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Abstract: Considering the classification of high spatial resolution remote sensing imagery, this paper
presents a novel classification method for such imagery using deep neural networks. Deep learning
methods, such as a fully convolutional network (FCN) model, achieve state-of-the-art performance in
natural image semantic segmentation when provided with large-scale datasets and respective labels.
To use data efficiently in the training stage, we first pre-segment training images and their labels
into small patches as supplements of training data using graph-based segmentation and the
selective search method. Subsequently, FCN with atrous convolution is used to perform pixel-wise
classification. In the testing stage, post-processing with fully connected conditional random fields
(CRFs) is used to refine results. Extensive experiments based on the Vaihingen dataset demonstrate
that our method performs better than the reference state-of-the-art networks when applied to
high-resolution remote sensing imagery classification.

Keywords: high resolution imagery; remote sensing; convolution neural network; semantic segmentation;
data augmentation; deep learning

1. Introduction

Pixel-wise classification is a fundamental task in remote sensing that aims at assigning a semantic
class, e.g., vegetation, buildings, vehicles or roads, accurately to every individual pixel of an image.
As a pattern recognition problem, pixel-wise classification has drawn significant attention for several
decades, with many aspects yet to be resolved. Such pixel-level cluster and classification methods, as
k-means [1], neural networks [2,3], support vector machines [4,5], random forest [6,7] and boosting [8],
are widely used to classify low spatial resolution (10–30 m) images. However, at a higher resolution
of both spectral and spatial remote sensing imagery, the above methods are sensitive to noise, lack
semantic meaning of objects, and cannot be easily used to acquire object-level information.

High resolution (2 m and higher spatial resolution) remote sensing imagery contains more small
objects and fine details; thus, it is more meaningful to recognize a ground object, rather than pixels, in
a high spatial resolution image. Commercial software programs such as eCognition [9] and ENVI [10]
have implemented object-based image classification methods that allow for the combined use of spatial
and contextual features in addition to spectral information and can achieve a higher classification
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accuracy in certain situations. Considering the complexity of land cover that contains vegetation,
water, soil and other physical land features, including those created solely by human activities, it is
still challenging for object-oriented approaches to improve classification accuracy.

Traditionally, classification of remote sensing imagery focused on two steps, i.e., feature extraction
methods and supervised learning algorithms. Various methods have been proposed to extract features
using hand-crafted descriptors, such as Scale-Invariant Feature Transform (SIFT) [11] and Histogram
of Oriented Gradients (HOG) [12]. However, the two steps mentioned above are typically viewed as
distinct approaches. Convolutional neural networks (CNNs) combine the two steps into one network
that learns contextual features at different scales and computes the score of each class at the end
of the network. Another benefit of CNNs is that they can be trained to optimize all weights in the
network using an efficient weight update technique such as stochastic gradient descent (SGD) [13]
end-to-end. Although CNNs have achieved remarkable results in image categorization, they do not
consider pixel-wise semantic classification. In image categorization, the input of a network is an image,
while the goal is to predict the correct category of the entire image. FCN [14]-based models have been
successfully applied to natural image semantic segmentation and are currently the state-of-the-art for
PASCAL VOC datasets [15]. However, FCN models do not take into account relations between pixels
and ignore the spatial regularity in the usual pixel-wise classification method. In addition, the vast
majority of research focuses on optimization of the network structure without considering efficient use
of labeled data that is very important to deep neural networks.

To overcome the above challenges, in this paper, we introduce a novel pipeline for pixel-wise
classification of high-resolution remote sensing imagery. Our method consists of three parts: training
data augmentation in the training stage, supervised classification approach based on an atrous spatial
pyramid pooling (ASPP) network, and post-processing that uses fully connected CRFs to generate
the final refined classification result in the testing stage. Compared to existing methods, our novel
contributions are as follows:

• We specifically propose applying data augmentation in the training stage of supervised
classification approach, which could systematically improve classification accuracy.

• We apply a supervised classification approach based on an ASPP network to high spatial resolution
remote sensing imagery, following the procedure of Chen et al. [16].

• We compare our approach to the basic FCN and FCN-8s approaches proposed in [14], the
multi-layer perceptron (MLP) approach proposed in [17,18] and the ASPP approach of [16]
that successfully performed high-resolution remote sensing imagery classification and natural
image segmentation.

2. Related Work

Over the last few years, methods based on deep learning for computer vision applications, such
as object detection and semantic segmentation, represented the state-of-the-art. Since the deep learning
theory was explicitly proposed by Hinton et al. [19] in 2006, various deep learning architectures,
such as Deep Belief Networks (DBNs) [20], Stacked AutoEncoder (SAE) [21], Convolutional Neural
Networks (CNNs) [22], and Recurrent Neural Networks (RNN) [23], have been introduced to computer
vision [24,25], speech recognition, natural language processing and audio recognition. CNN, the most
popular deep learning method in computer vision, is used to learn the features of images via an
architecture of connected layers and neural networks.

Pixel-wise classification is an active research topic, stimulated by challenging datasets, e.g.,
PASCAL [15] and MS-COCO [26]. Long et al. [14] proposed the Fully Convolutional Network (FCN)
based on the standard CNN. By replacing fully connected layers in a CNN with convolutional layers,
the FCN maintains a 2D structure of feature maps and was the first to implement CNN-based
image semantic segmentation. SegNet [27] introduced an encoder and decoder network into the
pooling indices. The encoder network is topologically identical to convolutional layers in VGG16 [28],
while the fully connected layers of VGG16 are removed, making the SegNet encoder network
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significantly smaller and easier to train. Yu [29] proposed a new convolutional network designed
for dense prediction using dilated convolutions to systematically aggregate multi-scale contextual
information and support an exponential expansion of the receptive field without losing resolution.
CRF-RNN [30] combined the strengths of CNNs and CRF-based probabilistic graphical modeling in a
single framework. It can refine coarse outputs from a traditional CNN both forwards and backwards
by proposing mean-field approximate inference for the dense CRF with Gaussian pairwise potentials
as a recurrent neural network (RNN) [31,32]. RefineNet [33] combined rough high-level semantic
features and fine-grained low-level features. All components of RefineNet used residual connections
with identity mappings, such that gradients could be directly propagated through short-range and
long-range residual connections. However, training the entire network was too time-consuming.
Large Kernel Matters [34] proposed a global convolutional network to address both classification and
localization challenges of semantic segmentation using a large kernel and an effective receptive field.
PSPNet [35] proposed a pyramid scene parsing network to exploit the global context information of
an image at different region scales, and subsequently harvested different sub-region representations.
PSPNet concatenated the regular CNN layers and the upsampled pyramid pooling layers, carrying
both local and global context information to the image. However, the results were highly dependent
on pre-trained model parameters. LargeFOV [36] and ASPP [16] combined the responses at the final
CNN layer with fully connected CRFs to localize the segment boundaries, achieving a higher accuracy
than previous methods.

