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Abstract: Image mosaicking is one of the key technologies in data processing in the field of computer
vision and digital photogrammetry. For the existing problems of seam, pixel aliasing, and ghosting in
mosaic images, this paper proposes and implements an optimal seam-line search method based on
graph cuts for unmanned aerial vehicle (UAV) remote sensing image mosaicking. This paper first
uses a mature and accurate image matching method to register the pre-mosaicked UAV images, and
then it marks the source of each pixel in the overlapped area of adjacent images and calculates the
energy value contributed by the marker by using the target energy function of graph cuts constructed
in this paper. Finally, the optimal seam-line can be obtained by solving the minimum value of target
energy function based on graph cuts. The experimental results show that our method can realize
seamless UAV image mosaicking, and the image mosaic area transitions naturally.
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1. Introduction

It is of great significance to integrate multiple small images with overlapped scenes into one
large scene through image mosaicking technology, which can expand the field of vision and content
of the image scene. This technology is widely used in aviation remote sensing, medical imaging
diagnostics, military target tracking, disaster emergency management, and virtual reality or augmented
reality [1–4]. Currently, being economical, concise, lightweight, and fast, unmanned aerial vehicles
(UAV) equipped with inexpensive cameras have become increasingly popular in the tasks of people’s
daily life entertainment and professional departments’ surveying. In particular, virtual earth browsing,
small-scale field mapping, forest resources investigation, and urban land planning have all created
demand for UAV image mosaic technology. However, there are still many problems in the image
mosaicking of UAV images, such as ghosting, stitching dislocation, blurriness, aliasing, and time
efficiency [5–9]. How to realize the seamless mosaicking of UAV images has always been an ultimate
goal pursued by a large number of researchers. However, the current methods are still not satisfactory,
especially in some applications such as real-time UAV image mosaicking. Therefore, with the gradual
expansion of the application of UAV photogrammetry, UAV image mosaic technology has become a
research hotspot in computer vision and image processing in recent years, and how to achieve seamless
stitching of UAV images from different perspectives, different times, and even different cameras has
become a major problem in these applications.
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The complete UAV image mosaic process mainly consists of three parts. (1) UAV image
preprocessing, including noise elimination, and image distortion correction. (2) UAV image registration
mainly includes feature extraction, feature matching, and transformation model solving. (3) UAV
image fusion, which mainly includes the selection of projection model, seam-line detection, and even
light uniformity. The main innovative work done in this paper can be summarized as follows. On the
basis of the existing graph cuts algorithm, the concept of global optical flow is introduced to constrain
the geometric displacements caused by perspective imaging, geometric distortion, and especially the
projection errors caused by buildings, and then the optimal seam-line for image fusion is determined
so that there is no problem such as seams, aliasing, and ghosting in the mosaicked UAV images.

2. Related Work

Internationally, image mosaic technology has developed rapidly, and many algorithms and
software have emerged. They benefit from a great deal of research advances in computer vision,
computer photogrammetry, and computer graphics. Specific to the UAV image mosaic problem
studied in this paper, although existing methods can achieve good image mosaic effects under certain
conditions, there are still some problems that need to be solved and overcome. Especially for the
problems and characteristics of aerial images captured by inexpensive non-measurement cameras and
small UAV platforms, it is necessary to study a highly efficient and reliable image mosaic method for
UAV remote sensing images. Therefore, in order to solve these problems, this paper mainly focuses on
the optimal seam-line search in UAV image mosaicking based on previous research work, in order to
eventually give rise to an economic, efficient, and reliable UAV image mosaicking method.

