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Abstract: Remotely sensed imagery-based change detection is an effective approach for identifying
land cover change information. A large number of change detection algorithms have been developed
that satisfy different requirements. However, most change detection algorithms have been developed
using desktop-based software in offline environments; thus, it is increasingly difficult for common
end-users, who have limited remote sensing experience and geographic information system (GIS)
skills, to perform appropriate change detection tasks. To address this challenge, this paper proposes
an online geoprocessing system for supporting intelligent land cover change detection (OGS-LCCD).
This system leverages web service encapsulation technology and an automatic service composition
approach to dynamically generate a change detection service chain. First, a service encapsulation
strategy is proposed with an execution body encapsulation and service semantics description. Then,
a constraint rule-based service composition method is proposed to chain several web services into a
flexible change detection workflow. Finally, the design and implementation of the OGS-LCCD are
elaborated. A step-by-step walk-through example for a web-based change detection task is presented
using this system. The experimental results demonstrate the effectiveness and applicability of the
prototype system.

Keywords: land cover; intelligent change detection; web-based geoprocessing system; web service
encapsulation; automatic service composition

1. Introduction

It is important to accurately acquire land cover change (LCC) information in a timely manner
in order to gain an improved understanding of the environmental changes and interactions between
humans and environmental systems [1,2]. With the development of free access policies to remotely
sensed imagery (e.g., the Landsat series), multitemporal imagery-based change detection has become
an effective approach to identify LCC information [3,4]. In recent years, research on change
detection has attracted considerable attention, and many new algorithms or models have been
developed and merged. However, most change detection algorithms have individual advantages
and disadvantages; thus, it is difficult for users to construct suitable change detection workflows to
address specific requirements [5]. More importantly, traditional change detection approaches have
often been conducted using desktop-based software (e.g., ENVI, ERDAS, and ArcGIS) in offline
environments, which have limitations such as being laborious, inefficient, and time-consuming [6,7].
It is increasingly difficult for common end-users, who have limited remote sensing experience and
geographic information system (GIS) skills, to conduct an appropriate change detection approach,
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especially over a large area [7,8]. Therefore, it is urgent to develop advanced web-based tools or
systems to support intelligent land cover change detection.

In recent years, with the emergence and growing maturity of service-oriented architecture
(SOA) and service-oriented computing (SOC) technologies, an increasing number of remotely sensed
datasets, processing algorithms, and models have been available and accessible as web services for
offering geoprocessing functionality online. Workflow technology has also been widely used to chain
atomic web services together to realize complex geoprocessing tasks [9–13]. Compared with the
desktop-based geoprocessing approach, online geoprocessing has many strengths, including making
functionality accessible to larger user groups, automating recurring tasks, and sharing workflows [6,14].
Additionally, online geoprocessing has the potential to make spatial analysis near-real-time, efficient,
and cost-effective. Based on SOA and SOC, a number of web service-oriented geoprocessing systems
have been developed over the past decades to support land cover data processing and analysis. For
example, Karantzalos et al. (2015) designed and developed a land cover classification web service to
efficiently and automatically process high-resolution satellite data [15]. However, a specific web-based
land cover change detection system has not yet been fully investigated and implemented. In addition,
land cover change detection is a comprehensive procedure that requires careful consideration of the
characteristics of selected remotely sensed data and landscape complexity of the studied areas. Despite
the large and great number of change detection algorithms and models that have been developed
in recent years, no single approach is applicable to all types of imagery, land cover, and geographic
regions. After encapsulating the change detection algorithms or models into web services, it is also
necessary to provide an appropriate change detection service chain for different conditions.

To address the above challenges, this paper reports on a research effort to develop a web-based
system for supporting intelligent and flexible land cover change detection. The proposed system
leverages web service encapsulation technology and applies an automatic service composition
approach to dynamically generate a suitable change detection service chain. Heterogeneous change
detection-related algorithms are encapsulated into web services using a black box approach and
semantic descriptions. Then, a constraint-rule-based service composition method is proposed to chain
several web services into a flexible change detection workflow. The system provides a convenient
interface that enables end-users to upload their remotely sensed data and select change detection
requirements. A suitable change detection service chain can be generated and executed using the
proposed method, which is integrated into the system. The major advantage of this system is that
all of the processing steps can be automatically operated in an open web environment, which allows
both professional and nonprofessional users to conduct land cover change detection tasks without
installing any desktop-based software.