In remote sensing research, deep learning has recently been introduced into high-resolution
and hyperspectral data [37] classification. Mnih [38] proposed an efficient large-scale patch-based
learning approach to road detection by initializing the feature detectors using RBMs (Restricted
Boltzmann Machines). Basu [39] presented a framework for classification of satellite imagery
that extracted features and fed normalized feature vectors to a DBN for classification. Basu [40]
presented a framework using the statistical region merging (SRM) algorithm for segmentation, neural
networks for classification and CRF for the result refinement to estimate tree cover for the entirety
of the continental United States. Since Penatti et al. [41] showed that a pre-trained CNN used to
recognize natural image objects generalizes well to categorizing remote sensing data by transfer
learning, and CNN-based methods became increasingly popular in a remote sensing research. On
the basis of patch-based CNN classification [42], Volpi [43] presented a CNN-based system relying
on a downsample-then-upsample architecture. Specifically, it first learned a rough spatial map of
high-level representations using convolutions and subsequently learned to upsample them back
to the original resolution using deconvolutions. Based on SegNet [27], Yu Liu [44] proposed an
hourglass-shaped network (HSN) for high-resolution aerial imagery that featured multi-scale inference
by using inception modules replacing simple convolutional layers and forwarding information from
the encoding layers directly to decoding ones by skip connections. In addition, also based on
SegNet [27], Nicolas Audebert [45] presented a deep learning-based segment-before-detect method for
the subsequent detection and classification of several varieties of wheeled vehicles in high-resolution
remote sensing imagery. Based on FCN [14] and MLP [17,18], a CNN framework was derived
to learn features at different resolutions and apply a simple method for combining such features.
Similarly, to LargeFOV [36], Gang Fu [46] designed a multi-scale network architecture by adding a
skip-layer structure to multi-resolution image classification of GF-2 images. Marmanis [47,48] extracted
scale-dependent class boundaries before each pooling level, with the class boundaries fused into the
final multi-scale boundary prediction. Along with ensemble learning, the model showed very high
accuracy on the Vaihingen dataset.

Nevertheless, the tendency of the network structure is to extract the global context information of
an image from different region scales. We summarize the related work and compare various models
in Table 1. Among those listed in Table 1, four networks achieved a high accuracy. Large Kernel
Matters and PSPNet lacked the source code and initial model weights, respectively. RefineNet usually
takes several days to train the entire network. Our work here follows the same network architecture of
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ASPP that applies atrous convolution yet uses training data augmentation to enlarge the training data
set and refine the classification results by CRFs.

Table 1. A summary of related work.

Network Architecture Summary

RBM, DBN [39] Unsupervised learning methods for feature extraction.

Patch-Based CNN [42,43] The first CNN-based model for pixel-wise image classification; however,
it suffered from low accuracy.

FCN [14,17,18,47,48] The first pixel-wise classification method by an improved end-to-end CNN
model; however, its results were coarse.

SegNet [27,44,45] Achieved a higher accuracy than FCN, yet lower than that of Atrous
Convolution methods.

RefineNet [33] High accuracy; however, it took too long to train the entire network.

Large Kernel Matters [34] High accuracy; however, it was not opensource.

PSPNet [35] High accuracy; however, it lacked the training code and initial model weights.

Atrous Convolution [16,36,46] High accuracy; however, it needed a substantial amount of GPU memory.

3. Proposed Method

Similar to other supervised classification approaches, our proposed method generally contains
two stages: the training stage and the testing stage, as illustrated in Figure 1. In the training stage, the
image data and labeled data, with pixel-class correspondence, are first processed to generate training
data patches that contain potential ground objects by using a pre-segmentation and selective method.
Subsequently, the original training data and the augmented training data patches are both put into the
ASPP convolutional network as training samples. The error between the predicted class labels and
the ground truth (GT) labels is calculated and back-propagated through the network using the chain
rule; subsequently, the parameters of the ASPP network are updated using the stochastic gradient
descent method. The training iteration is terminated when the error is less than a given threshold.

In the testing stage, the test image data is put into the trained ASPP network model to generate a
rough class prediction. The latter, together with the input image, is subsequently input into the fully
connected CRFs’ post-processing module to generate the final refined classification result.

In the following sections, we will present training data augmentation processing using
pre-segmentation and selective search method and explain the use of an ASPP neural network for
pixel-wise image classification, post-processing using fully connected CRFs to generate the final refined
classification result, and the application of such results to high-resolution remote sensing imagery.
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Figure 1. The workflow of our approach: The training stage and the testing stage are illustrated in the 
upper and lower parts, respectively. (a) Training data augmentation using pre-segmentation and 
selective search; (b) Image classification using an atrous spatial pyramid pooling (ASPP) network; (c) 
Post-processing using fully connected conditional random fields (CRFs). 