Image preprocessing is a mature technology in the research of image mosaicking.
Camera calibration and image sampling are two basic tasks. There are traditional camera calibration
methods, active vision camera calibration methods, and camera self-calibration methods for
different camera lenses. Moreover, image-sampling methods are classified into nearest neighbor
interpolation, bilinear interpolation, bi-cubic convolution, and B-spline interpolation according to
different interpolation methods [10,11]. Image registration is a key step in image mosaicking. In fact,
image registration is also an independent hot research direction, it can be applied to many fields other
than image mosaicking. At present, there are many effective and reliable image matching methods such
as point feature matching algorithms, line matching algorithms, and patch matching algorithms: ORB
(Oriented FAST and Rotated BRIEF) algorithm, SIFT (Scale Invariant Feature Transform) algorithm,
and SURF (Speeded Up Robust Features) algorithm, for example [12–14]. Image fusion determines how
to produce the final stitched image. Its work mainly includes two parts, one is to determine what kind
of fusion surface to use, and the other is to determine whether the pixels of final mosaic images should
be taken from the reference image or the pre-mosaicked image, or how to fuse these pixels in some way
to achieve the best vison in order to eliminate the presence of seams, aliasing, and ghosting [15–17].
This paper mainly studies how to find the best seam-line, which is the key to the visual effect of image
fusion. The research in this filed can be summarized into two major categories. One is the mosaic
methods based on pixel fusion, they integrate pixels in overlapped areas in to new pixels of mosaicked
image through some algorithms (such as pixel averaging method, weighted average method and so on)
to eliminate the mosaic lines and illumination errors. However, due to the influence of image matching
errors, image interpolation errors and intrinsic factors such as illumination and noise, it is difficult to
avoid misplacement, ghosting, and aliasing. The other is the mosaic methods based on seam-line, their
solution is different from the mosaic methods based on pixel fusion [18–22]. The mosaic methods based
on seam-line only take the pixels of the reference image or pre-mosaicked image in the mosaicked
result, that is, the overlapped area is divided into two blocks, one for taking pixels from the reference
image and the other for taking pixels from the pre-mosaicked image. In this way, there will be no
ghosting and aliasing due to image fusion, and this division is achieved using a seam-line. Therefore,
how to divide is a problem that needs to be solved by finding the optimal seam-line. Many researchers
have done a lot of research on the search for the best seam-line. Among them, the method based on
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dynamic programming is a symbolic method. This method is based on the optimization theory and is
the best search based on the basic principle of dynamic programming. That is, regardless of the initial
state of a process or the last decision, the next state or decision must be optimal. However, this kind
of search process based on dynamic programming is very easy to fall into the local optimal solution
and cannot obtain the global optimal solution. In addition, there are uncertain factors in the choice
of the adjustment coefficient and the neighborhood range. Because using dynamic programming to
obtain a local optimal seam-line cannot reach a good result. Many scholars have studied how to use a
search method to obtain the global optimal seam-line [20–22]. Among them, the optimal seam-line
search method based on graph cuts is the most representative. It uses graph cuts to obtain the best
mosaic texture on both sides of the seam-line to obtain the optimal seam-line, which can solve the
shortcomings of dynamic programming in the image mosaicking (such as no need to specify additional
energy end points, etc.). In addition, compared with the annealing algorithm and ant colony algorithm,
it has the advantage of fast calculation [20–26]. In these optimal seam-line search methods based on
graph cuts, they can be divided into a color domain-based method, a gradient-based method, and a
color domain and gradient domain-based method according to the difference of the energy function
smoothing term. These methods use either the color space pixel difference information or gradient
information separately for the construction of the graph cuts energy function, either considering the
influence of the color domain and the gradient domain at the same time, this can make the energy
function have more information. Therefore, when the latter is looking for the seam-line, it not only
tends to have less gray information difference, but also hopes to find the seam-line at the edge of
the drastic change of the building to be able to cover the later splicing traces. However, in the later
feathering process, this will have a fuzzy and degrading effect on the edge of the building. This effect
is extremely unfriendly to the mosaicking and application of high-resolution UAV images.

