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Abstract: Task-oriented scene data in big data and cloud environments of a smart city that must be
time-critically processed are dynamic and associated with increasing complexities and heterogeneities.
Existing hybrid tree-based external indexing methods are input/output (I/O)-intensive, query
schema-fixed, and difficult when representing the complex relationships of real-time multi-modal
scene data; specifically, queries are limited to a certain spatio-temporal range or a small number of
selected attributes. This paper proposes a new spatio-temporal indexing method for task-oriented
multi-modal scene data organization. First, a hybrid spatio-temporal index architecture is proposed
based on the analysis of the characteristics of scene data and the driving forces behind the scene
tasks. Second, a graph-based spatio-temporal relation indexing approach, named the spatio-temporal
relation graph (STR-graph), is constructed for this architecture. The global graph-based index, internal
and external operation mechanisms, and optimization strategy of the STR-graph index are introduced
in detail. Finally, index efficiency comparison experiments are conducted, and the results show
that the STR-graph performs excellently in index generation and can efficiently address the diverse
requirements of different visualization tasks for data scheduling; specifically, the STR-graph is more
efficient when addressing complex and uncertain spatio-temporal relation queries.

Keywords: multi-modal scene data; graph-based index; spatio-temporal relation query; visualization
task; data organization

1. Introduction

High-performance scene data organization is one of the most common and fundamental functions
of visualization in the field of geographic information systems (GIS) in the era of big data and cloud
computing for smart cities [1,2]. With the development of social networks, sensor networks, and
the Internet of Things (IOT), scene data organization in GIS has expanded into three spaces: cyber,
physical, and social [3–5]. Hybrid spatio-temporal index methods based on trees or grids have been
widely studied in data scheduling and visualization. Most of the existing spatio-temporal indexing
methods index time and spatial dimension information and aim at maximizing input/output (I/O)
of the data [6,7]. They cannot efficiently organize and manage the associated dynamic multi-modal
scene data for diverse scene tasks, or respond to complex spatio-temporal relation queries in real
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time. The organization of dynamic data (e.g., the flow of people, cars, air, and goods) and associated
data (e.g., social, transportation, and semantic networks) has become a popular issue in the scene
data organization domain [8]. Scene data organization is different from the data organization on
the database side. It is task-oriented and requires high-performance responses to diverse query
requirements in real-time, such as computation, visualization, and analysis [9,10]. Scene data
organization and management methods are affected by multi-modal scene features and multi-level
scene visualization task connotations. On the one hand, the time-varying and increasing nature
of dynamic data and the complex, heterogeneous features of associated data have put forward
new challenges for the organization and management of scene data, especially for spatio-temporal
data indexing algorithms [11,12]. On the other hand, the I/O-intensive, computing-intensive, and
interaction-intensive features of multi-level visualization tasks have focused on the development
of new spatio-temporal indexes and query algorithms to support the real-time generation and
interaction of scenes [13]. Therefore, how to deal with the I/O-intensive, computing-intensive, and
interaction-intensive problems caused by multi-level scene tasks efficiently are the great challenges for
scene data indexing methods.

Existing indexing methods for scene data organization can be classified into three groups:
indexes for I/O-intensive applications, indexes for computing-intensive applications, and indexes
for interaction-intensive applications. The indexes in the first group are designed to load data
quickly and precisely, and there are two types of indexes. The first involves tree-based indexing
methods, such as R-tree, Quad-tree, and their variants, which are based on external storage and are
commonly used in traditional spatial database systems [14]. Traditional spatial database systems have
been empowered with rich functionalities by using tree-like structure indexes to support efficient
multi-dimensional access, but they cannot scale well enough to address large volumes of data and
support high throughputs [15,16]. The second consists of hybrid indexing methods that synthesize
the advantages of different indexes to compensate for the existing methods [17]. The hybrid index
methods are gradually trending and have become commonly used in distributed file systems and
the NoSQL (Not Only Structured Query Language) database, which maximizes I/O via horizontal
extension [18]. Hybrid indexing methods can be divided into two categories: general and professional.
General indexing methods are typically used in data warehouses, such as Hadoop-GIS [19] and
SpatialHadoop [20], which are optimized for high scalability and stability. Professional indexing
methods are usually adopted in solutions for customized applications, such as MD-HBase [21] and
TrajStore [22], which are optimized for high-insertion rates and real-time querying requirements.
Unfortunately, because the distributed file systems and NoSQL database are not natively optimized
for spatio-temporal data, the capabilities of the specifically designed spatio-temporal indexes are
uneven, and some of them do not provide support for the temporal constraints of spatial data, such as
Hadoop-GIS and SpatialHadoop [23].