3.1. Training Data Augmentation 

Figure 1. The workflow of our approach: The training stage and the testing stage are illustrated in
the upper and lower parts, respectively. (a) Training data augmentation using pre-segmentation and
selective search; (b) Image classification using an atrous spatial pyramid pooling (ASPP) network;
(c) Post-processing using fully connected conditional random fields (CRFs).
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3.1. Training Data Augmentation

As a CNN requires a large corpus of training data to achieve a satisfactory accuracy, if there are
insufficient quality training data, the trained network will be overfit, i.e., become highly biased to
data to which it was trained. The result of overfitting is that the network will not be able to generalize
the learned model to any other samples [49]. A number of techniques have been developed to avoid
overfitting, primarily including data augmentation, weight decay and dropout [50]. Weight decay and
dropout are embedded in the design of the network. If the number of ground truth images is limited,
it is better to perform data augmentation to improve performance. This procedure consists of creating
new synthetic training examples from those already available. For image data, augmentation is the
pre-processing that augments the training set via domain-specific transformations, including random
cropping and random perturbations of brightness, saturation, hue and contrast.

However, the above transformations lack relevance to the ground objects. Object proposal
methods could be used to find regions that might contain significant objects in the image. There are
several kinds of object proposal methods, such as the grouping proposal method, e.g., selective
search [51], the window scoring proposal method, e.g., EdgeBoxes [52], and the agglomerative
clustering proposal method using mixtures of non-Gaussian distributions [53]. In this paper, we
use an efficient graph-based method [54] to segment the ground truth images into small components;
subsequently, based on the segmented components, the selective search method is applied to generate
bounding boxes of potential objects. Thus, we obtain more valuable trained data with unsupervised
methods than with simple augmentation.

The size of high-resolution remote sensing imagery is large due to the rich information it contains
that differs from natural images. Thus, it is impossible to put the entire image in a CNN in the training
stage due to the network structure and limited memory. The best approach is to cut the entire image
into small patches to meet the needs of the network. However, as shown in Figure 2, numerous ground
objects are separated into neighbor patches, causing a loss of shape and texture features of the object.
In this section, we extract potential ground objects and their labels from the ground truth data as
supplements of training data.
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3.1.1. Pre-Segmentation

Using the segmentation method [54], we apply a graph-based greedy decision method that could
take into account the global features of an image. An important characteristic of the method is its ability
to preserve detail in low-variability image regions, while ignoring detail in high-variability regions.

Let G = (V, E) be an undirected graph with vertices vi ∈ V and edges
(
vi, vj ∈ E

)
. The pixels

of an image could be represented by vertices of a graph. Thus, the pixels that need to be segmented
constitute the set of vertices V. There is also a corresponding weight w

((
vi, vj

))
for each edge(

vi, vj ∈ E
)

that is a non-negative measure of dissimilarity of neighboring elements vi and vj. The goal
of image segmentation is to find a partition of set V such that each component of the partition is a
connected graph Gi = (V, Ei), where Ei ⊆ E. Based on the guideline that the weights measure the
amount of dissimilarity of two vertices, we can infer that the edges between vertices of the same
component will have lower weights than edges between vertices belonging to different components.

The internal difference of a component C ⊆ V is defined to be the largest weight in the minimum
spanning tree of the component, i.e.,

Int(C) = max
e∈MST(C,E)

w(e) (1)

where MST(C, E) denotes the minimum spanning tree of the sub-graph G = (C, E). A minimum
spanning tree is the sub-graph that connects all vertices C and has the least sum total of weights.
The difference between two components is defined to be the minimum edge weight connecting the
two components, i.e.,

Di f (C1, C2) = min
vi∈C1,vj∈C2,(vi ,vj)∈E

w
((

vi, vj
))

(2)

If there is no edge connecting Ci and Cj, then Di f
(
Ci, Cj

)
= ∞.

Di f
(
Ci, Cj

)
is large relative to the internal difference within at least one of the components.

A threshold function is used to control the degree to which the difference between components must
be larger than the minimum internal difference. The pairwise comparison is defined as

D(C1, C2) =

{
true i f Di f (C1, C2) > MInt(C1, C2)

f alse otherwise
(3)

where the minimum internal difference, MInt(C1, C2), is defined as

Mint(C1, C2) = min(Int(C1) + τ(C1), Int(C2) + τ(C2)) (4)

The threshold function is defined as

τ(C) = k/|C| (5)

where |C| denotes the size of C. k is a constant parameter that is set manually in the experiments, with
a larger k causing a preference for larger components. The threshold function above implies that for
small components, we require a strong evidence for a boundary.

After pre-segmentation, the original image is segmented into many small regions, also known
as superpixels. The original image and the image resulting from segmentation are shown in Figure 3.
We can observe a coarse segmentation into small segmented regions of different colors. In the next
step, the small segmented regions are input to the selective search method to generate image patches
that might contain potential ground objects, such as buildings, trees and cars.
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3.1.2. Selective Search

Selective search is an efficient unsupervised objectness proposal method that combines the
strengths of both exhaustive search and segmentation. In this step, small segmented regions generated
by the preceding pre-segmentation step are merged into larger regions by different measures of
similarity. To determine whether two image regions belong to the same object, various measures of
similarity are considered, including, but not limited to, color, texture and size. As a kind of structural
similarity, MSSIM [55] is a popular similarity index that can also be added to the measures.

scolour
(
ri, rj

)
measures color similarity. The color histograms are normalized using the L1 norm.

Similarity is measured by the histogram intersection:

scolour
(
ri, rj

)
=

n

∑
k=1

min
(

ck
i , ck

j

)
(6)

stexture
(
ri, rj

)
measures texture similarity using SIFT-like measurements. Gaussian derivatives in

eight orientations are calculated for each color channel, where σ = 1. For each orientation of each color
channel, a histogram using a bin size of 10 is extracted. Thus, a texture histogram Ti = {Ti1, . . . , Tin} for
each region ri with dimensionality n = 240 could be constructed if three color channels are considered.
Similarity is measured by using the histogram intersection:

stexture
(
ri, rj

)
=

n

∑
k=1

min
(

tk
i , tk

j

)
(7)
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ssize
(
ri, rj

)
encourages small regions to merge early and is defined as the fraction of the image

that ri and rj jointly occupy, where size(im) denotes the size of the image in pixels:

ssize
(
ri, rj

)
= 1−

size(ri) + size
(
rj
)

size(im)
(8)

s f ill
(
ri, rj

)
measures how well regions ri and rj fit into each other. BBij is defined to be the tight

bounding box around ri and rj. s f ill
(
ri, rj

)
is the fraction of the image contained in BBij that is not

covered by regions ri and rj:

s f ill
(
ri, rj

)
= 1−

size
(

BBij
)
− size(ri)− size

(
rj
)

size(im)
(9)

