA3H, [43]), a soccer ball-like
configuration (i.e., a combination of hexagons and pentagons). However, only these three were
employed, because the rook and queen are frequently-used criteria in many GIS and spatial data
analysis-related software or packages (e.g., Esri ArcMap; spdep in R, [6]); moreover, these two
adjacency schemes with a more regular square lattice relate to increasingly used, remotely sensed
images. Also, a hexagonal configuration is often used in spatial sampling design [44] (pp. 24–25) and
aggregation [43]. In summary, these three configurations are frequently used in practice, and many
irregular lattices tend to have connectivities that are between a regular square and hexagon lattice
(e.g., [42]). As shown in Figure 2, for a square tessellation, A has four neighbors for a rook adjacency,
eight neighbors for a queen adjacency, and six neighbors for a hexagonal tessellation. Suppose there
are n observations of a geographical attribute distributed over one of these landscapes, considering the
regularity, and let n = P× Q, where P is the number of rows, Q is the number of columns, and the
dimension of the connectivity matrix is n-by-n (i.e., P2 ×Q2).
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3.1. The Relationship between ρ̂ and the MC

In the literature, the most widely used statistic for quantifying SA is the MC. From a model
perspective, ρ is the parameter that has the same function as the MC. Although these two quantities
are related, they are not equivalent, and thus should not be interchangeably used [1]. Establishing
their explicit relationship quantitatively supports evaluation of the SA level latent in georeferenced
data. Griffith [45] (pp. 33–34) points out that the relationship curve of ρ̂ against the MC is logistic
(or sigmoid). This paper explores their relationship function further so that ρ̂ can be quantitatively
described by the MC for the three surface partitionings discussed in this paper.

Suppose a geographical configuration has n units. The estimates of ρ and the MC are closely
related to matrix MCM, where C is defined as done previously, M is the projection matrix defined as
I− J/n, and J is a n-by-n matrix whose entries are all ones. Jong et al. [46] (pp. 21–22) demonstrated
that MCextreme =

(
n/1TC1

)
λextreme, which is indicative of the relationship between extreme MC

values and extreme eigenvalues (denoted by λ) of MCM; in other words, the maximum eigenvalue
corresponds to the maximum MC value, while the minimum eigenvalue corresponds to the minimum
MC value. Because this equation restricts the feasible range of the MC, it is reasonable to generate a set
of sample MC values by:

MCi =
n

1TC1
λi, i = 1, 2, . . . , n. (3)
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Ordering the eigenvalues such that λ1 ≥ λ2 ≥ . . . ≥ λn, the corresponding ρ can be estimated for each
by employing eigenvectors E = (E1, E2, . . . , En) to replace Y in Equation (2). That is:

Ei = ρWEi + β0(I− ρW)1 + ε, i = 1, 2, . . . , n. (4)

The eigenvalue λi and eigenvector Ei (i = 1, 2, . . . , n) correspond to the ith MC value, and this Ei is
also the response variable in the pure SAR model rendering an estimate for the ith ρ value.

To explore the relationship between the MC and ρ̂, 14 groups of experiments with different
sample sizes were conducted for the three configurations (i.e., regular square rook, regular square
queen, and hexagonal cases), where n ranged from 25 to 4900 (that is, n = 5× 5, 10× 10, . . . , 60×
60, 65 × 65, 70× 70, where P and Q increase in increments of five). The theoretical relationship
functions for different spatial configurations were defined, and the parameters were estimated. Table 1
summarizes the resulting expressions. The bold e is the base of the natural logarithm, and λmin is the
minimum eigenvalue of matrix W (rook connectivity λmin is about −1, queen λmin is approximately
−0.53, whereas λmin of the hexagonal tessellation is around −0.57).

Table 1. Theoretical functions for ρ versus the Moran coefficient (MC).

Geographical Configurations Function Forms Parameter Estimates

Square rook ρ̂ = a
1+eb∗MC+c +

d
λmin

â = 2, b̂ = −8, ĉ = 0, d̂ = 1

Square queen
ρ̂ = a

1+e|MC+b|c +
d

λmin

â = 5.8, b̂ = −0.96, ĉ = 8, d̂ = 1
Hexagonal â = 5.5, b̂ = −0.96, ĉ = 6.7, d̂ = 1

Figure 3 presents the selected fitted curves. This figure depicts the 70-by-70 (n = 4900)
configuration results for the square-rook, square-queen, and hexagonal cases. It presents the fitted
curves (red), computed with the theoretical equation, superimposed on the observed data (blue), where
the horizontal axis indicates the values of MC, and the vertical axis stands for the values of ρ (here, ρ

denotes both the MC-estimated ρ and the SAR-estimated ρ .); the regression lines of ρ̂MC (estimated
by the functions of the MC in Table 1) versus ρ̂ are shown in Appendix A. Figure 3a reveals that for the
square rook connectivity, the feasible range of the MC is approximately [−1, 1], and the range of ρ is
(−1, 1). For the square queen (Figure 3b) and hexagonal (Figure 3c) cases, the MC is about (−0.51, 1];
ρ is approximately (−1.90, 1) and (−1.74, 1), respectively (These intervals of ρ verify the inequality
λmin

−1 < ρ̂ < λmax
−1 (Ord, 1975, p124). While the most frequently used interval is (−1, 1) (refer to

Section 2), intervals beyond this range can be transformed onto it.). These theoretical and original
scatter plots match perfectly, with bivariate regression R2s of nearly 1 (see Appendix A Figure A1).
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3.2. The Sampling Variance of ρ̂