The indexes in the second group aim for the real-time computation and analysis of multi-modal
scene data. Generally, with the increase in main-memory capacity, researchers tend to design internal
and external collaborative index structures to store the index and hotspot data in the main memory
to achieve faster processing speeds [16]. Indexes in this group usually adopt the global-local hybrid
pattern to achieve high efficiency during parallel computing. The global part of this pattern consists
of coarse granularity, and algorithms with low maintenance costs are often used to realize the fast
division of data or tasks. The local part of this pattern consists of fine granularity, which is responsible
for the accurate indexing and management of divided data [24]. The difference between various
global-local hybrid pattern indexing methods is the design of the global constituent. Some employ grid
or Quad-tree methods as their spatial partitioning technique [25], some adopt the B+-tree method as the
time interval partitioning technique [26], some use hashing as the random partitioning algorithm [27],
and some introduce space-filling curves to convert spatio-temporal information into strings [14,28].
For example, the UQE-Index is a typical global-local hybrid index, based on a key-value store that
uses B+-tree as the global index to manage time intervals and can support high-insert throughput



ISPRS Int. J. Geo-Inf. 2018, 7, 371 3 of 18

and provide an efficient multi-dimensional query simultaneously [26]. However, these techniques are
involved in the spatio-temporal patterns of indexes, such as the temporal dimension (primarily) and
spatial dimension (secondarily), or vice versa [29,30]. The global-local hybrid structure is not flexible
enough to meet the needs of a variety of complex analysis queries.

The goal of the third group of indexes is to efficiently address the multi-dimensional characteristics
and complex relationships of objects in cyber-physical-social systems and support human-computer
interactive response times. Specifically, with the emergence of interactive devices, such as augmented
reality (AR) and virtual reality (VR) devices, anomaly detection, behavior pattern mining, and role
judgement have become popular research topics [31]. Meanwhile, a large number of complex
spatio-temporal queries have been generated during human-computer interactions; specifically,
uncertain explorative queries are often attempted by using indexing methods, which are not known
to be a priori; this situation has quickly become a common scenario [32]. In such cases, domain
experts need to explore the data before they can figure out what the next query is or even which
experiment to perform next [33]. The query patterns of the spatio-temporal indexes mentioned
in the previous paragraph are limited to a certain spatio-temporal range or a small number of
selected attributes. However, multi-modal dynamic and associated data often contain hundreds
of variables and attributes, which change frequently; predefined queries are beneficial only if they
can track data patterns or events within a given time limit [34]. In such cases, performing tuning
and initialization actions first suffers from the fact that we do not have enough knowledge about
the portions of data that are of interest [33]. Trees and graphs are well-known structures that
use node-link diagrams to represent data relationships [35]. Trees usually store the topological
relationships among spatial objects and use semantic information to perform the node selection and
object association [36], and the multi-dimensional characteristics and complex relationships of the
scene data are usually stored in the relational model, but joint operations are expensive during analysis
and exploration [37,38]. Graph models naturally have the advantage of representing multi-dimensional
attributes and relationships among objects, and they have been widely used in the fields of social
networks, social security, intelligence recommendations, and biotechnology [39]. In the field of GIS,
on the one hand, graph models are often used to build knowledge graphs and support knowledge
mining and reasoning [40]. On the other hand, graph models are also used to express the topological
structures of objects, such as geographic accessibility and road traffic statuses [41]. Graph-based
methods can construct multi-modal subgraphs according to fuzzy query conditions in the interactive
process of explorative visualization and solve uncertain query problems by using graph-traversing
and pattern-matching algorithms [42].

According to the above challenges, in terms of the indexing and spatio-temporal querying of scene
data organization, this paper focuses on a graph-based hybrid spatio-temporal indexing mechanism
and its corresponding index construction and optimization algorithm, which are designed for dynamic
and associated multi-modal scene data. This paper is organized as follows. Section 2 describes
the indexing mechanism for the task-oriented scene data. Section 3 shows the construction and
optimization algorithm of the STR-graph index. A prototype system for the STR-graph index method
is developed, and an experimental analysis is implemented in Section 4. Finally, the conclusion and
discussion are addressed in Section 5.