The remainder of this paper is organized as follows: Section 2 reviews the related works. Section 3
presents the web service encapsulation strategy and the automatic service composition approach.
Section 4 introduces the architecture and implementation of the web service-oriented land cover
change detection system, and provides a step-by-step walk-through example of using this system.
Section 5 presents the evaluations and discussions of the prototype system. Finally, conclusions and
future work are given in Section 6.

2. Related Works

2.1. Land Cover-Related Online Geoprocessing Systems

With the development and deep application of the Open Geospatial Consortium (OGC) services,
multiple land cover data browsing and downloading services have been made available by scientific
institutions and communities. For example, the National Geomatics Center of China (NGCC) has
published 22 land cover web services for data browsing, including GlobeLand30 data for the years
2000 and 2010, as well as 10 single land cover types for these two years [16,17]. Additionally, NGCC
provides a land cover data downloading service that supports three methods for filling in map sheet
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numbers, spatial coordinate ranges, and drawing spatial graphics. As of January 2018, approximately
8000 users from 120 countries have downloaded GlobeLand30 data for use in their own applications
using the data browsing and downloading service [18].

The current land cover-related web services are mainly data services that facilitate access to land
cover data; they cannot be used directly for online processing or analysis. Nevertheless, an increasing
number of users have a strong desire to conduct land cover geoprocessing tasks by invoking existing
geoprocessing services and constructing service chains over the Internet. To meet the advanced
requirements, some web-based geoprocessing systems have been developed that provide online
processing functions or tools to support web-based land cover data processing. These systems are
compared and described in Table 1.

Table 1. A detailed list of existing land cover-related online geoprocessing systems and tools.

System/Tool
Name

Provided
Functions

Development
Technologies URL Reference Paper

GlobeLand30
Production

Land cover data
production

--Browser side:
Openlayers, jQuery, Ext

--Server side:
PostgreSQL/PostGIS
APOLLO Server, PHP,

Geoserver, C#

www.globeland30.org Han et al. (2015) [19]

GlobeLand30
validation

Land cover
validation

www.glcval.geo-
compass.com Chen et al. (2016) [20]

GlobeLand30
tagging Land cover tagging www.globeland30.org/

biaobao/default.aspx Xing et al. (2015) [21]

GlobeLand30
statistics

Land cover
statistics

www.globeland30.org/
chinese/stat/index.html Li et al. (2016) [22]

CropScape Land cover
browsing, statistics

--Browser side:
Openlayers, Extjs,
Ajax-powered rich
Internet application

www.nassgeodata.gmu.
edu/CropScape Han et al. (2012) [23]

GeoWiki Land cover
validation

--Browser side:
Openlayers, Google

Earth APIs
--Server side:PHP

www.geo-wiki.org Steffen et al. (2012) [24]

LACO-Wiki Land cover
validation

--Browser side:
Openlayers

--Server side:
ASP.NET, C#,

PostgreSQL, Geoserver,
GDAL/OGR library

www.laco-wiki.net Linda et al. (2017) [25]

VIEW-IT Land cover tagging

--Browser side:
ArcGIS JavaScript API

--Server side:
ArcGIS Server, PHP,

MySQL

Not found Clark et al. (2011) [26]

Web-based
land cover

validation tool

Land cover
validation

--Browser side:
Openlayers

--Server side:
IDL, PostGIS, GeoServer

www.landcover-change.
jrc.ec.europa.eu/

validation/videos/
Birdlife_editor.html

Bastin et al. (2013) [27]

Geospatial
service for land
cover mapping

Land cover
mapping

--Browser side:
Openlayers, GeoExt

--Server side:
Orfeo Toolbox, OpenCV,

LibSVM
Rasdaman database

Not found Karantzalos et al.
(2015) [15]

These systems in Table 1 address many fields of land cover processing, including web-based land
cover mapping, validation, geo-tagging, and statistics. However, a specific geoprocessing system for
web-based land cover change detection has not been fully discussed and developed. From the aspect
of development technologies, open source technologies and software (e.g., Openlayers, GeoServer,
and PostGIS) have often been used for system development because they are free and easily accessible.
However, these systems were often focused on specific applications; thus, they provided relatively
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fixed service chains or workflows rather than appropriate and intelligent processing solutions for
different user requirements or conditions.