The sampling variance of ρ̂ is important because it quantifies the uncertainty with which ρ is
estimated. Ord [31] (p. 124) proposes the asymptotic variance-covariance matrix1 of ρ and σ2 (the
value of diagonal entries of the variance-covariance matrix of error term ε); for illustrative purposes,
it is rewritten as:

V
(

σ2, ρ
)
= σ2

(
n

2σ2 tr(B)
tr(B) σ2tr

(
BTB

)
− ασ2

)−1

, (5)

where B = (I − ρW)−1W, α = −∑ n
i=1λ2

i /(1− ρλi)
2, λi is the ith eigenvalue of matrix W, “tr” is

the matrix trace operator, and superscript “T” is the matrix transpose operator. An asymptotic
formula of the sampling variance of ρ̂ derived from Equation (5) by inverting the 2-by-2 matrix is
Var(ρ̂)asy = (n/2)/∆, where ∆ = (n/2)tr

(
BTB

)
+ (n/2)∑ n

i=1λ2
i /(1− ρλi)

2 − [tr(B)]2. Hence, the
variance expansion may be written as:

Var(ρ̂)asy =
1

tr(WT(I− ρWT)
−1

(I− ρW)−1W) + ∑n
i=1

λ2
i

(1−ρλi)
2 − 2

n

[
tr((I− ρW)−1W)

]2 . (6)

This equation is still not easy to compute because it involves (inverse) matrix operations, as well as
eigenvalues. The following sub-sections present some simplifications which only consist of sample
size (or number of observations) n, and the extreme eigenvalues of matrix W (specifically, for zero SA
cases, only P and Q).

3.2.1. The Sampling Variance of ρ̂ at Zero

When ρ = 0, Equation (6) becomes Var(ρ = 0)asy = 1/[tr(WTW) + ∑ n
i=1λ2

i ]. Because W = D−1C
(D. is a diagonal matrix whose n diagonal entries are inverse row sums of matrix C), C and D−1

are square matrices, and cij
2 = cij because C is binary, tr(WTW) = tr(CTD−1D−1C) = tr(C2D−2) =

∑ n
i=1[∑

n
j=1cij

2/(∑ n
j=1cij)

2] = ∑ n
i=1(1/ ∑ n

j=1cij), then the asymptotic variance of ρ at zero is:

Var(ρ = 0)asy =
1

∑n
i=1

1
∑n

j=1 cij
+ ∑n

i=1 λ2
i

. (7)

Table 2 summarizes this variance for different surface partitionings; the formulae for summation
of the inverse row sum of matrix C and summation of squared eigenvalues of matrix W are listed in
Appendix B.

Table 2. Asymptotic variance of ρ̂ at zero for different surface partitionings.

Landscape Asymptotic Variance for ρ=0.

Square rook 72/(36PQ + 23P + 23Q + 36)
Square queen 2400/(600PQ + 639P + 639Q + 794)

Hexagonal 180/(60PQ + 55P + 60Q + 71)

The expressions in Table 2 make Equation (7) extremely easy to compute, especially when the
sample size is large. However, functions for ρ at nonzero points are more complex. As has been
argued by [15], the variance of the inter-plant competition coefficient (which is the sampling variance
of ρ that is discussed in this paper) cannot be stabilized by the Fisher Z-transformation, and even its
generalized form only works on very weak spatial interactions (0, ±0.05, ±0.1) for three specific spatial

1 Ord, 1975, Appendix B, contains a typographical error: a minus should be inserted after the second equality sign of α.
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configurations (i.e., 7, 12, and 19 hexagonally arranged points; see Figure 1 on p. 193). More recently,
Griffith and Chun [47] emphasized that better quantifying the spatial variability of SA estimates is still
a challenge. By exploring the distribution of the variance, this paper finds that the sampling variance
of ρ̂ is a function of ρ (which is implemented with ρ̂), which is depicted by a Beta distribution curve
with equal parameters larger than 1.

3.2.2. The Sampling Variance of ρ̂ at Nonzero Values

To conduct the experiments, 30 groups of different sample sizes, ranging from 5-by-5 to 150-by-150
with P and Q increasing in increments of five, were employed; the sample size of each group was
P×Q. The SA parameter ρ was uniformly sampled across its feasible ranges, namely, λmin

−1 < ρ̂ <

λmax
−1 = 1, where λ is an eigenvalue of matrix W. Theoretical functions of asymptotic variance

versus ρ̂ are presented in Table 3. In the formulae, a0 is the variance at zero (see Table 2), G is the
standardized ρ̂ with form G = (ρ̂− 1/λmin)/(1/λmax − 1/λmin), and λmax and λmin are the maximum
and minimum eigenvalues of matrix W, respectively.

Table 3. Theoretical functions for asymptotic variance versus ρ̂.

Geographical Configurations Function Forms Parameter Estimates (R2)

Square rook Var(ρ̂)asy = a ∗ a0 ∗ Gb−1

∗(1− G)c−1

â = 17.9181
n0.5395 + 6.7144 , (0.9999)

b̂ = 2.4, ĉ = 2.4

Square queen
â = 32.4112

n0.4482 + 6.4694, (0.9990)
b̂ = 2.0836

n0.3519 + 2.1107, (0.9975)
ĉ = 1.0641

n0.2982 + 2.2843, (0.9974)

Hexagonal
Var(ρ̂)asy =

a ∗ a0 ∗Gc∗G+b−1 ∗ (1− G)e∗G+d−1

â = 30.1752
n0.3065 − 0.0160, (0.9941)

b̂ = 3.0023
n0.1121 + 0.5299, (0.9966)

ĉ ={
0.0110 ∗ (ln(n)− 6)2 + 0.02357, n ≤ 400
−0.0233 ∗ (ln(n)− 6)2 + 0.02357, n > 400