2. Indexing Mechanism for Task-Oriented Scene Data

The index design should not only understand the characteristics of the multi-modal scene data but
also specify the task requirements needed for indexing. To construct an efficient indexing mechanism
for multi-modal scene data, this paper starts with the types and characteristics of multi-modal
scene data and analyzes the connotations and driving forces behind multi-level visualization tasks.
Then, the discrepancy requirements for data scheduling with multi-level visualization tasks are
summarized. Finally, a hybrid spatio-temporal index architecture is proposed based on the above
discrepancy requirements.
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2.1. Multi-Modal Scene Data

Scene data are a type of multi-modal spatio-temporal data that are converged and forced to meet
the needs of particular visualization tasks. Scene data are collected from cyber-physical-social systems,
which usually refer to the cross fusion and associated mapping of physical spaces, social spaces,
and cyber spaces. Scene data in cyber-physical-social systems can be divided into three categories
(Figure 1): basic framework data, time series data, and relational data; the detailed classifications and
definitions are as follows.

• Basic framework data: Basic framework data are the background data of a scene and have spatial
locations and shapes that are relatively stable and large-scale and slowly updated characteristics,
such as those observed in digital elevation models (DEMs), digital orthophoto maps (DOMs),
texture images, 3D models, humans, sensors, symbols and text. This type of data is mainly used
for view-only visualization tasks.

• Time series data: Time series data are dynamic and have significant changes in the position or
state value with time. These data have the characteristics of strong sequences, large scales, and
fast updating, such as those observed in human flow, car flow, air flow and water flow data.
This kind of scene data can directly display or visualize the results of feature extractions and is
mainly for analytical visualization tasks.

• Relational data: Relational data are widely used in scene data studies and represent the featured
associations of spatio-temporal objects, processes, and events in terms of time, location, theme,
and semantics. These data have the characteristics of high dimensions and dynamic and complex
interweaving (e.g., social networks, Internet of Things, road networks, and other network
data). These data are commonly used for mining and reasoning studies, which mainly involve
explorative visualization tasks.
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2.2. Multi-Level Visualization Tasks

According to the different driving forces behind visualization tasks, this paper divided
visualization tasks into three levels (Figure 1): view-only, analytical, and explorative, which are
defined as follows.

• View-only: these tasks are driven by data and are mainly concerned with the efficient description
and transmission of multi-modal spatio-temporal data (e.g., self-adaptive suitability for the
visualization and expression of a scene, from discrete to continuous, from macro to micro, and
from static to dynamic).

• Analytical: these tasks are driven by data and models and are mainly concerned with sufficiently
expressing the implicit information and knowledge of spatio-temporal data obtained via real-time
calculations and analysis and highlighting the characteristics and associated relations in the
information (knowledge) of an augmented scene (e.g., correlation analysis, dynamic simulation,
evolution and prediction).

• Explorative: these tasks are driven by data, models, and interactions and are based on semantic
visual variables and new human-computer interfaces. These tasks are characterized by rich
human-computer interactive interfaces and fewer pre-conditions, which are accomplished through
scene enhancement techniques, such as deformation, highlighting, and simplification, to achieve
the goal of combining scene data, human brains, and machine intelligence to support knowledge
discovery, hypothesis validation, decision making, and deep association analyses.

Obvious differences exist in the organization and management requirements for multi-modal
scene data at different visualization task levels. The view-only visualization task focuses on data
parallelism to maximize the I/O and is a typical I/O-intensive task. Therefore, it is necessary to
study a local index method that is based on external storage to support the classification indexing
and efficient retrieval of display-oriented scene data. Analytical visualization tasks focus on the
real-time computation and analysis of the Internet of Things and sensor data. These tasks are a
type of typical I/O-intensive and computing-intensive task. Therefore, it is necessary to study a
synergistic spatio-temporal indexing method based on the main-memory and external storage to
support the real-time access and dynamic scheduling of analysis-oriented scene data. Explorative
visualization tasks focus on the use of human-computer interaction visualization techniques to explore
the deep features, relationships, and knowledge of multi-modal scene data. These tasks are typical
computing-intensive and interaction-intensive tasks. Therefore, it is necessary to study global indexing
techniques that support high-dimensional dynamic features and interrelated associations for the fast
retrieval, analysis, and support of interactive hypotheses and knowledge discovery.