2.2. Current Efforts in Geoprocessing Service Composition

To meet complex geoprocessing user requests, a collection of geoprocessing services must be
composited into a service chain or workflow when no single service can fulfill those requests [28–30].
In general, current research efforts in geoprocessing service composition can be summarized into two
categories: manual service composition and automatic service composition.

In the manual service composition approach, an abstract business workflow model is firstly
designed by a service provider in advance utilizing a web service standard language, such as Web
Services Business Process Execution Language (WS-BPEL) [31,32]. Then, concrete services are manually
selected and bound into a workflow based on the abstract model. Finally, the concrete workflow is sent
to a workflow execution engine to generate the final results. A typical example of this is GeoBrain [12],
a web-based geospatial information service based on SOA technology in which human users can define,
build, and manage geo-service workflows, and translate abstract workflows into a specific service
chain instance by binding the related services. Manual service composition methods work well when
the service functionalities, data conditions, and user requirements are relatively fixed. However, when
the services in the workflow become unavailable or user requirements change frequently, the manual
approach will not be able to generate a sufficiently correct service chain. Thus, these methods often
lack flexibility, and are difficult to adapt to dynamic environments. Furthermore, the manual service
composition approach is largely dependent on expert knowledge. It is difficult for common users to
design abstract workflow models and bind the corresponding concrete web services.

In contrast, automatic service composition methods support the automatic discovery, selection,
and binding of composite services [9]. By providing a set of component services and a specified
requirement (e.g., user request), a suitable service chain can be generated automatically with less
human intervention, by using the semantic web [9,33], artificial intelligence (AI) planning techniques,
or search technologies [34,35]. Automatic service composition methods have the potential to achieve
flexible and adaptable applications by selecting and combining appropriate components based on
the user’s request and context. For instance, Yue et al. (2007) proposed an approach for automatic
geospatial web service composition by employing ontology-based geospatial semantics for enabling
the automatic discovery, access, and chaining of geospatial web services [36]. Tan et al. (2015) presented
a cloud and agent-based approach for the automatic and intelligent construction of a geospatial service
chain in a cloud environment [37]. However, the current studies have focused primarily on the process
of automatic service discovery and selection, and have paid less attention to whether the generated
service chain could be correctly and successfully executed.

To summarize, the automatic service composition approach is an ideal solution for selecting and
composing web services in a dynamic environment. Despite the advantages of the automatic approach,
the implementation process is challenging, and a few important issues must be addressed. On one
hand, the semantic description of geoprocessing services must be machine readable to allow automatic
service identification and utilization. On the other hand, the algorithms for the automatic composition
of geoprocessing services must be specified, which should guarantee that the generated service chain
could be executed correctly.

3. Methodology

To meet the requirements of intelligent web-based change detection, heterogeneous algorithms
and models should first be encapsulated into web services with semantic descriptions; then, these
services should be automatically composited into an appropriate service chain or workflow, in order
to address user-specific requirements or conditions.
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3.1. Heterogeneous Service Encapsulation Strategy

With the help of current OGC standards, geospatial data, processing algorithms, or even
computing resources could be encapsulated and published as reusable web services that facilitate
end-users to derive information by compositing them into complex workflows over an open
and distributed environment [38]. In this paper, we mainly focus on studying the process of
algorithm encapsulation.

Unlike general web services, change detection-related web services have unique heterogeneity
domain characteristics. First, the input data of change detection services can be from different remote
sensors (e.g., Landsat or MODIS) that have different radiometric, spectral, spatial, and temporal
resolutions. Second, it is widely accepted that no single change detection algorithm exists that is
applicable to all cases. Therefore, a change detection service often has tightly coupling and specific
input requirements. Third, change detection algorithms are usually written in different programming
languages and libraries (e.g., C#, IDL or GDAL), and run on different operating systems (e.g., Windows
or Linux). As a result, execution of a change detection service has special constraints.

Considering the characteristics of change detection web services, this paper discusses
the specification and design of two important steps for heterogeneous web services
encapsulation—execution body encapsulation and service semantics description—which are shown in
Figure 1.
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First, the ‘black box’ theory is introduced for execution body encapsulation. A black box is a
method that can be used without the users knowing how its inner algorithm works [39,40], and the
users only need to know the input and output characteristics. Using this approach, the executable code
written in any programming language can be encapsulated into a corresponding component object
model (COM), such as a dynamic link library (DLL) or an executable program (EXE) that exposes only
the interface of the input and output data and hides all of the implementation details.