,

(0.9917)
d̂ = n−0.0647∗ln (n)+0.4876 − 0.0634, (0.9900)

ê = ln n
3.35013 − 1.1161, (0.9890)

Figure 4 shows selected results of 150-by-150 (n = 22, 500) lattices for the square rook, square
queen, and hexagonal cases. It presents theoretical plots (red) superimposed on the original scatter
plots (blue), showing that the sampling variance of ρ̂ is Beta-distributed with equal shape and
scale parameters, and that the theoretical and the original plots closely correspond, which is also
corroborated by the bivariate regression plots and their accompanying R2 values of nearly 1 (see
Appendix A Figure A2).
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To evaluate the validity of the theoretical equations listed in Table 3, simulation experiments
were conducted.
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3.2.3. Simulation Experiments

For each of the three cases, 24 groups of experiments of different sample sizes (from 10-by-10 to
125-by-125) were done, and for each sample size, combinations of two treatments (i.e., employing an
approximated Jacobian term [36,37] and employing [35] a new algorithm for MLEs) were applied for
the pure SAR model. For a square rook case, ρ took 21 values (from −0.9 to 0.9 with a 0.1 increment,
and ±0.95) within its feasible range (−1, 1), and 10,000 replications were executed per value per
method. For a square queen case, ρ took 29 values (from −1.8 to 0.9 with a 0.1 increment, and 0.95)
within its feasible range (−1.9, 1), and 10,000 replications were executed per value per method. For a
hexagonal case, ρ took 28 values (from −1.6 to 0.9 with a 0.1 increment, and −1.65, 0.95) within its
feasible range (−1.74, 1), and 10,000 replications were executed per value per method. Table 4 shows
different treatment combinations that were employed by the three cases with sample size 100 (i.e.,
10-by-10 lattice). Full information about the simulations appears in Appendix C (Table A2). For a
specific ρ, 10,000 simulated values were generated whose frequency distribution was approximately
normal, and from which its mean and variance were extracted.

Table 4. Methods employed with a 10-by-10 lattice *.

Treatment ExactJacob AppJacob1 AppJacob2 AppJacob3

Original MLEs SR, SQ, H - - SQ, H
Griffith’s MLEs (2015) - SR SR SQ, H

* SR, SQ, and H represent square rook, square queen, and hexagonal cases, respectively. AppJacob1 and AppJacob2
refer to approximated Jacobian Equations (10) and (11) in [35]. AppJacob3 is Equation (8).

These experiments contend with two complications: approximating the Jacobian term, and
clarifying its derivation for the nonlinear regression model in SAS. For the square rook adjacency case,
two forms of approximation furnished by [36] were employed. For the square queen and hexagon
adjacency cases, the following approximation [37] was used:

Jac = α1 ∗
[

ln(1−ρ∗λmin)
ρ∗λmin

+ 1− δ1 ∗ ln(1− ρ ∗ λmin)
]
+ α2∗

[
ln(1−ρ∗λmax)

ρ∗λmax
+ 1− δ2 ∗ ln(1− ρ ∗ λmax)

]
, (8)

where Jac denotes an approximated Jacobian term. The default derivative of the Jacobian term
employed in SAS is misleading. Its correct form, Equation (A2), is presented in Appendix D.
Griffith [35] (p. 2149) furnishes a new algorithm to avoid the massive matrix calculation in the
MLEs, which effectively reduces the execution time. This algorithm is employed in this paper.

Figure 5 includes 10-by-10 results for the regular square rook, regular square queen, and regular
hexagonal tessellation cases. In all these figures, the theoretical values are presented by smooth orange
curves. Selected sampling distributions of weak, moderate, and strong positive ρ for a 10-by-10 lattice
are presented in Appendix E to illustrate the asymptotic normality of its sampling distribution.
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Figure 5a portrays variance values for a systematic sample of 21 points (from −0.95 to 0.95) and a
square rook case. Not including the orange graph, there are three other colored graphs in Figure 5a,
where the blue stands for the exact values, and the red and green represent two different approximated
calculations. The exact and approximated values are close, while a small gap appears between the
blue-red-green and the orange graphs around the peak. The gap almost disappears when the sample
size becomes 400 (20-by-20, see Appendix F Figure A4), and then appears again, but has no big change
as the sample size increases. The gap is the difference between the theoretical and the exact values,
and depicts the accuracy of the theoretical formulae—a smaller gap indicates a better approximation.
Figure 5b portrays variance values for a systematic sample of 29 points (from−1.8 to 0.95) and a square
tessellation with a queen adjacency case. To obtain the two results, one (the red) was calculated by
approximating the Jacobian term and using a simplified algorithm for ML estimation [35], whereas
the other (the green) was calculated by approximating the Jacobian term and using the conventional
ML estimation implementation. Results calculated by these two methods are coincident, and they are
not only considerably close to the exact graph (the blue in Figure 5b), but also close to the theoretical
curves; the variance plots for larger sample sizes are shown in Appendix F (Figure A5), in which the
theoretical (orange) and one approximation (red) are portrayed (except for the 20-by-20 case) because
executing the nonlinear regression without the simplified algorithm is extremely time-consuming,
and the gaps between the orange and the red are negligible. Figure 5c portrays variance values for
a systematic sample of 28 points (from −1.65 to 0.95) computed for the hexagonal case. Here, the
two approximations almost perfectly match the exact and theoretical values; variance plots for larger
sample sizes appear in Appendix F (Figure A6); the exact variances would be slightly bigger around
the maximum values than the theoretical ones when sample size exceeds 1600 (40-by-40), whereas
values along the two sides match reasonably well.