In summary, the optimal seam-line search method based on graph cuts is a global and extremely
promising image mosaic method. However, any existing mosaic method based on graph cuts pays
little attention to how to use geometric information constraints, and often focuses on more limited pixel
level difference information (such as pixel color, gray scale, and gradient) to construct the smoothing
term of an energy function, without looking at this issue form a global perspective. This often results in
these methods not getting ideal, robust algorithm parameters, and ultimately affects the applicability
of these methods. Therefore, the energy function of most current optimal seam-line search methods
based on graph cuts only consider the image local information, and finally only the pseudo global
solution of the target energy function can be obtained. In this paper, aiming at this problem, we
propose to introduce the concept of global optical flow filed based on the existing graph cuts method
to constrain the geometrical displacement of pixels due to perspective imaging, geometric distortion,
and especially the projection errors caused by buildings, to achieve seamless UAV image mosaicking.

3. Method

The experimental UAV images used in this paper have been pre-processed in advance. In UAV
image registration, the image registration method based on SURF is used in this paper, and RANSAC
(Random Sample Consensus) algorithm is used to eliminate and optimize mismatching. Furthermore,
the coarse-to-fine matching strategy is used in the transformation model solution. That is, all the
matching feature points are used to estimate the transformation model parameters of adjacent images,
and then the new transformation model parameters are accurately solved based on the elimination
of the mismatching feature points. Finallt, the coordinate transformation between different images
is implemented so that all the pre-mosaicked images are in a unified coordinate system [12–14].
After completing image registration and coordinate conversion, the next step is to determine how to
produce the final stitched image. This is the innovative work of this paper. In the following sections,
we will introduce in detail on the optimal seam-line search method based on graph cuts proposed by
this paper and verify the effectiveness and superiority of our proposed method through experiments.
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3.1. Classic Graph Cuts-Based Optimal Seam-Line Search Method from OpenCV Library

If the reference image and the image to be registered have been completely registered, any mosaic
method based on graph cuts can achieve a good image mosaic effect. However, due to the influence
of external factors, the two images cannot be fully registered. Therefore, it is required to obtain an
optimal seam-line to segment the overlapped area, so that the visual difference between the both sides
of the optimal seam-line is the smallest, thereby realizing seamless mosaicking of UAV images. Image
mosaicking based on seam-lines is one of dominant methods for UAV image mosaicking. It does
not need to strictly align the entire overlapped area, but only processes the area near the seam-line,
and it can splice large parallax scenes. In the famous open-source computer vision algorithm library
(OpenCV), the graph cuts-based seam-line search methods are mainly divided into two types. One is to
use the difference information of color space pixels for the construction of graph cuts energy function,
and the other is based on the previous method, the constraint of gradient information is added. From
the review and discussion of the previous literature, it can be seen that the mosaic results of any method
are not satisfactory, and these methods have room for improvement in the algorithmic effectiveness
and efficiency. Since the OpenCV open-source algorithm library is a very versatile and representative
of the latest image processing integrated function library. Therefore, this paper will use the two
representative graph cuts-based optimal seam-line search method in OpenCV as control experimental
methods to evaluate the effectiveness and efficiency of the corresponding method proposed in this
paper. Equations (1) and (2) are two typical construction strategies for smoothing terms of graph
cuts energy function (1) only considers the gray value of the image pixel, and (2) added the gradient
constraint of the image pixel.

Esmooth = ∑
p,q

Vp,q( fp, fq) (1)

Esmooth = ∑
p,q

Vp,q( fp, fq) + ∑
p,q

gradp,q( fp, fq) (2)

In (1) and (2), p and q are adjacent pixels in the overlapped area, V(*) is the gray-scale difference
function produced by the image pixel difference, grad(*) is the gradient change function generated by
the pixel gradient, and f is the image. When the gradient value is not considered, the post-processing
of the seam-line can easily make the edge of the ground building blurry. After considering the gradient
value, the influence of the illumination change can be effectively avoided.