To facilitate automatic service invocation and composition for change detection, it is important
to represent the interface, functionality, constraint, and quality semantics of the change detection
web services. In this paper, the service semantics were classified into the following four types: data
semantics, operational semantics, execution semantics, and quality of service (QoS) semantics [36].
Data semantics annotate the semantics of the input/output interface in a web service. Operational
semantics represent the semantics of service functionality or logical relations with other services.
Execution semantics specify the constrained requirements of a service (e.g., the preconditions and
effects). QoS semantics consist of a set of metrics for evaluating which service should be selected.

3.2. Constraint Rule-Based Automatic Service Composition

Land cover change detection is a complex geoprocessing task involving several computation steps,
such as preprocessing, change information extraction, and postprocessing. Therefore, a collection of
interoperable web services should be composited to generate a service chain to realize a complete
change detection task.
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Automatic service composition is an ideal approach, because the composition process can be
operated under the control of computers with minimal manual intervention. The mainstream methods
of automatic service composition were proposed based on a data semantic matching approach [41,42].
Assume that the user requirements and web services are represented as RE = <inputR, outputR> and
WS = <input, output>, respectively. The process of automatic service composition can be regarded as
a service chain search from inputR to outputR. Two semantic matching rules are usually adopted to
evaluate the matching degree between a web service and the input or output data. These two rules can
be formal described using Semantic Web Rule Language (SWRL), as shown in Table 2.

Table 2. Examples of semantic matching rules and their formal description. SWRL: Semantic Web
Rule Language.

Constraint Rules SWRL-Based Formal Description

hasInputRule

Service:presents (? Service, ?profile)∩
Profile:hasInput(?profile,? input)∩
Process:paraType(?input,? input_req)∩
rdf:type(? input, owl: class)→
rule: hasInputRule (? Service, ? input_req)

hasOutputRule

Service:presents (? Service, ?profile)∩
Profile:hasInput(?profile,? output)∩
Process:paraType(?input,? output_req)∩
rdf:type(?output, owl: class) →
hasOutputRule (? Service, ? output _req)

As discussed in Section 2.2, the data semantic matching-based automatic service composition
methods are designed only at the conceptual level. Thus, the generated service chain might not
be correctly executable, because the constraint conditions during the actual execution are not
completely considered. Taking a spectral gradient difference (SGD) service (encapsulated from the
SGD algorithm [43]) as an example, the input data type of the SGD service must be remotely sensed
imagery. One constraint condition of the SGD service is that the input data format is supposed to be
‘GeoTIFF’; that is to say, the SGD service chain might not be correctly executed if the input imagery data
format is ‘IMG’. To improve the robustness and correctness of the generated service chain during the
actual execution process, the data semantic matching-based method is extended by judging whether
the input data satisfy the constraint conditions of each atomic service in the generated service chain,
as shown in Figure 2.
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Figure 2. Preprocessing service selection to satisfy the execution constraint of service A.

The improved automatic service composition method includes two steps: constraint rules
construction and condition judgements between the service and its input or output. In this paper, the
constraint conditions of a service are considered to be data inconsistency. Data format inconsistency,
coordinate system inconsistency, and resolution inconsistency are the three main categories of data
inconsistency. To eliminate these data inconsistencies automatically, the following three sets of
constraint rules were constructed: DFinconRules, CSinconRules, and ReinconRules. SWRL is then
used for the formal description of these constraint rules, as shown in Table 3.
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Table 3. SWRL-based formal description of constraint rules.

Constraint Rules SWRL-Based Formal Description

DFinconRules

hasInputRule (?Service, input)∩
rdf:format(?input, formati) ∩
rdf:format(?data, formatj)→
rule:DFinconRules (?Service, ?data)

CSinconRules

hasInputRule (?Service, input)∩
rdf:coordinate (?input, coordinatei) ∩
rdf:coordinate (?data, coordinatej)→
rule:CSinconRules (?Service, ?data)

ReinconRules

hasInputRule (?Service, input)∩
rdf:resolution (?input, resolutioni) ∩
rdf:resolution (?data, resolutionj)→
rule:RinconRules (?Service, ?data)

With the help of the constraint rules, a robust and executable service chain can be generated by
judging whether the input data constraints are satisfied for a specific service. If the input data are
inconsistent with the service, corresponding preprocessing services of data format conversion (DFC),
coordinate systems conversion (CSC), and resolution conversion (ReC) are selected to guarantee the
correct execution of the service chain. The pseudocode of the constraint rule-based automatic service
composition process is shown in Algorithm 1.