Figure 6 presents convergence plots of variances at ρ = 0. The top row presents convergence
curves whose horizontal axis is the square root of the sample size (from 5 to 150), and whose vertical
axis is the standard deviation. Different colors indicate different calculation methods; for example,
the orange denotes the theoretical calculated variance of ρ at zero, the blue denotes the asymptotic
(formulae in Table 2) computed variance, the green and red respectively denote variance calculated
with simulation experiments using the two methods approximating the Jacobian term (two methods
exist for the square rook adjacency, whereas only one for the square queen and hexagonal adjacencies).
The bottom row shows the standard-deviation-to-square-root-of-sample-size ratio (from 5 to 150); the
green and red lines denote those standard deviations calculated with simulation experiments versus
the asymptotically calculated standard deviations. Figure 6(a1,a2) are from the results of a square
rook case, Figure 6(b1,b2) display the results from a square queen case, and Figure 6(c1,c2) portray the
results from a hexagonal case. All of the trajectory curves appear to converge to zero, and all standard
deviation ratios fluctuate around 1, when sample size goes to infinity.
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generated. Figure 7a illustrates this landscape, with colors ranging from red to green portraying 
values of different levels. For the moderate SA case, a census dataset with 184 subdistricts for 
Wuhan, China (2010) (The statistical data come from the “Tabulation on the 2010 population census 
of China”, http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm, and the blocks map comes from 
the Wuhan Land Resources and Planning Bureau) was employed. The target variable was set to be 
the percentage of 0-to19-year-old individuals in the population (denoted as 0–19%). Figure 7b 
illustrates the geographic distribution of 0–19% (ranging from 7.83 to 39.74) across Wuhan 
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areas of high rates. Relatively low 0–19% areas cluster in the central urban sections, while relatively 
high 0–19% areas cluster in suburban regions. Because of the irregularity of its configuration, new 
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Detailed information can be found in Appendix G. For the strong SA case, a Landsat 7 Enhanced 
Thematic Mapper Plus (ETM+) remotely sensed image downloaded from the USGS EarthExplore 
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Figure 6. Convergence and variance ratio plots at ρ = 0. (a1,a2) Square rook variance convergence
and ratio plots; (b1,b2) square queen variance convergence and ratio plots; (c1,c2) hexagonal variance
convergence and ratio plots.

4. A Simulated Zero Spatial Autocorrelation Scenario, and Two Nonzero Empirical Examples

Section 3 furnishes the sampling distribution of the nonzero SA parameter of the pure SAR model;
one possible application of this contribution is to conduct hypothesis testing for a nonzero ρ. Thus, the
next section includes two empirical examples that represent moderate and strong positive SA, and to
illustrate a zero SA case (rarely encountered in empirical data), simulated data were generated as well.
Considering the normality of its sampling distribution, a Z test of the form (ρ− ρ0)/sd(ρ) can be used
to evaluate the estimated ρ value. Let the significance level α be 0.05, and for a two-sided hypothesis
test as employed in this paper, the critical values would be ±1.96 (i.e., any value less than −1.96, or
bigger than 1.96 leads to a rejection of the null hypothesis).

4.1. A Description of the Selected Datasets

For the zero SA case, a 100-by-100 (n = 10, 000) landscape (Goslee [48] furnishes R code for
generating square lattices) with 10,000 numbers conforming to N(0, 1) randomly assigned on it was
generated. Figure 7a illustrates this landscape, with colors ranging from red to green portraying
values of different levels. For the moderate SA case, a census dataset with 184 subdistricts for
Wuhan, China (2010) (The statistical data come from the “Tabulation on the 2010 population census of
China”, http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm, and the blocks map comes from
the Wuhan Land Resources and Planning Bureau) was employed. The target variable was set to be the
percentage of 0-to19-year-old individuals in the population (denoted as 0–19%). Figure 7b illustrates
the geographic distribution of 0–19% (ranging from 7.83 to 39.74) across Wuhan administrative districts,
with the green representing areas of low rates and the red representing areas of high rates. Relatively
low 0–19% areas cluster in the central urban sections, while relatively high 0–19% areas cluster
in suburban regions. Because of the irregularity of its configuration, new simulation experiments
were conducted to obtain the sampling variance of the SA parameter. Detailed information can be
found in Appendix G. For the strong SA case, a Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
remotely sensed image downloaded from the USGS EarthExplore (https://earthexplorer.usgs.gov/)
was employed. This image is of the Yellow Mountain region of China on 8 October 2002. Its original

http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm
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form is 7811-by-7051 (n = 55, 075, 361) pixels, and it includes spectral bands B1-B8, with B1-B7 at a
spatial resolution of 30 meters, and B8 having a spatial resolution of 15 meters. In order to be consistent
with the magnitude of the other cases, a 100-by-100 patch, which displays the topographic landscape
with green areas representing lower elevation and buff-to-white strips depicting mountain ridges
with bare rocks, was cropped from the original image, and constitutes the study area across which
the normalized difference vegetation index (NDVI) was calculated. The adjacency scheme employed
to identify neighbors for all three cases was the rook (i.e., edge connections only), because for the
irregular configuration (Figure 7b), the rook and queen (i.e., edge and point connections) would render
very close results as adjacent administrative districts always have common boundaries; and for the
two square cases (Figure 7a,c), although numerical results would be different, the adjacency definition
has little impact on the conclusion.
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Figure 7. Landscapes with different degrees of spatial autocorrelation (SA): (a) a 100-by-100 lattice
across which pseudo-random numbers from a standard normal distribution are randomly distributed;
(b) 184 census blocks of Wuhan (2010) with 0–19% (ranging from 7.83 to 39.74, with green representing
low rates and red representing high rates) displayed; (c) 100-by-100 pixels clipped from the Yellow
Mountain region image (2002, with the green representing vegetation and buff-to-white strips depicting
mountain ridges).