2.3. Architecture of the Hybrid Spatio-Temporal Index

Considering the features of multi-modal scene data and the driving forces behind multi-level
visualization tasks in a scene, this paper proposes a multi-modal and multi-level hybrid spatio-temporal
index that contains two parts: a global index and a local index (Figure 1). The global index is a
graph-based index that expresses the time, location, semantics, and relation between multi-modal scene
data objects and features by using a graph model to quickly query the scene data with spatio-temporal
relation information and support explorative interaction reasoning and assumptions. This index is
mainly based on the main-memory and supports the fast retrieval of associations and data objects.
The local index consists of many fine-grained indexes, including R+-tree, Quad-tree, B+-tree, hashing,
and graph. These indexes exist in the external storage and main-memory, providing efficient data
scheduling for I/O-intensive and computing-intensive tasks.

3. STR-Graph Index Algorithm

This section describes the concept and structure of the proposed index method, named the
STR-graph, which adopts the hybrid spatio-temporal indexing mechanism discussed in the previous
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section, to achieve adaptive aggregation of time series data and associated data for visualization
tasks. The graph-based index is a core part of the STR-graph index algorithm, which is introduced
in Section 3.1. Section 3.2 introduces the whole framework of the STR-graph index. Finally, the
optimization and operation algorithms of the STR-graph index are mentioned in Section 3.3.

3.1. Introduction of the Graph-Based Index

The graph-based index uses nodes, edges, and properties to intuitively express heterogeneous
multi-modal spatio-temporal entities and their time, location, relation, and semantic aspects; the
framework of the graph-based index is shown in Figure 2. The graph-based index includes time nodes,
spatial nodes, and entity nodes. The time nodes can be used to represent the time points and intervals
of different granularities; the spatial nodes can be used to represent the spatial ranges of different
granularities, and the entity nodes consist of object nodes, feature nodes, and data nodes. The feature
nodes are generated from the attributes, events, and behaviors of the object and can be adaptively
loaded according to different visualization task topics; the data nodes represent the data generated or
associated with the object. Therefore, the graph can be divided into three subgraphs: a time subgraph
composed of time nodes; an entity subgraph composed of object nodes, feature nodes, and data nodes;
and a spatial subgraph obtained by spatial division. There are three main relationship sources in the
graph-based index. The first category is obtained directly from the original input data, including the
known feature associations between the objects and extracted spatio-temporal feature associations,
as well as the time nodes and spatial nodes. The second category is obtained from the results of the
analytical visualization tasks, which are used to update the graph-based index. The third category
consists of a temporary relationship that is established through human-computer interactions during
the explorative visualization process, which is used for reasoning and assumptions. The relations in
the graph-based index can be divided into six categories: spatial, temporal, social, cyber, attributive,
and causal, which can be used to express the complex relationships among multi-modal objects in
cyber-physical-social systems. Relations can be extended on the basis of these six categories, and
Figure 3 shows some typical examples.
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The nodes and edges in the graph-based index have the following characteristics. The nodes have
labels and attributes, and the edges are directed and can be used to express directed and undirected
relations. The relationships among objects are related through feature nodes. The construction of the
graph-based index is divided into three steps. The first step is to generate nodes of the graph-based
index and includes creating the object, feature, and data nodes according to the input multi-modal
scene data. The second step is to compute and generate the corresponding temporal and spatial
nodes according to their spatio-temporal information (if none exists). The third step involves creating
edges between time nodes, spatial nodes, object nodes, feature nodes, and data nodes based on their
spatio-temporal information and known relations. For example, O2 represents an object that will be
synchronized via the graph index; it has a feature node, S, which represents the social relationships and
a data node, P, which represents a continuous trajectory for a certain period of time. At the same time,
it is known from the input social relationships that O2 is a fan of O1. The construction process and final
results of the graph-based index are shown in Figure 4. The delete operation performs the different
deleting strategies based on the type of the node, such as the object node, first deleting all the feature
nodes, data nodes and their relationships, and then deleting the object node and their relationships.
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Figure 4. An example of construction of the graph-based index.