3.2. Improved Optimal Seam-Line Search Method Based on Graph Cuts

In general, adjacent UAV images will have the same local information, such as the same style
buildings, but the scale information of adjacent images may not be exactly the same. At the same time,
there will be differences in the perspective of different UAV images. If you do not consider the above
situation in the image information, it is very likely that there will be geometrical misalignment or
building information missing due to occlusion in the stitched images. Since many mosaic methods still
rely on local information to solve the pseudo global solution of target energy function, the inaccuracy of
the image splicing problem itself in the mathematical modeling process is neglected, and this leads to
the target energy function created cannot fully express the problem that needs to be solved. Therefore,
on the basic of the existing methods, this paper designs a more complete UAV image mosaic method
with more global constraints. The new method introduces the concept of global optical flow field
based on the existing graph cuts method to constrain the geometrical displacement of pixels due to
perspective imaging, geometric distortion, and especially the projection errors caused by buildings to
achieve seamless UAV image stitching.

3.2.1. Optical Flow Field

Optical flow is the pattern of apparent motion of objects, surfaces, and edges in a visual
scene caused by the relative motion between an observer and scene [27,28]. Optical flow fields
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are dense correspondence fields for accurate displacement optical flow estimation, they contain rich
three-dimensional structural information of feature objects in images. This information of pixels in
the overlapped area of adjacent images can effectively provide the structural information of images,
which is conducive to search for the optimal seam-line [19]. In this paper, in order to take into account
the image structure information better in the overlapped area of the adjacent images, we use the
optical flow value of pixels in the overlapped area as a constraint condition for constructing the
energy function based on graph cuts. The Horn–Schunck method of estimating optical flow is a global
method [27,28]. This paper calculates the optical flow fields of experimental UAV remote sensing
images based on this method. Equation (3) is the function of the Horn–Schunck algorithm, it is given
for two-dimensional image streams.

F =
x

[(Ixu + Iyv + It)
2 + a2(

∣∣∣∣∣∣∇u
∣∣∣∣∣∣2+∣∣∣∣∣∣∇v

∣∣∣∣∣∣2)]dxdy (3)

In (3), F is the value of optical flow, Ix, Iy, and It are the derivatives of image intensity values
along x, y, and time dimensions respectively; u, v are the displacements along x, y axis; and a is a
regularization constant. Figure 1 is a schematic of the calculated optical flow field.
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Figure 1. An UAV image pair and their optical flow field rendering. (a) UAV image pair. (b) Rendering
of optical flow field.