The final similarity measure combines the above four strategies:

s
(
ri, rj

)
= a1scolour

(
ri, rj

)
+ a2stexture

(
ri, rj

)
+ a3ssize

(
ri, rj

)
+ a4s f ill

(
ri, rj

)
(10)

All regions are combined and sorted by the order in which they were generated, starting with the
region from every iteration of merging that was generated last. This order reflects the likelihood of
regions to contain an object. Duplicate bounding boxes are removed after sorting. Figure 4 shows the
extracted bounding boxes of potential ground objects that could be added to the training dataset.
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Figure 4. Images of bounding boxes of potential ground objects obtained using selective search, where
width * height < 20,000, width/height < 5 or height/width < 5.

After applying the selective search method, images of bounding boxes of potential ground objects
are generated along with the respective label data. In the next step, the images of bounding boxes and
the respective labeled images together with the original images and labels are put into the subsequent
CNN-based classification step for model training.

3.2. Pixel-Wise Classification Using CNN

In this section, we present our novel CNN architecture for pixel-wise classification of remote
sensing imagery. First, the section details the characteristics of FCN, followed by the advantages of
atrous convolution and the ASPP network architecture that applies the atrous convolution. The ASPP
network uses the augmented training data generated by the preceding section on model training.
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3.2.1. Fully Convolutional Network

The traditional CNN-based segmentation approaches typically separate a large image into
small patches; the semantic labeling process can be regarded as classifying the central pixel of each
image patch. To label the entire image, the prediction must thus be performed on many overlapping
image patches, requiring a large amount of redundant calculations and memory. The patch size also
limits the receptive field of the network and cannot extract multi-scale features of the image. The FCN
is one of the CNN variants that has been proven to be state-of-the-art for semantic segmentation in
natural images. An FCN is characterized by three primary features.

The first typical feature of an FCN is that the fully connected layers are replaced by fully
convolutional layers. In a CNN, the network is usually finished by a fully connected layer that
converts 2D feature maps to a 1D vector, with the probability of each class subsequently computed
by methods such as softmax. The fully connected layers have fixed-length dimensions and discard
spatial information. An FCN naturally operates on an image of any size, producing an output of
corresponding spatial dimensions.

Deconvolution is the second feature of FCN. A deconvolution, also called Transposed Convolution
or Fractional Strided Convolution, performs a regular convolution while reverting its spatial
transformation, as shown in Figure 5. For image segmentation, a deconvolution layer is put on
top of a regular CNN. It is used for upsampling the output of a CNN to obtain the same size as the
input image. The down-sampled feature maps from CNN are upsampled through the deconvolution
layer, generating features that can be used to predict the class label of each pixel. Such predictions
are compared to ground truth segmentation labels; a loss function is defined that guides the network
towards correct predictions by updating parameters in backward propagation, as usual.
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Figure 5. Operations of convolution and deconvolution.

The third feature of an FCN is the skip layer architecture. For example, in the VGG16 network,
the FC-8s is improved from FCN-16s skip net and FCN-32s coarse net. The skip layer is used
to combine dense predictions at shallow layers, and coarse predictions at deep layers, which can
improve segmentation details. More specifically, FCN-16s is a skip net that combines twice upsampled
predictions computed on the last layer at stride 32 with predictions from Pool4 at stride 16. In the same
way, FCN-8s is implemented by fusing predictions of the shallower layer Pool3 with twice-upsampled
the sum of two predictions derived from Pool4 and the last layer. The stride 8 predictions are
subsequently upsampled back to the image. As a result, FCN-8s produces more detailed segmentations
than FCN-16 and FCN-32s.

3.2.2. Atrous Convolution

The use of FCN for semantic segmentation has been shown to be simple and successful. However,
the repeated combination of pooling and striding operations at consecutive layers of such networks
reduces the spatial resolution of the resulting feature maps. Although deconvolution layers could be
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used, the result is also coarse. Yu [29] showed that atrous convolution enlarges the field-of-view of
filters without the loss of resolution or coverage.

Atrous convolution is also called dilated convolution. The primary idea of atrous convolution is
to insert a zero-value hole between pixels in convolutional kernels to increase the image resolution
that could enable dense feature extraction in a deep CNN. In the 1D signal convolution case, given the
input signal x[i] with a filter w[k] of length k, the output of atrous convolution y[i] is calculated as:

y[i] =
K

∑
k=1

x[i + r·k]w[k] (11)

The rate parameter r corresponds to the stride with which the input signal is sampled, with the
standard convolution being the special case of rate r = 1.

We explain the atrous convolution’s operation through an example in Figure 6. First,
we downsample an image, reducing the resolution by a factor of 2, and subsequently perform a
convolution with a 10× 10 kernel. Then, an upsampling operation is performed to generate the feature
map of the same size as the original image. Compared to the original image coordinates, we have
obtained responses at only 1/4 of image positions. Instead, if we convolve the full-resolution image
with a filter ‘with holes’ of size 19× 19, we can obtain a feature map at all image positions. Due to atrous
convolution, the receptive field of the network is larger, while the feature map is denser. The results
allow us to control the spatial resolution of neural network feature maps easily and explicitly.
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Figure 6. Illustration of atrous convolution. Blue arrows show a standard convolution performed on a
low-resolution feature map. Red arrows show a dense feature map generated using atrous convolution
with rate r = 2 on a high-resolution input feature map.