In the case of moderate positive SA, the response variable 0–19% (YR, as denoted in Table 5)
was subjected to an exponential transformation to make it better align with a bell-shaped curve,
hence satisfying an assumption of the pure SAR model; the Shapiro-Wilk test statistic for the original
0–19% was 0.91, increasing to 0.99 after this transformation. For the strong positive SA case, an
exponential transformation was also applied to NDVI to achieve better symmetry; considering its
large sample size, the Kolmogorov-Smirnov (KS) normality test was employed, and the transformation
decreased the KS statistic from 0.4250 to 0.0238. Thus, the transformed 0–19% and NDVI constituted
the response variables of those SAR models for which the moderate and strong levels of SA parameters
ρ were estimated, respectively. Data transformation and normality testing details for model residuals
are presented in Appendix H, and scatter plots of residual-predicted values for assessing the
homoscedasticity of model residuals, and thus the validity of the regression model, are also included.
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Table 5. Results of zero, moderate, and strong positive spatial autocorrelation (SA) examples.

Dataset Random Landscape Wuhan Census Blocks Yellow Mountain Image

Response variable Pseudo-random
numbers 3.67− 11.79 ∗ e−6.59∗YR 1.46 ∗ e4.78∗NDVI − 2.70

Null hypothesis (H0) ρ0 = 0 ρ0 = 0.7 ρ0 = 0.95

MC 0.0051 0.5304 0.9077
ρ̂ 0.0101 0.7080 0.9697

sd(ρ̂) 0.0139 0.0598 0.0019
z-score 0.7254 0.1338 10.1762
p-value 0.4682 0.8935 <2.5314e-24

*95% CI of ρ̂ [−0.0171, 0.0373] [0.5908, 0.8252] [0.9659, 0.9735]
Conclusion Failed to reject H0 Failed to reject H0 Reject H0

*95% confidence intervals of model estimated ρ are calculated to determine the range in which the ρ0 will not
be rejected.

4.2. Results and Explanations

Results are summarized in Table 5, which also includes the MC values.
There are two indexes appearing in this table to indicate the level of SA: the MC, and the

SAR model estimated ρ (i.e., ρ̂), both of which represent the same level (i.e., nearly zero, moderate,
and strong) of SA, but with different values; the MC is directly calculated with the observations,
and ρ̂ is the ML estimate for the pure SAR model in which the neighborhood was defined by rook
adjacency. For the random case, the MC value is 0.0051, which indicates nearly zero SA, while ρ̂

is 0.0101; the z-score and p-value indicate a failure to reject the null hypothesis of ρ0 = 0, which
verifies that those pseudo-random numbers conforming to N(0, 1) were randomly distributed on the
100-by-100 lattice. For the Wuhan census blocks case, the MC value of 0.53 indicates moderate SA,
while ρ̂ = 0.7080 corresponds to a first-order spatial correlation of roughly 0.45 (e.g., [29] (§2.2.1); [45]
(p. 33)). Accordingly, a failure to reject the null hypothesis ρ0 = 0.7 for moderate SA is understandable.
In the case of the Yellow Mountain remotely-sensed image, the MC value of 0.9077 indicates a high
level of SA, and ρ̂ = 0.9697 corresponds to a first-order spatial correlation of roughly 0.90. For this
strong SA case, setting the null hypothesis of ρ0 = 0.95 is still rejected. Reasons for the rejection
may include: (1) when referring to the logistic curve in Figure 3a, those ρ values that indicate strong
positive SA may be restricted to a very narrow interval, say (0.95, 1), while ρ0 = 0.95 corresponds
to a moderate MC value (around 0.5); and, (2) the variance of ρ̂ approaches 0 when the sample size
becomes large and ρ approaches 1, and the nearly zero variance leads to a high z-score and a narrow
confidence interval, and thus an extremely significant p-value.

5. Conclusions and Discussion

The main contribution of this paper is furnishing the sampling distribution of the nonzero SA
parameter of the SAR model, which is frequently employed in a wide range of disciplines whose study
observations are connected with geographical attributes or locations. More specifically, the sampling
distribution was constructed for three specific spatial structures (i.e., regular square rook and queen,
and hexagonal tessellations); the former two are usually used for remotely sensed images (raster data),
while the latter is preferred for spatial sampling designs and aggregations. As shown with graphics
and functions, the curve shape of the parameter ρ against the MC is sigmoid, which indicates that
the MC should better differentiate SA levels and is more coincident with intuition (e.g., a MC value
of 0.5 quantifies moderate SA, whereas the ρ value for the same level may be larger than 0.7, which
conjures up a vision of moderate-to-strong SA at first glance). This may suggest that the MC could
be better for assessing the level of SA. In addition, the sampling variance of the parameter seems to
conform to a beta distribution with equal scale and shape parameters (larger than 1). A difference in
these distributions between the square rook and the other two is that the parabola-shaped curve is
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symmetric at zero for the square rook adjacency, whereas the symmetry is at negative points for the
square queen and hexagonal adjacencies.