Algorithm 1. WSChainbyRule (Dinit, Dreq)

Input: Dinit, Dreq; Output: WSChain
1 SET Dtemp=Dinit WSChain =[]
2 WHILE(DtempDreq){
3 FOR EACH wsi IN WSList{
4 IF (Dinit satisfied hasInputRule ){
5 IF (Dinit is satisfied DFinconRules){
6 WSChain += DFC
7 }ELSE IF (Dinit is satisfied CSinconRules){
8 WSChain += CSC
9 } ELSE IF (Dinit is satisfied ReinconRules){
10 WSChain += ReC
11 }
12 WSChain +=wsi
13 IF (Dreq satisfied hasOutputRule){
14 RETURN WSChain
15 }ELSE{
16 Dtemp=wsi.output
17 }}}

4. System Architecture and Implementation

4.1. Architecture Design

Based on SOA and SOC principles and standards, an online geoprocessing system for land cover
change detection (OGS-LCCD) is designed and developed to meet the requirements of intelligent
change detection. As a subsystem of GlobeLand30 (www.globeland30.org) [18], the main function of
OGS-LCCD is to facilitate professional and nonprofessional end-users to conduct web service-based
change detection tasks without using any proprietary desktop-based software. The OGS-LCCD has a

www.globeland30.org
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service-oriented architecture, which contains the following four layers: a resource layer, a service layer,
a logic layer, and an application layer, as shown in Figure 3.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 8 of 19 
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The resource layer lies at the bottom of the OGS-LCCD architecture, and aims to provide change
detection-related data, processing algorithms, and models for supporting the upper service logical
layers. Data in the resource layer mainly include the remotely sensed image, land cover classification
data, land cover change data, and other reference data (e.g., sample data). The processing algorithms
and models include the preprocessing, change information extraction, and postprocessing algorithms
involved in the change detection process steps.

In the service layer, the data and processing algorithms in the resource layer are encapsulated into
data services and processing services based on the OGC standards, such as the web map service (WMS),
web feature service (WFS), and web processing service (WPS). The data services are used to display the
original remotely sensed images and the final change detection results. The web processing services
are published from the heterogeneous algorithms using the proposed service encapsulation approach.

The logic layer is the core component of the OGS-LCCD. Its goal is to generate land cover change
results according to user requirements. In this process, several processing services in the service layer
will be invoked and chained together into a suitable and executable change detection service chain
using the proposed constraint-rule-based automatic service composition method.

The application layer lies at the top of the OGS-LCCD architecture, and represents a friendly user
interface that enables end-users to upload the original remotely sensed data so that they can achieve
the expected land change results online. Through input from the user interface, the optimal service
chain can be constructed, and the execution process of the service chain can be monitored. The final
land cover change results can be returned to the end-users either in the form of web services or as
real data.
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4.2. System Implementation

The OGS-LCCD system was implemented using a “balanced” browser/server (B/S) architecture
with the Microsoft. NET Framework 4.0 and C# Programming language. The development
environment was a computer with an Intel (R) Core (TM) i7-8550U CPU @1.80GHZ, 8.0 GB of RAM,
and an Internet connection with a bandwidth of 8 MB/s.

On the server side, various geoprocessing algorithms were encapsulated into web services using
the OGC WPS standard 1.0.0. The encapsulation process is shown in Figure 4. The algorithms
were original written in either C++/C# with GDAL or ENVI IDL API, and then were wrapped
into DLLs using Visual Studio tools and the ‘COM_IDL_CONNECT’ component. The 52◦ North
API was used to encapsulate these DLLs into web services. The DLLs were programmed in a
function inherited from ‘Abstract_Algorithm’, and service semantics were used to construct an XML
document for the ‘config_wps’ to facilitate the service description. In addition, a service composition
engine was developed for service chain generation and execution according to user requirements.
Using this service encapsulation process, we have encapsulated more than 30 geoprocessing services
in OGS-LCCD.
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algorithms.