The time subgraph and spatial subgraph constitute the spatio-temporal framework of the
graph-based index, which allows for spatio-temporal queries. To accelerate spatio-temporal queries,
the time nodes are stored as (id, timestamp, type), where id represents a globally unique identifier,
timestamp represents a Unix timestamp, and type represents different temporal precisions (e.g., year,
day, and hour). The spatial nodes are stored as (id, geostring), where id represents a globally unique
identifier and geostring represents encoding of the spatial range. This paper adopts a 52-bit geohash
algorithm that transforms longitude and latitude coordinates into unique geocodes to support spatial
queries. The geocodes are calculated by using a planar Quad-tree, which divides the earth into
(2ˆ26) × (2ˆ26) grids when the length of the geostring is 52. The Quad-tree is only utilized during
the process of computing and not in the actual storage process. For example, a geohash string with
ten bits at a given point, with a longitude and latitude of 104.07 and 30.54, respectively, is equal to
1110010011, with a border length of approximately 1,251,296 m; the generation process for the geostring
is shown in Figure 5. When the length of the geostring is 52, the border length of the geographic unit is
approximately 0.6 m. For a spatial object, the minimum bounding rectangle (MBR) is calculated first.
Then, two diagonal points of the above-mentioned MBR are selected and their geostring values are
calculated individually with the length L set to 52 as its initial value. If the values are the same, which
indicates that the spatial object is completely contained in the correspondent grid, then the geostring is
selected to represent the spatial object. Otherwise, L-2 is assigned to L and the calculating process is
repeated until an identical geostring value is attained.
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3.2. Framework of the STR-Graph Index

The efficiency of the STR-graph index is dependent on the cooperation of the global and local
indexes. The whole index framework and scene data flow of the STR-graph index are shown in
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Figure 6. When the multi-modal scene data enter the system, they are first cached in the main-memory
in different HashMaps according to the scene data type. For example, the basic framework data, such
as buildings, sensors, and users, are stored as (Key (uidA), Map (field, property)), and the time series
data, such as user trajectories and sensors, are stored as (Key (uidA), Map (timestamp, value)); the
relational data between objects A and B are stored as (Key (uidA, Map (uidB, type))). Then, according
to the pre-set time interval threshold for each scene data type, the cached scene data are updated in
batches into the graph-based index synchronously. After the update is completed, the time series data
remain cached in the memory, but the storage key is replaced by the key of the data node. Through the
connection between the time node and spatial node, a coarse-grained spatio-temporal index is formed
to realize the position of the spatio-temporal data. To improve the efficiency of time series data
processing and solve computing-intensive problems, the STR-graph caches the time series data over a
period of time, and the data used for the analytical visualization tasks in the memory. In general, the
scene data associated with the data nodes in the graph-based index are cached in the memory and
dynamically loaded and removed with scene tasks.

The graph-based index server as a global index, which determines the dynamic updating and
maintenance of the entire index framework. On the one hand, it simultaneously calculates and updates
the nodes and edges of the graph-based index according to the scene data in the memory cache; on
the other hand, it decides how to flush the historical data from the memory cache to external storage.
To maintain the size of the graph-based index at a reasonable scale, this paper uses a time-based
node elimination mechanism to delete the data nodes connected to historical time node t0. At the
same time, the cached spatio-temporal data corresponding to these data nodes are set up with a
fine-grained spatial index according to different data types. Then, the historical data are backed up to
the external storage in key/value pairs, where a key is a combination of time nodes and data nodes
that is conducive to the rapid loading of historical data during the global display and analysis of a
scene. Finally, feature nodes and corresponding relations in the graph-based index are backed up in an
external relational database using B+-tree to index the fields of interest.
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3.3. Optimization of the STR-Graph

With the continuous growth of multi-modal scene data, time nodes and spatial nodes will
experience a large number of connections with the nodes throughout the entity subgraph, which
results in the problem of super node. Given the index-free adjacency features of a graph, each node
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server as a “mini index” of its adjacent elements; thus, as the index grows in size, the complexity of
traversing the whole graph is equal to O(n), where n represents the number of nodes. However, it is
very time consuming to modify or delete an edge of a super node without using indexes. To solve
the above problems, this paper adopts a sorted set implemented by HashMap and SkipList to sort
the number of connections between the time nodes and spatial nodes. For a node whose connection
number exceeds the threshold, it additionally records its connections in the memory to improve the
operation efficiency of the super node for the specified relationship. The geostring or timestamp of
the node is used as the key; the id values of the entity nodes and relationships are used as the map’s
fields and values, respectively. When the number of connections is reduced to a reasonable range, the
additional recorded relationships are deleted.