3.2.2. Graph Construction

A graph is a directed structure with weights, which is usually represented by some nodes and
directed edges. In this paper, these nodes are image pixels, and a graph usually has some special
nodes called endpoints. In computer vision, these endpoints are used for pixel segmentation labels.
As shown in Figure 2a, it is a directed graph structure with two endpoints, one of these is usually
called a source node (s) and the other is called a sink node (t). The others are called nodes in the graph,
and there is a weighted edge with direction between the terminal node and each node. In addition,
there are also weighted edges between each node. Figure 2b shows an example of segmentation of
a 3 × 3 directed graph structure. The red dashed line is a cut of the graph. The left pixels of the cut
line are labeled as originating from the source node, and the right pixels of the cut line are labeled as
originating from the sink node. In the graph, a and b are two common nodes. The cut cost of different
segmentation methods will be calculated by the weighted edge. In image processing applications,
many of these energy minimization problems can be approximated by solving a max-flow and min-cut
problem in a graph.
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Specific to this paper, graph cuts-based optimal seam-line search is based on the graph structure.
Therefore, it is necessary to convert the image pixels to the desired graph structure before searching
for the seam-line. According to our UAV image mosaic theory and the definition of the graph above,
the adjacent UAV images and graph structure can be illustrated in Figure 3. Figure 3a is a schematic
diagram of UAV image mosaic, in which the pre-mosaicked image has a certain overlapped area
with the reference image after the coordinate transformation, and the seam-line will be positioned
in the overlapped area. The red line in Figure 3a is an example seam-line. According to this layout
in Figure 3a, this paper constructs a graph structure and a part of the graph is shown in Figure 3b.
Assuming that there are only 12 pixels in the overlapped area between the reference image and the
pre-mosaicked image, and each pixel in the overlapped area is regarded as a node in the graph structure.
Then, we can use the 12 circles from 1 to 12 in Figure 3b to represent 12 nodes in the graph, and the
two adjacent nodes forming an edge which have weight, as shown in the green lines in Figure 3b.
There are also weighted edges between the nodes in the non-overlapped area (that is, box portion of
the reference image and the pre-mosaicked image) and the nodes in the overlapped area, as shown by
the black lines in Figure 3b. The concept of the optimal seam-line detection is to search for a seam-line
in the overlapped of adjacent images to divide the overlapped area into two parts, one part from the
reference image, the other is from the pre-mosaicked image. This seam-line will pass through nodes in
the overlapped area and directly cut off the weighted edges between the nodes. This is the concept
of graph cuts in this paper. In Figure 3b, the red dash line is an example best seam-line. It divides
nodes in the overlapped area into two parts. In the mosaicked image, pixels of 1, 5, 6, 9, 10, and 11
come from the pre-mosaicked image, and other pixels come from the reference image. In this way, the
source of two partial pixels in the overlapped area are determined, and the purpose of seamless image
mosaicking is achieved.
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3.2.3. Energy Function Definition

According to the above, the overlapped area of two large adjacent images can construct a large
graph structure. In the graph structure, the most critical part is the definition of the weighted edges,
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and the concrete form of energy function is determined by the definition of the weighted edges.
The general energy function of graph cuts consists of data item and smooth item, which correspond to
the weights of the edges in the cutting of graph cuts. Equation (4) is the general form of the graph cuts
energy function definition, where f is the label assigned by the node, that is, the cost of a node from
the source or sink is labeled as f.

E( f ) = Edata ( f ) + Esmooth( f ) (4)

Among (4), Edata is a data item, which is used to express the difference between the value of
the node and the value of the label f. Esmooth is a smoothing term, it is used to measure the segment
smoothness. Data item generally use a distance measurement method to determine the size of the
difference, while the smoothing item calculation is more complex. Because the smoothing item must
not only tolerate certain gradual transitions and noise disturbances, but also must be detected in
boundaries or mutations, the property is called discontinuity preserving. In [29], a Bayesian first-order
partial derivative Markov random field is used to express the energy function of Equation (4) in
Equation (5).

E( f ) = ∑
p∈O

Dp( fp) + ∑
{p,q}∈N

Vp,q( fp, fq) (5)

Among (5), N represents adjacent pixels, O is all pixels in the overlapped area. fp is a label assigned
to pixel p. Therefore, the Equation (5) is the cost of the numerical difference caused by allocating labels
for all the pixels in the overlapped area and the cutting for adjacent pixels near the seam-line. In [29],
the data item is defined as non-negative by Boykov. At the same time, in order to make the smoothing
item have the property of discontinuity preserving, Boykov specifies that the value of the smoothing
item must be a metric or a semimetric.

So far, the energy function model proposed is clear. Equation (6) is the energy function definition
based on graph cuts proposed in this paper. The biggest difference compared to the other energy
functions described above is that the definition of our energy function is added to the global optical
flow field. In this way, based on the existing graph cuts algorithm, the geometric information constraint
can be better considered. The geometric displacement of the pixel caused by the perspective imaging
and geometric distortion in the image mosaic can be solved.