The browser side was represented using a user interface built with HTML, CSS, and JavaScript
based on various JavaScript software development kits (SDKs), such as OpenLayers and GeoServer.
High-resolution maps were imported into the browser in the form of web services, including Map
World, ESRI Map, and OpenStreetMap. These lightweight scripting languages were utilized to enable
the OGS-LCCD to be accessed using common browsers (e.g., Internet Explorer, Firefox, Safari, Opera,
and Chrome), so that users would not need to install any additional software or plugins.

4.3. Walk-Through Example

In this section, a walk-through example of conducting a web-based land cover change detection
task is presented to demonstrate the usefulness of OGS-LCCD. The overall OGS-LCCD operation
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involves four steps: data uploading, service chain generation, service chain execution, and results
visualization, as illustrated using the unified modeling language (UML) sequence diagram in Figure 5.
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Suppose we want to know where land cover changes have occurred in Wenshang County, Jining,
Shandong Province from 2010 to 2018, and we have the Landsat images of Wenshang County acquired
in these two years. Using the OGS-LCCD, we can easily upload the Landsat images to the server side
of the system. The corresponding geoprocessing service chain will then be automatically generated
and executed to derive the land cover change information; the user does not need to install and operate
any desktop-based software. The main processing steps are described in the following four sections.

Table 4. JavaScript object notation (JSON) description of input1 image (left) and input2 image (right).

{"Sensor": "Landsat 5 TM", {"Sensor": "Landsat 8 OLI",
"Acquire_time": "2010/06/22", "Acquire_time": "2018/06/12",
"Spatial_resolution": "30", "Spatial_resolution": "30",
"Coverage":{"Type": "Rectangle", "Coverage":{"Type": "Rectangle",
"UL_lat":"35.82","UL_lon":"116.59", "UL_lat":"35.82","UL_lon":"116.59",
"UR_lat":"35.82","UR_lon":"116.69", "UR_lat":"35.82","UR_lon":"116.69",
"BL_lat":"35.74","BL_lon":"116.59", "BL_lat":"35.74","BL_lon":"116.59",
"BR_lat":"35.74","BR_lat":"116.69",} "BR_lat":"35.74","BR_lat":"116.69",}
"Radiometric_resolution": "8 bit", "Radiometric_resolution": "12 bit",
"Format": "IMG", "Format": "GeoTIFF",
"Data_size":"245242"} "Data_size":"718239"}

(1) Uploading the remotely sensed data: A jQuery plugin (i.e., uploadify) is used to enable
end-users to upload the remotely sensed imagery, and an input text interface is designed for users to
select their customized requirements (e.g., the expected return data type). In this example, we upload
the remotely sensed imagery acquired in 2010 and 2018 to the service side of the OGS-LCCD from
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local desktop computers, as shown in Figure 6. The metadata of these two image files described in
JavaScript object notation (JSON) format are shown in Table 4. After uploading the images, we can
check and view the images in OGC WMS form, as shown in Figure 7. Additionally, we want to know
which areas have been changed between 2010–2018. Therefore, we select ‘change area data’ as our
expected return data type.
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Figure 7. Uploading Landsat 8 data (for year 2018) using OGS-LCCD.

(2) Service chain generation: Based on the uploaded images and the user requirements, the optimal
change detection service chain is generated dynamically using the proposed automatic service
composition method. In this example, the two images are acquired from the same season and sensor
with the same spatial resolution and the different radiometric resolutions. Therefore, the final service
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chain can be represented as <DFC (data format conversion) service, RC (radiometric correction) service,
CVA (change vector analysis) service, EM (expectation maximization) service>. The semantics of these
services in the service chain are shown in Table 5. The visualization service chain is shown in Figure 8.

Table 5. Service semantics of the services in the service chain. DFC: data format conversion, RC:
radiometric correction, CVA: change vector analysis, and EM: expectation maximization.

Service Name Service Semantics

DFC The DFC service is used to transform image data from the ‘IMG’ format into the
‘GeoTIFF’ format. The input and output data type of the DFC service is imagery data.

RC The RC service is used to convert the digital number (DN) value of image data to
surface reflectance. The input and output data type of the RC service is imagery data.

CVA
The CVA service is used to acquire a change magnitude image by computing the
difference vectors between two image analysis units. The input type of the CVA
service is imagery data, and its output data type is change magnitude data.