3.2.3. Network Architecture

We used an ASPP network with the architecture shown in Figure 7. It is derived from a
VGG-16 [28] network and has the same architecture until the Pool5 operation. ASPP for VGG-16
replaces layers fc6, fc7 and fc8 with parallel fully convolutional layers conv6, conv7 and conv8.
The conv6 branch layers use 3 × 3 kernels, yet apply different atrous rates to capture objects of
different sizes. The conv7 and conv8 layers use 1 × 1 kernels. After all convolution operations, the
branch layers are combined by element-wise fusion. Subsequently, a simple bilinear interpolation is
performed to enlarge the feature maps to the original image size. Finally, the softmax loss layer is
created on top of the last layer that computes the multinomial logistic loss of the softmax of its inputs.
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3.3. Fully Connected CRFs 

FCN-based models and atrous convolution have proven to be the most successful methods of 
semantic segmentation. However, the increased invariance and the large receptive fields can only 
predict the rough positions of objects but cannot delineate their borders. Traditionally, conditional 
random fields (CRFs) could be used as a post-processing tool to refine segmentation results. Thus, 
the fully connected CRFs [56] model is integrated with the flow.  
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3.3. Fully Connected CRFs

FCN-based models and atrous convolution have proven to be the most successful methods of
semantic segmentation. However, the increased invariance and the large receptive fields can only
predict the rough positions of objects but cannot delineate their borders. Traditionally, conditional
random fields (CRFs) could be used as a post-processing tool to refine segmentation results. Thus, the
fully connected CRFs [56] model is integrated with the flow.

The model employs the energy function:

E(x)∑
i

θi(xi) + ∑
ij

θij(xi, xj) (12)

where x is the label assignment for pixels. θi(xi) = − log P(xi) represents the unary potential, where
P(xi) is the label assignment probability at pixel i predicted by a CNN. θij

(
xi, xj

)
is the pairwise

potential represented by a fully connected graph, connecting all pairs of the predicted image pixels i
and j. The pairwise potential is defined as follows:

θij(xi, xj) = µ(xi, xj)

[
w1 exp(−

‖pi − pj‖2

2θ2
α

−
‖Ii − Ij‖2

2θ2
β

) + w1 exp(−
‖pi − pj‖2

2σ2
γ

)

]
(13)

where µ
(

xi, xj
)

= 1 if xi 6= xj and zero otherwise, i.e., as in the Potts model, only nodes with distinct
labels are penalized. The remaining expression uses two Gaussian kernels in different feature spaces;
the first, ‘bilateral’, kernel depends on both pixel positions (denoted as p) and RGB color (denoted as I),
while the second kernel only depends on pixel positions. The hyper parameters σα, σβ and σγ control
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the scale of Gaussian kernels. The first kernel forces pixels with similar colors and positions to have
similar labels, while the second kernel only considers the spatial proximity to enforce smoothness.

In CRF post-processing, the coarse class labels predicted by the FCN are input as the
unary potential. Along with the original image that provides the pairwise potential with position and
color information, the class labels are adjusted and refined under the position-color constraints.

4. Results

We performed extensive experiments to assess the effectiveness of our proposed method. We test
the method on a benchmark of aerial image labeling, the Vaihingen dataset, provided by Commission
III of the International Society for Photogrammetry and Remote Sensing (ISPRS) [57]. In this section,
we describe the datasets and the training settings in the experiment and present numerical and
visual results. We evaluate the benefits of each component of our proposed method and compare our
results to those of the base FCN, FCN-8s, MLP and ASPP networks. Our experiment was based on
the Caffe [58] platform and performed on a computer running the Windows 7 operating system and
equipped with an NVIDIA GeForce GTX1080 Ti [59] graphics card with 11 GB of memory.

4.1. Datasets

The Vaihingen dataset is composed of 33 image tiles, of which 16 are fully annotated with
class labels. The 16 image tiles are labeled into the following six classes: impervious surface, building,
low vegetation, tree, car, and background. The spatial resolution is 9 cm. Near-infrared (NIR), red (R)
and green (G) bands are provided. We select 4 images for testing (IDs: 30, 32, 34, and 37) and use the
remaining 12 images for training.

4.2. Training

The network is trained by stochastic gradient descent. To fit the network architecture, we cut
the original images into small patches of various sizes (321 × 321, 353 × 353, 385 × 385, 417 × 417,
449 × 449, 481 × 481, and 513 × 513) supplemented with the augmentation patches by the selective
search method, performing random flips (vertically, horizontally, or both) and mirroring. In every
iteration, a group of patches is fed to the network for backpropagation; the size of patches is also
called the batch size. In all cases, a momentum of 0.9 and an L2 penalty on the network’s weight
decay of 0.0005 are used. The interpolation layer uses a factor of 8 to resize the feature maps to the
original image. Weights are initialized following [16], and as we use batch normalization layers before
ReLUs, there is no need to normalize the input channels. Training ends after 20,000 iterations in the
first dataset and 20,000 in the second, when the error stabilizes on the validation set. To train the base
FCN, FCN-8s and MLP networks, we initialize the weights with the pretrained base FCN and jointly
retrain the entire architecture. We start this second training phase with a learning rate of 0.01 and stop
it after 30,000 and 65,000 iterations for the Vaihingen dataset.

4.3. Results and Comparison

We evaluate the performance of various methods based on three criteria: per-class accuracy, the
overall accuracy and the average F1-score. The accuracy is defined as the number of true positives (TP)
divided by the sum of the number of true positives and the number of false positives (FP):

accuracy =
TP

TP + FP
(14)

Recall is defined as the number of true positives (TP), divided by the sum of the number of true
positives and the number of false negatives (FN):

recall =
TP

TP + FN
(15)
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In addition, the F1-score is defined as:

F1− score = 2× accuracy × recall
(accuracy + recall)

(16)

4.3.1. Numerical and Visual Results Comparison

Due to limited GPU memory, the test images are tiled into 513 × 513 patches in the testing stage.
Subsequently, the patches are processed by the trained model to obtain the coarse results. Finally, the
original test image patches and the coarse results are both put into Fully Connected CRFs, and the
results are generated.

Table 2 reports the experimental results obtained using the Vaihingen dataset. The building and
impervious surface classes are identified with a higher accuracy than others. The accuracy of the
car class is the lowest due to cars containing fewer pixels, easily leading to information loss in the
pooling operation. Confusion matrices are also provided in Table 3 for the experiment based on the
ground truth for the Vaihingen dataset.