One merit of this contribution is that it implements hypothesis testing for a nonzero null
hypothesis. For illustrative purposes, two empirical examples for moderate and strong SA were
selected, as was a zero null hypothesis case employing simulated data exhibiting a random map
pattern. For this random case, the result indicates a failure to reject the null hypothesis, which is in
accordance with our expectation. For the moderate case, prior knowledge that ρ and the MC have a
logistic relationship (i.e., MC values beyond, e.g., (−0.3, 0.3) correspond to extreme ρ values) results
in positing a null hypothesis of ρ0 = 0.7; thus, the null hypothesis is not rejected. For the strong
SA case, the null hypothesis of ρ0 = 0.95 is rejected mainly because of the large sample size (i.e.,
n = 10, 000) and the closeness between 0.95 and 1, both of which result in an extremely small variance.
These examples verify that the uncovered sampling distribution results are credible (the standard
error for ρ0 = 0 is 0.0141, corresponding to a z-score of 0.7188, which has a very small difference of
0.0066 with the z-score 0.7254 appearing in Table 5). In addition, a by-product of this contribution is
the visualization of statistical power curves for SA statistics [42]. Because the SA parameter can be
expressed in terms of the MC, their power curves can be plotted with a common measurement scale
(see Appendix I).

Future work needs to refine, and hopefully simplify, the variance expression for the hexagonal
case; one way to achieve this end is to increase the number of experiments (the current variance-ρ
function is based upon 14 groups of datasets (i.e., 7-by-7 to 70-by-70) to estimate its parameters).
Extensions can be made for more complicated landscapes, such as a combination of hexagons and
pentagons, partitionings with distorted hexagons (i.e., ISEA3H as a hexagonal Discrete Global Grid
System; [43]); these may be described with appropriate spatial weights matrices, where for the former,
expressions like those listed in Table 2 need to be derived, and for the latter, a spatial weights matrix
containing metrics based upon side length or hexagon area may be more reasonable than a binary
version. An important issue illustrated by the last example meriting emphasis is that the formal
hypothesis testing or its p-value may no longer make sense because of the large-to-massive sample
size involved. For example, the “confidence interval” of 0.9697 is [0.9659, 0.9735], in which the null
hypothesis value should be contained; otherwise, the null hypothesis is rejected. A cause of this
“always significant” phenomenon is the extremely small variance for a very big sample size, which
creates the necessity to develop a new criterion to substitute for statistical significance when analyzing
spatial data with large-to-massive sample sizes. This is a meaningful research theme that needs
attention in the future.
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Figure A1. Bivariate regression results of ρ̂MC as a function of ρ̂ for three 70-by-70 (n = 4900 ) regular
tessellations: (a) square rook adjacency case; (b) square queen adjacency case; and, (c) hexagonal
case data.
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Figure A1. Bivariate regression results of 𝜌  as a function of 𝜌 for three 70-by-70 (𝑛 = 4900) 
regular tessellations: (a) square rook adjacency case; (b) square queen adjacency case; and, (c) 
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Figure A2. Bivariate regression results of the asymptotic variance of ρ̂ as a function of its theoretical
version for three 150-by-150 (n = 22, 500 ) regular tessellations: (a) square rook adjacency case;
(b) square queen adjacency case; and, (c) hexagonal case.

Appendix B. Components of the Denominator of the Asymptotic Variance of ρ̂ at Zero for
Different Landscapes

Table A1. Components of the denominator of Equation (7).

Landscape ∑n
i=11/∑n

j=1cij ∑n
i=1λ2

i

Square rook [3PQ + 2(P + Q) + 4]/12 [18PQ + 11(P + Q) + 12]/72
Square queen [15PQ + 18(P + Q) + 28]/120 [300PQ + 279(P + Q) + 234]/2400

Hexagonal (5PQ + 5P + 6Q + 8)/30 (30PQ + 25P + 24Q + 23)/180

Appendix C. Basic Information about the Simulation Experiments

Because calculating the exact Jacobian is very time consuming, and nonlinear calculation iterations
for the conventional MLEs are slow, sample sizes larger than 10-by-10 did not employ the pure SAR
model with an exact Jacobian term and the conventional MLE implementation (except for the square
queen 15-by-15 and 20-by-20 cases (SQ15-20), and the hexagonal 15-by-15 to 40-by-40 cases (H15-40)).
Hence, the number of methods for all three cases using a 10-by-10 lattice is 3 (Table A2). For the square
rook 15-by-15 to 125-by-125, two approximated Jacobian terms, plus Griffith’s new MLE equations [35]
were employed. For the square queen 15-by-15, 20-by-20, and hexagonal 15-by-15 to 40-by-40, cases,
an approximated Jacobian term plus the new MLE equations, as well as an approximated Jacobian
term plus the conventional MLE implementation, were used; thus, the number of methods for these
cases is two. The remaining square queen and hexagonal cases employed an approximated Jacobian
term plus the new MLE equations; thus, the number of method here is one.
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Table A2. Simulation experiments employing ρ within its feasible range.