EM
The EM service is used to acquire the changed area from a change magnitude map
based on an iterative threshold selection method. The input type of the EM service is
change magnitude data, and its output data type is change area data.
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(3) Execution monitoring: In this step, the generated change detection service chain is sent to
the service execution engine; then, the service chain execution process can be monitored in real-time
through the execution monitoring interface, as shown in Figure 9. In this example, the generated
service chain includes four atomic processing services. The execution time of each service is recorded
as 36 s, 58 s, 48 s, and 87 s, respectively. The execution status can also be viewed in a progress bar, as
shown in Figure 9.
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(4) Web-based results visualization: The final change detection results are received either by
downloading from the OGS-LCCD server service or by browsing in the result visualization interface.
Using the former approach, the real result data in a format such as ‘GeoTIFF’ will be returned to users.
In the latter, the WMS published from GeoServer software will be browsing on the right side of the
OGS-LCCD interface, as shown in Figure 10.
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5. Evaluation and Discussion

5.1. Evaluation

To evaluate the correctness of the proposed service composition method and the efficiency of the
OGS-LCCD, two groups of contrastive experiments were performed.

The first experiment was performed between the constraint rule-based automatic service
composition method, with a traditional data semantic-based method. The change detection service
chains generated using these two methods are shown in Figure 11. These two service chains were
also sent to an execution engine. The result was that the service chain that was based on the proposed
method (i.e., Figure 11b) was executed successfully, while the service chain based on the traditional
method (i.e., Figure 11a) failed to execute.
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Figure 11. Two generated change detection service chains: (a) service chain based on the traditional
method; (b) service chain based on the proposed method.

The above result occurred for the follow reasons. Although the output data type of the radiometric
correction service is equal to the input data type of the CVA service, their data formats are quite different
(the former is ‘IMG’ and the latter is ‘GeoTIFF’). In other words, there is a data format inconsistency.
If the radiometric correction service and the CVA service are directly connected, the service chain
would fail to execute, as shown in Figure 12a. The proposed service composition method detected
the data inconsistence, and added the corresponding preprocessing service to the service chain to
ensure the successful execution. As shown in Figure 12b, the added data format conversion service
guarantees that the data formats of the radiometric correction service and CVA service are consistent.
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Second, stress testing the central processing unit (CPU) and memory utilization were conducted
to evaluate the OGS-LCCD system. Twenty threads were selected to simulate multiple end-users
simultaneously operating the system. During stress testing, approximately one to 20 threads were
activated to generate and execute the service chain. Ten instances of stress testing were conducted
to record the maximum and average CPU and memory utilization values. The stress testing results
are shown in Figures 13 and 14. As the number of threads increased, the maximum and average
CPU and memory utilization values also increased, but the CPU utilization remained lower than 40%.
In addition, when the number of active threads was less than 12, the utilization changed more slowly.
In contrast, when the number of activated threads was larger (more than 12), the utilization changed
more rapidly. The results of these experiments show that the OGS-LCCD can maintain good stability
when multiple users are simultaneously performing the web-based change detection tasks.
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5.2. Discussion

Based on the results and analysis of the above walk-through example and evaluations, the
proposed service composition method and OGS-LCCD exhibit certain advantages and improvements
compared with traditional approaches. From the aspect of intelligent change detection, we propose an
automatic service composition method to generate a suitable change detection service chain according
to user requirements. That is, OGS-LCCD can enable nonprofessional end-users without owning much
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land cover expertise to conduct change detection tasks. In addition, with the help of the constraint rules,
the proposed service composition method is more robust than the traditional semantic based methods,
and can help guarantee that the service chain will be executed correctly. From the aspect of operating
efficiency, the OGS-LCCD provides a user-friendly interface to conduct change detection online using
a web browser, without installing any desktop and professional software or plugins. The time required
to conduct a change detection service chain is significantly reduced, because many complex processing
steps are decreased, such as data copying and data format conversion to accommodate different
software. In addition, the OGS-LCCD performs well for multiple end-users conducting web-based
change detection tasks simultaneously.