E = ∑
p∈O

grad( f1(p), f2(p)) + ∑
p∈O
{V[ f1(p), f2(p)]}+ ∑

p∈O
f low(p) + ∑

p/∈O
N(p) (6)

where V(*) is the grayscale difference function generated by the pixel difference, grad(*) is the gradient
change function generated by the gradient difference, flow(*) is the optical flow field function of the
overlapped area between the adjacent UAV images, N(p) is the energy value of the invalid area (the
invalid area refers to the non-pixel area in the minimum enclosing rectangle of the overlapped area),
and its value is generally much large than the value of the overlapped area. In this paper, the value of
N(p) is constant. f 1 and f 2 are two pre-mosaicked images. O is the overlapped area. The pixel grayscale
difference function not only needs to reflect the difference information of pixels in the same position of
adjacent images, but also needs to introduce local information to make it have locality information
to enhance the robustness of the algorithm. Combined with the particularity of this problem, it is
not appropriate to add individual difference data items to each node of a graph. At the same time,
since the essence of searching the seam-line is the difference information, not the direct probability
problem of a certain label. Therefore, all the energy terms of the algorithm in this paper are reflected
in the weight of the neighboring edge in the graph. However, the weight function of the node and
the endpoint (s or t) is a binary function, and its value range is {0,constant1}. The value of Constant1
is that much larger than the adjacent edge weight. Therefore, the functions constructed in this paper
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need to consider the information the nodes at both ends of the edge. The grayscale difference function
of the adjacent pixels (p, p + 1) can be expressed as the form of Equation (7).

V( f1(p), f2(p)) =|| f1(p)− f2(p)||+|| f1(p + 1)− f2(p + 1)|| (7)

If the image to be mosaicked is an RGB image, the three-dimensional vector is used for calculation,
and ||*|| is the Euclidean distance of one RGB color value of the pixel. Similarly, the gradient change
function can be expressed as the form of Equation (8).

grad( f1(p), f2(p)) = dl( f1(p)) + dl( f1(p + 1)) + dl( f2(p)) + dl( f2(p + 1)) (8)

where dl is a gradient operator in a certain direction and can be calculated using four-neighbor or
eight-neighbor. Because of the small difference, this paper uses a four-neighbor gradient operator for
computational efficiency.

Equation (9) is the optical flow field function herein.

f low(p) = F(p) + F(p + 1) (9)

F is the optical flow calculation function, that is, the displacement field obtained by the difference after
the sparse matching of the adjacent images, and the value records the sum of the squares of the pixel
displacements.

3.2.4. Solving Minimum Energy Value

Through the definition of the energy function based on graph cuts above, a realistic image
seam-line search problem is expressed by a mathematical model, and the minimization process of the
energy function value is the search process of the optimal seam-line. In the specific solution process,
we use the maximum flow minimum cut algorithm to solve the minimization problem of the energy
function. Among them, α-β swap and α-expansion are two good practical solution strategies. In this
paper, the α-β swap optimization strategy is used to solve the energy function. It is an effective graph
cuts binary optimization algorithm, which can not only optimize the segmentation of the initial labeled
data set, but also transform the multi-dimensional directed graph into two-dimensional simple directed
graph, Thereby, the limited uncertainty of the multi-dimensional directed graph on the capacity values
connecting the different node edges is avoided [29,30].

Figure 4 shows the construction way of α-β graph. α and β are connected through the Pα set
and Pβ set in the α-β graph, where Pαβ = Pα ∪ Pβ to define the weighted value of the corresponding
sides that link with labeled nodes and sides that link with source node, sink nodes, or unlabeled
nodes. Np is the neighborhood of node p, and the dissimilarity degree is labeled by Dp(·), it guides the
energy function space of graph cuts; V(·) is the diversity measure of the neighborhood nodes, it has a
smoothing effect.
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In the actual implementation process, we also need to consider the solvable nature of the graph
cuts problem, and we need to adjust the value range of each term appropriately according to some
convention [31]. The energy function constructed in this paper satisfies the following three constraints.
(1) The value of each function term in the graph cuts has upper and lower limits. (2) Besides the
boundary range of the overlapped area, the values of the data term and smoothing term and their
range of values should be roughly the same. For example, the value in the non-overlapped area of
this paper can be larger than the ratio in the overlapped area, and it is equal to constant2. (3) As to
the necessary and sufficient condition of the graph cuts problem, only if this condition is met, the
graph cuts problem can be equivalent to max-flow min-cut theorem. Among them, the constraints (1)
and (2) are weak constraints, by which the function solution range can be reduced and the solution
efficiency is accelerated, and the constraint (3) is a strong one. In addition, the functions of V(*) and
grad(*) in this paper use the truncation function. This is because, for a position with a large difference,
it is only necessary to know that it is desirable, but not its value. If it is too large, it will destroy the
constraint condition (3). Equation (10) is a truncation function, γ is a threshold. Table 1 shows some of
the parameters selected in this paper.