Pattern matching based on a graph-based index can be used to address complex spatio-temporal
relation queries and uncertain queries in analytical and explorative visualization tasks by constructing
subgraphs of spatio-temporal relationships. When dealing with basic spatio-temporal range queries,
the query mode based on graph pattern matching is somewhat complex and inefficient. In particular,
when the graph-based index is too large to completely fit into the memory, spatio-temporal matching
needs dynamic scheduling of internal and external storage, which does not meet the requirements of
view-only visualization tasks. Therefore, regarding the above problems, time subgraphs and spatial
subgraphs are cached in the main-memory, and hashing is used to establish mapping between the
timestamp and time node id and the geostring and spatial node id, which enables fast spatio-temporal
queries and repeated verification.

4. Prototype System Implementation and Experimental Analysis

4.1. Introduction

The scene data management system service is implemented by Java 1.8, while the graph model is
supported by Neo4j Community Edition v3.1.1 (a native graph database). The main-memory cache is
based on Redis v3.2 (a version of Windows supported by Microsoft), the underlying data node storage
system uses a Docker-based HBase v1.2.6 database, and the feature node and relation storage systems
use a PostgreSQL v10 database. The experiments are done in a workstation with a 64-bit Windows
10 operating system that has a CPU with Intel Xeon E5-2650 v3 2.3 GHz (dual processors), 128 G of
RAM, a 500 G SSD, and a 2 × 2 TB hard disk (7200 rpm). Neo4j and Redis are deployed on the SSD,
and HBase and PostgreSQL are deployed on the hard disks.

To verify the effectiveness of the proposed indexing method in scene data organization
and management, some typical scene applications in a smart city were selected for verification.
The real-time data and associated data generated in the edge domain environment were organized
and managed using the method proposed in this paper, which supported view-only, analytical, and
explorative visualizations. The edge domain is an extension of the cloud center, and can manage
near real-time applications at the scene side by the edge computing method. The Prototype system is
run by the combination of multiple software and platforms, providing high-performance scene data
processing and spatial-temporal relation query functions through web service interfaces.

Some index efficiency comparison experiments were conducted with the target indexing method,
named the UQE-Index [26]. As mentioned in the introductory section, the UQE-Index is a typical
spatio-temporal hybrid indexing method based on NoSQL storage, which is also global-local designed.
The UQE-Index contains three levels. The first two levels are the time interval index and subspace
index, which are coarse-grained indexes that are responsible for indexing the current data. The third
level is a local, fine-grained index that is used to index the historical data. The goals of the UQE-Index
are to address the efficiency of real-time access and management of Internet of Things data with
efficient I/O performance and a multi-dimensional query ability simultaneously. Therefore, this
method is selected to carry out comparative experiments to illustrate the advantages of the STR-graph.
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The experimental data are generated by a simulation programme that mainly includes three
types of data: user data, trajectory data, and social network data [37]. The details of the experimental
datasets are given in Table 1 and screenshots of the experimental data fragments are shown in Figure 7.
This set of data can be used to verify the efficiency of the proposed indexing method for time series
and complex associated data in the edge domain scene. On the basis of this set of experimental
data, time consumption experiments for index generation and for efficiency of scene data scheduling
for view-only, analytical and explorative visualization application cases were separately evaluated.
The purpose of the experiment was to detect whether the performance of the index can address the
dynamic and associated scene data in real time, and whether the retrieval performance of the index
can meet the different requirements of multi-level visualization tasks for data scheduling.

Table 1. Descriptions of the experimental datasets.

Dataset Name # Users # Relationships Time Interval # Trajectories

OBJ10000 10,000 121,716

(5 July 2018 08:00, 5 July 2018 14:00)

4,000,000
OBJ30000 30,000 517,606 12,000,000
OBJ50000 50,000 884,238 20,000,000

OBJ100000 100,000 1,768,515 40,000,000
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4.2. Time Performance of Index Generation