Table 2. Results of experiments on the Vaihingen dataset.

Approach Impervious
Surface Building Low

Vegetation Tree Car Average
F1-Score

Average
Recall

Overall
Accuracy

Basic FCN 81.40 86.83 76.51 81.94 68.09 77.72 76.79 81.57
FCN-8s 82.28 88.12 76.66 81.93 70.06 79.16 77.39 82.24

MLP 84.01 88.95 78.82 82.72 70.95 82.28 80.43 83.65
ASPP 89.39 91.73 79.34 84.08 71.51 85.00 85.05 86.48
Ours 91.03 92.94 80.13 87.25 74.12 86.84 87.06 88.13

Table 3. Confusion matrix for the Vaihingen dataset.

Reference → Predictions ↓ Impervious
Surface Building Low

Vegetation Tree Car

Impervious Surface 81.4 5.12 4.57 4.64 22.65
Building 6.89 86.83 3.34 2.51 3.58

Basic FCN Low Vegetation 6.01 3.74 76.51 10.68 2.92
Tree 4.57 3.78 14.6 81.94 2.76
Car 1.13 0.52 0.97 0.23 68.09

Impervious Surface 82.28 6.21 6.03 2.88 24.29
Building 5.61 88.12 1.91 1.51 3.38

FCN-8s Low Vegetation 8.31 1.95 76.66 13.32 1.51
Tree 3.02 2.13 15.11 81.93 0.76
Car 0.78 1.59 0.28 0.35 70.06

Impervious Surface 84.01 6.35 5.83 3.32 23.38
Building 4.29 88.95 1.3 1.97 3.44

MLP Low Vegetation 7.13 2.93 78.82 11.52 1.46
Tree 3.89 1.18 13.69 82.72 0.76
Car 0.68 0.49 0.36 0.46 70.95

Impervious Surface 89.39 3.57 5.91 2.49 21.12
Building 2.99 91.73 3.84 0.81 4.61

ASPP Low Vegetation 5.33 2.13 79.34 12.48 1.87
Tree 1.93 2.2 10.82 84.08 0.89
Car 0.36 0.36 0.08 0.13 71.51

Impervious Surface 91.03 3.97 6.74 1.91 19.98
Building 3.12 92.94 3.55 0.43 3.08

Ours Low Vegetation 3.09 1.21 80.13 10.31 2.57
Tree 2.34 1.8 9.41 87.25 0.24
Car 0.42 0.08 0.17 0.09 74.12

We show a visual comparison of classified images in Figure 8. The base FCN and FCN-8s
tend to output blob-like objects, while other methods provide sharper results. The outputs of
base FCN and FCN-8s are not fine enough, resulting in a loss of valuable detailed information.
Certain impervious surface areas are also mistaken for buildings. The MLP method combines
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feature maps of different convolutional layers, with the results looking better than those of base
FCN and FCN-8s. We observe that MLP tends to identify boundaries more accurately at a fine level.
Unlike MLP, ASPP exploits multi-scale features by employing multiple parallel filters with different
rates, and subsequently refining the output by fully connected CRFs. The results of ASPP for buildings
are comparatively regular. Our method is based on ASPP and the training data augmentation, with
Figure 8 showing that our method’s results are closer than those of other methods to the ground
truth data.
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Figure 8. Classification results of the Vaihingen dataset. (a) Original images; (b) ground truth (GT)
labels, corresponding to the images in (a); (c) Results of a basic fully convolutional network (FCN);
(d) Results of FCN-8s; (e) Results of multi-layer perceptron (MLP); (f) Results of ASPP; (g) Results of
our proposed method.



ISPRS Int. J. Geo-Inf. 2018, 7, 110 15 of 23

4.3.2. Computational Complexity Comparison

For supervised networks such as CNNs, deeper layers can learn more complex distributions [60],
yet may result in more parameters to learn and a need for greater computing resources. Thus,
computational complexity becomes a vital factor to consider. The total time complexity [61] of all
convolutional layers is

O(
d

∑
l=1

nl−1 · s2
l · nl ·m2

l ) (17)

where l represents the index of a convolutional layer, and d represents the number of convolutional
layers. nl represents the number of filters in the l-th layer. nl−1 is also known as the number of input
channels of the l-th layer. sl is the spatial size of the filter. ml is the spatial size of the output feature map.
The above time complexity applies to both training and testing times. The time cost of fully connected
layers and pooling layers is not included in the above formulation. Such layers often take 5–10% of
computation time. We only consider the trade-offs among the convolutional layers. We show the
network architectures of Base FCN, FCN-8s and MLP in Figure 9, and the parameters of convolutional
layers in Tables 4–6. The base FCN and FCN-8s share the same convolutional layer parameters, shown
in Table 4. According to the parameters of convolutional layers, we can estimate the computation time
of both training and testing of each network architecture as follows:

timeBase FCN ≈ 1024 × H8
0 ×W8

0 (18)

timeFCN−8s ≈ 1024 × H8
0 ×W8

0 (19)

timeMLP ≈ 1033 × H10
0 ×W10

0 (20)

timeASPP ≈ 1070 × H16
0 ×W16

0 (21)

where H0 represents the height of an input image and W0 represents its width.
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Table 4. Convolutional Layer Parameters of the Base FCN and FCN-8s.

Layer (l) Filter Size
(sl)

Number of
Filters (nl)

Number of Input
Channels (nl−1)

Spatial Size of Output
Feature Map (m2

l ) Stride Padding

Input 3 H0 ×W0
Conv-1_1 5 32 3 H0/2×W0/2 2 2
Conv-1_2 3 32 32 H0/2×W0/2 1 1

Pool-1 2 32 32 H0/4×W0/4 2
Conv-2_1 3 64 32 H0/4×W0/4 1 1
Conv-2_2 3 64 64 H0/4×W0/4 1 1

Pool-2 2 64 64 H0/8×W0/8 2
Conv-3_1 3 96 64 H0/8×W0/8 1 1
Conv-3_2 3 96 96 H0/8×W0/8 1 1

Pool-3 2 96 96 H0/16×W0/16 2
Conv-4_1 3 128 96 H0/16×W0/16 1 1
Conv-4_2 3 128 128 H0/16×W0/16 1 1

Upsample16 32 5 128 H0 ×W0 16 8

Table 5. Convolutional Layer Parameters of MLP.