Regular Square Rook Regular Square Queen Regular Hexagonal Tessellation
Sample

Size
Number of
Methods

Number of
Replications

Sample
Size

Number of
Methods

Number of
Replications

Sample
Size

Number of
Methods

Number of
Replications

10-by-10 3 3*21*10,000 10-by-10 3 3*29*10,000 10-by-10 3 3*28*10,000
15-by-15 2 2*21*10,000 15-by-15 2 2*29*10,000 15-by-15 2 2*28*10,000
20-by-20 2 2*21*10,000 20-by-20 2 2*29*10,000 20-by-20 2 2*28*10,000
25-by-25 2 2*21*10,000 25-by-25 1 29*10,000 25-by-25 2 2*28*10,000
30-by-30 2 2*21*10,000 30-by-30 1 29*10,000 30-by-30 2 2*28*10,000
35-by-35 2 2*21*10,000 35-by-35 1 29*10,000 35-by-35 2 2*28*10,000
40-by-40 2 2*21*10,000 40-by-40 1 29*10,000 40-by-40 2 2*28*10,000
45-by-45 2 2*21*10,000 45-by-45 1 29*10,000 45-by-45 1 28*10,000
50-by-50 2 2*21*10,000 50-by-50 1 29*10,000 50-by-50 1 28*10,000
55-by-55 2 2*21*10,000 55-by-55 1 29*10,000 55-by-55 1 28*10,000
60-by-60 2 2*21*10,000 60-by-60 1 29*10,000 60-by-60 1 28*10,000
65-by-65 2 2*21*10,000 65-by-65 1 29*10,000 65-by-65 1 28*10,000
70-by-70 2 2*21*10,000 70-by-70 1 29*10,000 70-by-70 1 28*10,000
75-by-75 2 2*21*10,000 75-by-75 1 29*10,000 75-by-75 1 28*10,000
80-by-80 2 2*21*10,000 80-by-80 1 29*10,000 80-by-80 1 28*10,000
85-by-85 2 2*21*10,000 85-by-85 1 29*10,000 85-by-85 1 28*10,000
90-by-90 2 2*21*10,000 90-by-90 1 29*10,000 90-by-90 1 28*10,000
95-by-95 2 2*21*10,000 95-by-95 1 29*10,000 95-by-95 1 28*10,000
100-by-100 2 2*21*10,000 100-by-100 1 29*10,000 100-by-100 1 28*10,000
105-by-105 2 2*21*10,000 105-by-105 1 29*10,000 105-by-105 1 28*10,000
110-by-110 2 2*21*10,000 110-by-110 1 29*10,000 110-by-110 1 28*10,000
115-by-115 2 2*21*10,000 115-by-115 1 29*10,000 115-by-115 1 28*10,000
120-by-120 2 2*21*10,000 120-by-120 1 29*10,000 120-by-120 1 28*10,000
125-by-125 2 2*21*10,000 125-by-125 1 29*10,000 125-by-125 1 28*10,000

Appendix D. Correct Derivation of the Jacobian Term for SAS

For a pure SAR model (Equation (2)), the nonlinear model executed in SAS is of the form [33]:

Y ∗ Jac = [ρWY + (1− ρ)β01 + ε] ∗ Jac. (A1)

Taking the derivative with respect to ρ on both sides of Equation (A1), and considering

∂(Y ∗ Jac)
∂ρ

= Jac
∂Y
∂ρ

+ Y ∗ ∂Jac
∂ρ

yields

Jac
∂Y
∂ρ

= [ρWY + (1− ρ)β01− Y]
∂Jac
∂ρ

+ (WY− β01) ∗ Jac. (A2)

The default derivative of the Jacobian term employed in SAS is ∂(Y ∗ Jac)/∂ρ; however, what should
be calculated is Equation (A2)2.

Appendix E. Asymptotic Normality of the Sampling Distribution of the Spatial Autocorrelation
(SA) Parameter ρ

Considering the prevalence of positive SA latent in geographical datasets, selecting frequency
distributions of positive parameters with weak (ρ = 0.3), moderate (ρ = 0.7), and strong (ρ = 0.95) SA
is representative. Figure A3a–c include these plots for the 10-by-10 square rook, square queen, and
hexagonal cases, respectively.

2 There is a typo in [36] (p. 864), the brace needs to be removed.
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Figure A3. Frequency distributions of weak, moderate, and strong positive SA parameters: (a) square
tessellation, rook adjacency; (b) square tessellation, queen adjacency; and, (c) hexagonal adjacency.

Simulation experiments were conducted to obtain these distributions, which become thinner
and taller as the preset ρ value changes from 0.3 to 0.95. Estimated means and standard deviations
are shown in the legends, and all means are marked on the histogram/density curve plots as red
reference lines. Despite their widths and heights, all of these distributions are bell-shaped; thus,
the SA parameter ρ is asymptotic normally distributed, with changing mean and variance across its
feasible range.
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Appendix G. The Sampling Distribution of the SA Parameter ρ for the Wuhan Census
Blocks Dataset

The 184 census blocks of Wuhan do not constitute a regular tessellation, so sampling distributions
obtained with the three ideal configurations are no longer suitable for this irregular surface partitioning
case. Thus, experiments need to be conditional on this empirical configuration in order to construct the
correct sampling distribution. The same procedures as those in Section 3 are repeated. The theoretical
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functions for ρ̂ versus the MC, and for its sampling variance versus ρ, are expressed by Equations (A3)
and (A4).

ρ̂Wuhan =
4.3462

1 + e|MC−0.9839|8.3721 +
0.9619
−0.7646

, (A3)

Var(ρ̂Wuhan) = 0.0761 ∗ G1.0229 ∗ (1− G)1.4125, (A4)

where G = (ρ̂Wuhan − 1/λmin)/(1/λmax − 1/λmin); for this landscape, λmax = 1, and λmin = −0.7646.
Figure A7 presents their fitted curves, where the R2 for the logistic curve and the beta curve with equal
parameters larger than one are 0.9975 and 0.9993, respectively.
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interval [–4,4]. The accompanying quantile-quantile (Q-Q) normal plot of the regression model 
residuals (Figure A8b) conforms almost perfectly to its theoretical normal counterpart. The 
symmetry along the horizontal axis of the scatter plot of model residual-predicted values (Figure 
A8c) indicates homoscedaticity of the residuals; thus, results estimated by the model are reliable. 

  

Figure A7. Curve fitting plots and bivariate regression plots for Wuhan census blocks data. (a1,a2) The
original MC-ρ̂ scatter plot (blue) superimposed on the theoretical MC-ρ curve (red), and a bivariate
regression scatter plot for the original and predicted ρ; (b1,b2) the original ρ̂ -var(ρ̂ ) scatter plot (blue)
superimposed on the theoretical ρ̂ -var(ρ̂ ) curve (red), and a bivariate regression scatter plot for the
original and predicted Var(ρ̂ ).