ψ(x) =

{
x; x < γ

y; x ≥ γ
(10)

Table 1. The parameters.

V(*) function Use the truncation function first, then remapping to [0,1], truncation threshold is 120.
grad(*) function Use the truncation function first, then remapping to [0,1], truncation threshold is 120.

flow(*) Remapping to [0,3], so that the global impact factor is greater than the sum of the local
impact factors, which serves as a guidance.

Constant1 10,000
Constant2 1000

4. Experiments and Evaluation

4.1. Experimental Data and Computing Environment

So as to verify the effectiveness of our method (graph cuts-based seamless image mosaicking in in
the color domain and gradient domain with optical flow, GCCGOF), this paper utilized the UAV image
pairs from different regions with different flight heights and cameras, and compared the experimental
results with representative methods in Open Source Computer Vision Library. In the comparison
methods, one is a graph cuts-based seamless image mosaicking in the color domain (GCC), and the
other is a graph cuts-based seamless image mosaicking in the color domain and gradient domain
(GCCG). In this paper, we used Visual C++ based on OpenCV to program the proposed new method.
The experimental UAV image pairs are divided into four groups. Among them, the data in Figure 5a
were acquired by Canon IXUS 220HS (Canon, Oita, Japan) in Paris which the height of the UAV was
approximately 250 m. The data in Figure 5b were acquired by DJ-Phantom4 (DJ, Shenzhen, China) at
Wuhan University Square which the height of the UAV was approximately 115 m. The data in Figure 5c
were acquired by ILCE-QX1 (Sony, Chonburi, Thailand) in Jiashan County, China which the height of
the UAV was approximately 150 m. The data in Figure 5d were acquired by NEX-7 (Sony, Chonburi,
Thailand) at Tacheng city which the height of the UAV was approximately 200 m. The experimental
computing environment is Windows 7 operating system, CPU: Intel (R) Core (TM) i7-7700K, RAM:
32 GB. Figure 6 is a flow chart of our method, it listed the key steps.
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4.2. Experimental Results and Analysis