Layer (l) Filter Size
(sl)

Number of
Filters (nl)

Number of Input
Channels (nl−1)

Spatial Size of Output
Feature Map (m2

l ) Stride Padding

Input 3 H0 ×W0
Conv-1_1 5 64 3 H0/2×W0/2 1 1
Conv-1_2 3 64 64 H0/2×W0/2 1 1

Pool-1 2 64 64 H0/4×W0/4 2
Conv-2_1 3 96 64 H0/4×W0/4 1 1
Conv-2_2 3 96 96 H0/4×W0/4 1 1

Pool-2 2 96 96 H0/8×W0/8 2
Conv-3_1 3 128 96 H0/8×W0/8 1 1
Conv-3_2 3 128 128 H0/8×W0/8 1 1

Pool-3 2 128 128 H0/16×W0/16 2
Conv-4_1 3 160 128 H0/16×W0/16 1 1
Conv-4_2 3 160 160 H0/16×W0/16 1 1
Upsample 8 128 160 H0/2×W0/2 1

ConvMLP1 1 256 128 H0/2×W0/2 1
ConvMLP2 1 5 256 H0/2×W0/2 1

UpsampleMLP 4 5 5 H0 ×W0 2

Table 6. Convolutional Layer Parameters of ASPP.

Layer (l) Filter Size (sl)
Number of
Filters (nl)

Number of Input
Channels (nl−1)

Spatial Size of Output
Feature Map (ml)

Stride Padding

Input 3 H0 ×W0

Conv-1_1 3 64 3 H0 ×W0 1 1

Conv-1_2 3 64 64 H0 ×W0 1 1

Pool-1 3 64 64 H0/2×W0/2 2

Conv-2_1 3 128 64 H0/2×W0/2 1 1

Conv-2_2 3 128 128 H0/2×W0/2 1 1

Pool-2 3 128 128 H0/4×W0/4 2

Conv-3_1 3 256 128 H0/4×W0/4 1 1

Conv-3_2 3 256 256 H0/4×W0/4 1 1

Conv-3_3 3 256 256 H0/4×W0/4 1 1

Pool-3 3 256 256 H0/8×W0/8 2

Conv-4_1 3 512 256 H0/8×W0/8 1 1

Conv-4_2 3 512 512 H0/8×W0/8 1 1

Conv-4_3 3 512 512 H0/8×W0/8 1 1

Pool-4 3 512 512 H0/8×W0/8 1
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Table 6. Cont.

Layer (l) Filter Size (sl)
Number of
Filters (nl)

Number of Input
Channels (nl−1)

Spatial Size of Output
Feature Map (ml)

Stride Padding

Conv-5_1 3 512 512 H0/8×W0/8 1 2

Conv-5_2 3 512 512 H0/8×W0/8 1 2

Conv-5_1 3 512 512 H0/8×W0/8 1 2

Pool-5 3 512 512 H0/8×W0/8 1

Conv-6_1
Conv-6_2
Conv-6_3
Conv-6_4

3 1024 512 H0/8×W0/8 1

6
12
18
24

Conv-7_1
Conv-7_2
Conv-7_3
Conv-7_4

1 1024 1024 H0/8×W0/8 1

Conv-8_1
Conv-8_2
Conv-8_3
Conv-8_4

1 1024 1024 H0/8×W0/8 1

Upsample 1 5 1024 H0 ×W0 1

According to our estimates of computation times, the Base FCN and FCN-8s networks take almost
the same time, because they have the same convolutional layers. The MLP network takes longer due
to additional convolutional layers MLP1 and MLP2. The network architecture of ASPP is much deeper
than those of the three abovementioned networks. In addition, as it uses atrous convolution, the
computation time is approximately twice that of the Base FCN and FCN-8s.

5. Discussion

5.1. Discussion of Different Training Crop Sizes

In this section, we compare results obtained using different data augmentation strategies to
ascertain the effect of various training crop sizes. According to the VGG16 network structure, we
choose 32×, to be able to evaluate the model for all various subsampling sizes with alignment
working well. If the input dimension equals n = 32 × k − 31, dimensions after 5 pooling iterations are
(16 × k − 15), (8 × k − 7), (4 × k − 3), (2 × k − 1) and (k), respectively. For k = 11, these translate to
(321), (161), (81), (41), (21) and (11). Due to limited GPU memory, we experimented with 8 groups of
data augmentation: (1) Mirror and Flip, random flips (vertically, horizontally, or both) and mirroring;
(2)–(8) SS and crop size, using selective search and different crop sizes of training data. As the overall
accuracy in Table 7 shows, larger crop sizes of training data achieve higher accuracy.

Table 7. Effect of varying the training crop size on the Vaihingen dataset.

Augmentation Approach Overall Accuracy Batch Size GPU Memory Used

Mirror + Flip 86.48 10 4.397G
SS + 321 87.78 10 4.397G
SS + 353 87.86 10 5.306G
SS + 385 87.89 10 6.3G
SS + 417 88.05 10 7.379G
SS + 449 88.06 9 7.989G
SS + 481 88.11 9 9.103G
SS + 513 88.13 9 10.215G

5.2. Discussion of Different Atrous Convolution Rates

Considering that atrous convolution rates could affect the classification results, we have
experimented with LargeFOV and ASPP schemes. As shown in Figure 10, ASPP for VGG-16 uses
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several parallel Conv6-Conv7-Conv8 branches. Each branch uses a 3 × 3 kernel; however, the atrous
rates r in the “Conv6” step vary to capture objects of different sizes. In Table 8, we report results,
obtained with several settings: (1) LargeFOV, having a single branch with r = 12; (2) ASPP-S, with four
branches and smaller atrous rates (r = 2, 4, 8, and 12); and (3) ASPP-L, with four branches and larger
rates (r = 6, 12, 18, and 24). In Figure 11, the ASPP-L model with multiple large FOVs can capture
complex objects, such as trees and buildings, better than LargeFOV and ASPP-L at multiple scales.
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5.3. Accuracy Impact Factor of Different Classes