Appendix H. A Data Analysis for One Simulated and Two Empirical Examples

The simulated data were sampled from a standard normal distribution (Figure A8a) within
the interval [–4,4]. The accompanying quantile-quantile (Q-Q) normal plot of the regression model
residuals (Figure A8b) conforms almost perfectly to its theoretical normal counterpart. The symmetry
along the horizontal axis of the scatter plot of model residual-predicted values (Figure A8c) indicates
homoscedaticity of the residuals; thus, results estimated by the model are reliable.
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original NDVI as well as for the transformed data yields a KS statistic  that decreases from 
0.4250 to 0.0238, with respective p-values increasing from less than 2.20 × 10  to 2.33 ×10 . The histogram, as well as the density curve of the transformed NDVI appearing in Figure 
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transformed NDVI was estimated, and then its residuals were assessed. A Q-Q plot for the 
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occuring in the right tail of the quantile. Slight heteroscedaticity of model residuals (the range 
widens a little after −1) can be detected in the residual-predicted scatter plot (Figure A10c). 

Figure A8. Statistical properties of simulated data and their regression residuals: (a) a histogram of
simulated data; (b) a Q-Q plot of the SAR model residuals; and, (c) a scatter plot of residual-predicted
values for assessing the homoscedasticity of model residuals.

Things are different for the two empirical cases. For the Wuhan census blocks data, the young
population ratio range is [7.83, 39.74], the mean and the standard deviation are 18.33 and 4.67,
respectively, and the median is 17.93, which indicates right skewness. An exponential transformation
improves the Shapiro-Wilk normality diagnostic statistic from 0.91 to 0.99, and the p-value from
5.3 × 10−9 to 0.06, which indicates a normal distribution. The normal Q-Q plot (Figure A9b) of
the regression residuals shows deviation in the left tail; more specifically, three points deviate far
from the reference line. The approximated symmetry along the horizontal axis of the scatter plot
of residual-predicted values (Figure A9c) indicates that the model residuals are not heteroscedatic,
meaning that results estimated by the model are be trustworthy.
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Figure A9. Statistical properties of the transformed young population ratio and its regression residuals:
(a) a histogram of the exponential transformed young population ratio; (b) a Q-Q plot of the SAR
model residuals; and, (c) a scatter plot of residual-predicted values for assessing the homoscedasticity
of model residuals.

For the Yellow Mountain region image, the range of its NDVI is [−0.2318, 0.3252], the mean and
standard deviation are 0.1107 and 0.0941, respectively, and the median is 0.1287, which indicates left
skewness; thus, the exponential transformation a + b ∗ eλ∗NDVI was applied to the raw data, and the
nonlinear regression procedure calculated estimates maximizing the likelihood are â = −2.70, b̂ = 1.46,
and λ̂ = 4.78. The KS normality test for the original NDVI as well as for the transformed data yields
a KS statistic that decreases from 0.4250 to 0.0238, with respective p-values increasing from less
than 2.20× 10−16 to 2.33× 10−5. The histogram, as well as the density curve of the transformed
NDVI appearing in Figure A10a, indicates an approximate normal distribution. The pure SAR model
description of this transformed NDVI was estimated, and then its residuals were assessed. A Q-Q
plot for the residuals appears in Figure A10b that has a conspicuous deviation from the Q-Q plot line
occuring in the right tail of the quantile. Slight heteroscedaticity of model residuals (the range widens
a little after −1) can be detected in the residual-predicted scatter plot (Figure A10c).
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Figure A10. Improved normality of transformed normalized difference vegetation index (NDVI) and 
regression residuals: (a) a histogram of the Exponential transformed NDVI; (b) a Q-Q plot of the SAR 
model residuals; and, (c) a scatter plot of residual-predicted values for assessing the 
homoscedasticity of model residuals. 
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curves of different SA statistics/parameters. The Geary Ratio (GR, also known as Geary’s c) power 
curve can be constructed as well. In Figure A11, the green depicts the MC’s power, the red presents 
the GR’s power, and the blue shows the SAR 𝜌’s power. These graphics indicate that 𝜌 is uniformly 
more powerful than the MC and the GR, while the MC is uniformly more powerful than the GR only 
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Figure A11. Statistical power curves for the MC (green), the GR (red), and the SAR 𝜌 (blue): (a) the 
7-by-7 square tessellation, rook adjacency case; (b) the 7-by-7 square tessellation, queen adjacency 
case; and, (c) the 7-by-7 hexagonal tessellation case. 

  

Figure A10. Improved normality of transformed normalized difference vegetation index (NDVI) and
regression residuals: (a) a histogram of the Exponential transformed NDVI; (b) a Q-Q plot of the SAR
model residuals; and, (c) a scatter plot of residual-predicted values for assessing the homoscedasticity
of model residuals.

Appendix I. Statistical Power Visualization of Different SA Statistics in a Single Plot

One of the applications of this paper’s contribution is the visualization of statistical power curves
of different SA statistics/parameters. The Geary Ratio (GR, also known as Geary’s c) power curve
can be constructed as well. In Figure A11, the green depicts the MC’s power, the red presents the
GR’s power, and the blue shows the SAR ρ’s power. These graphics indicate that ρ is uniformly more
powerful than the MC and the GR, while the MC is uniformly more powerful than the GR only for
positive SA for the hexagonal tessellation.
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Figure A11. Statistical power curves for the MC (green), the GR (red), and the SAR ρ (blue): (a) the
7-by-7 square tessellation, rook adjacency case; (b) the 7-by-7 square tessellation, queen adjacency case;
and, (c) the 7-by-7 hexagonal tessellation case.
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