4.2.1. Comparison of UAV Image Mosaic Results Using Different Methods

In order to verify the effect and superiority of the method that this paper proposed, methods
of GCC and GCCG are used to search the optimal seam-lines for UAV image pairs with arbitrary
overlapped regions indicated in Figure 5. In this paper, the non-regular overlapped area of image
pair is extended to the regular area by the minimum circumscribed rectangle for the convenience of
calculation, and the extended area is the invalid area (N). Figures 7–10 are the respective results of
image mosaicking in different UAV image data. It can be seen from Figures 7–10 that the optimal
seam-lines are obviously different in three test methods. From the local zoom view of Figures 7–10,
we can easily find that there are some great differences between the Figure 7a–c on both sides of
the optimal seam-lines in the colored oval boxes, the same is true for other experimental results of
Figures 8–10. More specifically, in Figure 7, there are two roads with obvious image mosaic dislocations
in the colored oval boxes on both sides of the optimal seam-lines which searched by method of GCC,
and there is one road with distinct dislocation and a loss of housing structure information in Figure 7b.
As opposed to Figure 7a,b, the above problems do not appear in Figure 7c, which shows that our
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method has almost achieved seamless stitching of UAV images in building-intensive areas. In Figure 8,
we also can easily find that there are two apparent mosaic misplacements on the ground parking space.
Meanwhile, we also found there are fewer cars in the overlapped areas of pre-mosaicked image pair
in Figure 5b. It is worth pointing out that our method ensures the image information integrity of the
overlapped area in mosaicked image, and there is almost no ground object dislocation.
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In Figure 9a,b, the image stitching marks are very obvious. We can see the problems of ground
object misplacements and structural information missing in the colored oval boxes in the partial
enlargement drawings, which shows that their optimal seam-lines do not properly segment the
overlapped areas of adjacent images. In Figure 9c, these problems have cured, and the image mosaic
effect is very natural. In Figure 10, there are many high-rise buildings and low-rise factory buildings,
and these buildings are densely distributed. In Figure 5d, we can discover that the height distribution
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in the overlapped area is higher in the middle and lower in both sides, and there is a large difference in
the middle segment of the optimal seam-lines in Figure 10. From the colored oval boxes in Figure 10a,b,
the housing structure information on the corner and roof is incomplete on both sides of the optimal
seam-lines, not to mention there is a dislocation in the ground sidewalk. On the contrary, the ground
objects on both sides of the optimal seam-line in Figure 10c achieve good alignment and the housing
structure information is complete. Through the above analysis, we can see that our method can achieve
seamless mosaicking of UAV remote sensing images, and the effect is better than the experimental
results of comparison methods.
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4.2.2. Efficiency Comparison of Different Methods

The improved method process not only found the better seam-line but also the more efficient one.
As shown in Table 2. In order to speed up the computation time, the resolution of this experimental
image is not same as the original one. From the statistical results analysis of Table 2, we can see that
the time efficiency of our method (GCCGOF) is faster than the methods of GCC and GCCG in almost
all experiments. Compared to the method of GCCG, in particular, the time efficiency of our method is
almost one order of magnitude higher.

Table 2. Time efficiency comparison of three test methods

Data Figure 5a Figure 5b Figure 5c Figure 5d

Size of Overlapped Area 956 × 522 (Pixels) 635 × 362 (Pixels) 1473 × 522 (Pixels) 881 × 429 (Pixels)
Location Paris, France Wuhan, China Jiashan, China Tacheng, China

Time of GCC 2419 ms 1042 ms 3356 ms 4552 ms
Time of GCCG 11,736 ms 3828 ms 25,736 ms 11,002 ms

Time of GCCGOF 2150 ms 3119 ms 2848 ms 3283 ms

5. Conclusions

Image mosaicking is one of the key technologies in the field of UAV image processing, and
it has a fundamental and vital role in many UAV remote sensing applications. This paper mainly
focuses on the problem existing in the mosaicking of small UAV remote sensing images. Based on the
previous related research, we manage to bring up a method for searching the best seam-line based
on optical flow field and graph cuts for adjacent UAV images. Experiments prove the effectiveness
of this proposed method. Specifically, this paper illustrated the following. (1) the four groups of
pre-processed UAV images used in the experiments were image-registered using the mature and
reliable SURF algorithm, and then the pre-mosaicked images were unified into the same coordinate
system. (2) In the construction of graph cuts energy function, by considering the image pixel color
domain, gradient domain information, together with the overlapped area global optical flow field
information, a global seam-line detection method that takes into account image geometry information
come into being. (3) The experimental results of this paper are compared with that of two different
graph cuts-based seam-line search methods in OpenCV library used in the image mosaic experiments.
Due to the intrinsic features of seam-line based image mosaicking method, aliasing and ghosting can
be successfully avoided. At the same time, compared with the other two experimental methods, there
is almost no problem of stitching misalignment and housing structure information missing, to sum up
the method used in this paper is thus more effective and superior. The UAV mosaic images leaves no
splicing visual traces.
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