As shown in Table 2, the classification accuracy of all classes improves after training data
augmentation. The best-performing class is “building”, at nearly 20% above “car” and more than 10%
higher than “low vegetation”. We count both the original and augmented sample sizes of training
data in Table 9 to determine the impact of augmented training sample size on accuracy. In the two
lowest-accuracy classes, “car” and “low vegetation”, the augmented sample size of the car class is
much greater than that of low vegetation; moreover, the accuracy improvement of class “car” is better
than that of “low vegetation”.

Table 9. Training sample size.

Class Impervious Surface Building Low Vegetation Tree Car

Original Training Sample Size 645 609 1156 1160 807
Augmented Sample Size 1511 2347 583 2502 1051

Total Size 2161 2956 1739 3062 1858

When classifying remote sensing imagery, small object classification is particularly challenging
due to the class imbalance between the small object class and other classes. The car class is often
mislabeled as an impervious surface, as cars in the images are of various colors, with dark-colored
cars appearing similar to a shadowed road. Additionally, cars contain significantly fewer pixels than
other classes. After multiple pooling and downsampling layers, the spatial resolution of the car
class feature maps reduces to very low values, which might lead to this class being confused with
other classes.

The distribution of the low vegetation class is scattered around other classes in an image and
contains fewer large contiguous areas than other classes, e.g., impervious surface. Hence, the chances
of boundary pixels of low-vegetation being confused with other classes are raised.

There are generally two kinds of classes in the Vaihingen dataset. One contains regularly shaped
objects, e.g., cars, trees and buildings. Other objects, such as those with impervious surfaces and low
vegetation, to some extent resemble a background, i.e., they do not have regular shapes. The selective
search method that we applied is good at augmenting the former. In Table 2, we observed that the
accuracy of the tree class improved by 3.17% and the accuracy of the car class improved by 2.61%.

We have also experimented with augmentation in different classes, with results shown in Table 10.
We chose the two lowest-accuracy classes of “car” and “low vegetation” to perform the experiment.
The result shows no interaction between different classes in accuracy improvement. The augmented
classes are independent; all classes should be augmented to achieve a higher overall accuracy.

Table 10. Result of augmentation in different classes.

Augmented Class Imp. Surf. Building Low Veg. Tree Car F1-Score Average Recall Overall Accuracy

Car 89.41 91.74 79.31 84.25 74.14 85.12 85.41 86.61
Low Veg. 89.40 91.71 80.09 84.21 71.53 85.29 85.72 87.06

Car + Low Veg. 89.43 91.72 80.19 84.24 74.07 85.36 85.99 87.38
All Classes 91.03 92.94 80.13 87.25 74.12 86.84 87.06 88.13

5.4. Applications and Limitations of Our Approach

Our proposed method makes pixel-wise classification practically feasible for very high-resolution
urban remote sensing and results in a high classification accuracy. The proposed pre-segmentation
and selective search method are natural and easy to implement and embed into an existing system.
The ASPP network source code we used and the trained weights have been publicly released.
The end-users can easily perform training data augmentation and ASPP networks in series in the
training stage, while the coarse result will be refined by fully connected CRFs in the testing stage.
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The network of our proposed method is based on a VGG16 architecture, which is a very
large model designed for multi-class classification. It contains numerous parameters and requires
time-consuming inference. As a result, it is unusable for mobile or battery-powered real-time
applications that require processing images at rates higher than 10 fps [62].

Our approach is limited in two aspects. First, it needs a large number of high-quality ground
truth labels for model training that relies on professional and experienced interpreters and a large
amount of manual processing. Second, a significant amount of GPU memory is required due to
atrous convolution.

In this paper, we apply a single neural network to pixel-wise classification. Ensemble learning
methods train several individual models, and use certain rules to combine them to make predictions.
The ensemble learning methods have gained popularity due to superior prediction performance in
practice. Studies showed that combining multiple pixel-wise classification networks is beneficial
to reducing the bias of individual models, both when using the same architecture with different
initializations and when using different model architectures with identical initializations [48,63].

6. Conclusions

In this paper, we propose a three-step method for pixel-wise classification of high-resolution
remote sensing imagery using a deep neural network. More specifically, our method has the
following novel features: (1) adopting training augmentation before training, using both a graph-based
unsupervised segmentation method and a selective search objectness proposal method; (2) using
a fully convolutional network with atrous kernels for dense feature extraction to encode objects
and the image context at multiple scales; and (3) using fully connected CRFs aiming at producing
semantically accurate predictions and detailed segmentation maps after segmentation. Experiments
on well-known high-resolution remote sensing datasets and state-of-the-art pixel-wise classification
methods demonstrate the effectiveness of our proposed method. We also compare the classification
results of different training crop sizes and atrous convolution kernel sizes. The larger training crop
sizes and atrous rates achieve higher accuracy. Under the same conditions, our method achieves
better overall accuracy and the average F1-score than the state-of-the-art methods when applied to the
Vaihingen dataset.

Although CNN-based models attain the state-of-the-art results for pixel-wise image classification,
their accuracy has reached a certain limit, with further improvements of classification quality probably
being small. Nevertheless, there are several promising directions for future research. Ensemble
learning is a method for generating multiple versions of a predictor network and using them to
obtain an aggregated prediction, improving a single network performance. Another possible direction
is applying a semi-supervised learning method such as Generative Adversarial Networks (GANs).
The existing CNN-based models used in remote sensing are highly sensitive to satellites having
different spatial resolution and sensors. In addition, a large amount of unlabeled satellite imagery
of the world is available for further analysis. Hence, exploring improved approaches to using such
unlabeled datasets becomes an important direction for further research.
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