Task-oriented scene data need to be time-critically processed, so index generation performance is
a crucial aspect. A comparative experiment with different data quantities is conducted between the
STR-graph and UQE-Index. To ensure the reliability of the test results, both time intervals of the two
indexes are set to 10 min, the minimum geohash length of the spatial node in the STR-graph is 38, and
the threshold of connections of time nodes and spatial nodes is twenty thousand. Figure 8 shows the
generation and processing speed curves of the STR-graph and the UQE-Index under different data
sizes, where the speed is calculated by dividing the total number of data records by the time required
for index calculation and storage.
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In Figure 8, the speed curve shows that the index generation performance of the STR-graph is
better than that of the UQE-Index, which can be explained from two aspects. The first aspect is that the
STR-graph makes full use of the memory storage medium that stores the global index and the recent
scene data in the memory and updates the index in batches through the internal and external storage
coordination mechanisms. The second aspect is that the leaf nodes of the tree-based index framework
are frequently split and merge during the processing of the scene data, in which the execution of node
selection and node splitting is very time consuming. However, the STR-graph organizes the scene data
based on the graph model, which greatly reduces the index maintenance overhead in the global and
local index parts.

The efficiency curve of the STR-graph shows that the number of connections in time and spatial
nodes has a great impact on the index performance. When the test dataset is OBJ10000, the number
of data nodes is relatively small, and the number of connections of the time node and spatial node
is within the threshold. However, as the number of users increases, the connection number exceeds
the threshold, resulting in performance degradation. Fortunately, because the data node elimination
mechanism and the super node optimization mechanism were adopted, the overall performance of the
index remained stable.

4.3. Spatio-Temporal Relation Query Evaluation

To verify whether the index can achieve adaptive aggregation of task-oriented multi-modal
scene data, we designed three scene data retrieval experiments corresponding to the three levels of
visualization tasks. In the experiment, the test dataset is OBJ50000, and the parameters of the time
node and spatial node of the index are the same as experiment 4.2. The experimental result is the
average of multiple test results.

A view-only visualization task is a typical I/O-intensive application, and it is also a basic function
for which the spatio-temporal index must be satisfied. Querying in this application scene consists of
searching the objects that meet the conditions within a given time interval and spatial range. To evaluate
the spatial and temporal data query capabilities between the STR-graph and the UQE-Index, we carry
out two spatio-temporal query experiments under different time intervals and spatial ranges. The first
experiment is to query spatio-temporal data in a given time interval and in different spatial ranges.
The subgraph structure based on pattern matching and the specific temporal and spatial conditions
are shown in Figure 9a, and the local index position corresponding to the trajectory data is obtained
through pattern matching. Finally, the local index is used for an accurate search. The result of the
query time is shown in Figure 10a. The second experiment involves querying spatio-temporal data in
a given spatial range and within different time intervals. The subgraph structure based on pattern
matching and the specific temporal and spatial conditions is shown in Figure 9b, and the result of the
query time is shown in Figure 10b.
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Through the two experiments, the efficiency of the index for different spatio-temporal query
patterns is shown in Figure 10. The spatio-temporal design pattern of the UQE-Index is a temporal
dimension (primarily) and a spatial dimension (secondarily), which lead to the UQE-Index having
advantages when addressing the first experiment, but in regard to the second experiment, the
performance of UQE degenerates rapidly because it needs to traverse all possible time intervals
to query the data within a given spatial range. However, the performance of the STR-graph is stable
because the data nodes are directly connected to the time nodes and spatial nodes in the entity
subgraph, and queries are retrieved from time nodes or spatial nodes along the relational edges,
reducing unnecessary traversal operations.

An analytical visualization task is a typical computing-intensive application; queries in this
application contain not only temporal and spatial information but also multi-dimensional association
constraints. To evaluate the ability of a spatio-temporal relation query between the STR-graph and
the UQE-Index, we designed a spatio-temporal relation query to determine whether it has the objects,
within the four orders of the social network of the object A, of meeting with A in the past hour. The time
and spatial ranges in this query are uncertain, so the query should be started with the relationship
constraints. The subgraph structure based on pattern matching is shown in Figure 11a, and the
results of the experiment are shown in Figure 11b. The STR-graph clearly performs better because the
UQE-Index first queries all objects within the four orders through a relational table; then, it queries the
trajectories of these objects in the past hour and submits the data to the computing engine to calculate
the spatio-temporal distance to determine whether the possibility of meeting exists. However, the
STR-graph can quickly retrieve all the relational objects within four orders and then continue to access
the data nodes associated with the corresponding time nodes along the relational edges, which avoids
unnecessary traversal operations and greatly reduces the redundant data submitted to the computing
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engine through pattern matching. Although both the STR-graph and UQE-Index will cache the latest
data and computing-oriented hotspot data in memory, the STR-graph constructs the spatio-temporal
relationships among objects, trajectories, and features in memory, providing a well-organized index for
computing-intensive applications versus packing spatio-temporal data into coarse-grained data blocks.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  14 of 18 
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An explorative visualization task is a typical interaction-intensive application; the explorative
process involves a large number of human-computer interactions to perform an iterative selection,
which relies on the operator’s domain knowledge, often accompanied with the hypothesis of some
complex relationships. Explorative visualization is the chain of view-only visualization and analytical
visualization through human-computer interaction. To demonstrate the role of the STR-graph in the
whole process, we designed a case study of explorative visualization based on HoloLens (a mixed
reality device), taking community analysis as an example. The detailed operation process of the
case study is shown in Figure 12, and the time cost of data scheduling is shown in Table 2. The first
step is to build a pattern matching subgraph in HoloLens through the operator view interface based
on spatio-temporal query conditions and then check the quality and features of the users in the
specified time and spatial range on the display view. Operators can display data sets in a variety
of visualizations, such as symbol, chart, 3D, etc., filtering data through knowledge and experience,
or re executing spatio-temporal queries to obtain new data sets. The second step is to calculate the
shortest path between the remaining objects and return the shortest 1000 results, and then some
interference results are eliminated on the display view, for example, the relationship between users will
be eliminated in the case of family. The third step is to analyze whether the objects in the remaining
results have been out together recently, and then the quality and distribution of the results are checked
on the display view via human-computer interaction and domain knowledge. Finally, the hypothesis
and association of the results are given to determine the closeness between the users in regard to
the whole community network. Because the UQE-Index does not support the computation of the
shortest path, no comparison is made. The query time of the STR index is maintained within an
acceptable response time in the whole process of explorative visualization, which ensures a good
human-computer interactive experience.
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Table 2. The detailed time consumption of the data query and scheduling in the explorative
visualization process.

Step 1 Step 2 Step 3

Time consumption 318 ms 1362 ms 647 ms

5. Conclusions

Improving the efficiency of task-oriented multi-modal scene data organization is significant,
especially for dynamic and associated scene data. In this paper, a new hybrid spatio-temporal index
architecture is proposed to meet the requirements of multi-level visualization tasks of the organization
and to schedule multi-modal scene data. On the basis of these requirements, an index prototype, named
the STR-graph, is built for the dynamic and associated data. This index outperforms the UQE-Index
in several aspects, such as the stability of spatial/temporal first query efficiency and uncertain
spatial-temporal relation query ability. Therefore, the STR-graph can support high-performance
scene data organization and real-time responses. The main contributions of this paper are summarized
as follows:

First, a detailed classification of scene data was provided according to the data features in
cyber-physical-social systems. The different requirements of multi-level visualization tasks for scene
data scheduling were summarized according to the driving forces behind the visualization tasks.
An architecture of the global-local hybrid spatio-temporal index, based on the features of multi-modal
scene data and the driving forces behind multi-level visualization tasks, was designed for task-oriented
scene data organization.
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Second, based on the proposed index architecture, the global graph-based index algorithm and
the integrated STR-graph index framework were proposed for the dynamic and associated scene data.
The operation mechanism of the STR-graph framework was introduced with scene data flow. Moreover,
internal and external storage optimization methods and node maintenance strategies were created.
The comparative analysis shows that the STR-graph exhibits an efficient spatio-temporal relation query
capability, and is fit for I/O-intensive, computing-intensive, and interaction-intensive applications.

Lastly, a prototype system was implemented to support organization and query of scene
data. This system has a high-performance throughput capability, and is able to support diversified
spatio-temporal relation queries through pattern matching to meet the view-only, analytical, and
explorative visualization tasks. In short, this paper provides a new paradigm that will help promote
the application of task-oriented multi-modal scene data organization.

Generally, associated and task-oriented real-time scene data organization and management
constitute a key technique in the field of the Internet of Things and edge computing. Future studies
will improve the basic spatio-temporal query capability of the STR-graph by caching more spatial
nodes and time nodes in the main-memory and accelerate the response speed of complex and
uncertain spatio-temporal relation queries by pattern matching with multi-dimensional semantic
feature constraints. Furthermore, attention will be directed toward the combination of AR and VR
devices in the edge domain to fulfil the idea of “think globally, act locally”, supporting efforts for
intelligent facilities management and decision-making for smart cities.
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