Since the OGC released the WPS specification, many open source communities have created
WPS platforms, such as the ZOO-Project, 52◦North, PyWPS, and Deegree [11,44]. The main goal
of these open source platforms is to provide generic and standard-compliant methods for using
existing open source libraries and algorithms as WPS-based geoprocessing services. In the proposed
system, 52◦North APIs are used for change detection and service encapsulation. In contrast to these
open-source platforms, OGS-LCCD is a system that is focused primarily on the change detection
domain, and is intended to support web-based land cover change detection. In addition, the proposed
system provides a constraint-rule-based automatic service composition mechanism that enable
end-users to conduct a web-based land cover change detection task with minimal manual intervention.

Despite the advantages of the OGS-LCCD, the development of the web-based system for
supporting intelligent land cover geoprocessing is still in its early stages. Similar to general web-based
geoprocessing systems, OGS-LCCD possesses several limitations, and some important issues should
be improved.

First, remotely sensed imagery data are often large, and uploading these data with the proposed
system is onerous and time consuming. With the development of recent cloud computing infrastructure
(e.g., Azure Cloud and Alibaba Cloud), it becomes possible to provide large-capacity cloud servers
and powerful computing resources. By using such infrastructures, free satellite images (e.g., Landsat
image series) can be collected and stored in advance. The end-users would need only to specify the
boundaries of their area of interest (AOI) to select the input data rather than upload large amounts of
data from their local to server.

Second, change detection models are computationally intensive, and require large amounts of
computing resources. The hardware and network configuration of the current system is not enough to
handle large-scale computation. To improve the computing efficiency of web-based land cover change
detection, the traditional geoprocessing mode should be extended by integrating a state-of-the-art
distributed computing mechanism (e.g., Spark or Hadoop) for image data processing [45], which offers
powerful and affordable alternatives to run large-scale computations.

Third, land cover change detection over a large area is a complex task; the system should provide
additional LCC web services to allow it to address different situations. To address this challenge,
multisource and heterogeneous change detection algorithms (e.g., oriented toward long time-series
images) will be steadily encapsulated into web services. In addition, the system needs to integrate the
strategy of code transmission [38], which facilitates end-users to upload their own algorithms to the
server side to conduct personalized change detection tasks.

6. Conclusions and Future Work

This paper presents a web service-based geoprocessing system for supporting intelligent land
cover change detection. The OGS-LCCD system provides a novel geoprocessing platform that enables
end-users to conduct change detection tasks in an open web environment. The encapsulation of the
heterogeneous web services approach and a constraint-rule-based automatic service composition
method are proposed to generate an executable change detection service chain for different conditions.
The prototype system is then designed and implemented using several available online geoprocessing
technologies and open source software.
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The walk-through example using OGS-LCCD demonstrates that the proposed system has the
potential to enable both professional or nonprofessional end-users to conduct change detection tasks
easily using only general web browsers. A comparison experiment between the constraint rule-based
automatic service composition method and a traditional data semantic-based method is performed.
The results indicate that OGS-LCCD could generate a suitable and executable service chain based on the
user’s requirements. The stress testing experiments show that OGS-LCCD maintains good efficiency
for supporting multiple end-users to conduct web-based change detection tasks simultaneously.

Our future work will focus on improving the efficiency of web-based land cover change detection
by integrating a state-of-the-art distributed computing mechanism (e.g., Spark or Hadoop) and
collecting frequently used remotely sensed big data on the server side. In addition, we plan to
further enrich the geoprocessing web services by encapsulating multisource and heterogeneous
change detection algorithms, allowing OGS-LCCD to address more complex land cover change
detection situations.
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42. Ranisavljević, É.; Devin, F.; Laffly, D.; Nir, Y.L. Semantic orchestration of image processing services for
environmental analysis. ISPRS J. Photogramm. Remote Sens. 2013, 83, 184–192. [CrossRef]

43. Chen, J.; Lu, M.; Chen, X.; Chen, J.; Chen, L. A spectral gradient difference based approach for land cover
change detection. ISPRS J. Photogramm. Remote Sens. 2013, 85, 1–12. [CrossRef]

44. Steiniger, S.; Hunter, A.J.S. The 2012 free and open source gis software map—A guide to facilitate research,
development, and adoption. Comput. Environ. Urban Syst. 2013, 39, 136–150. [CrossRef]

45. Yang, C.; Yu, M.; Hu, F.; Jiang, Y.; Li, Y. Utilizing cloud computing to address big geospatial data challenges.
Comput. Environ. Urban Syst. 2016, 61, 120–128. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSTARS.2014.2376475
http://dx.doi.org/10.1016/j.isprsjprs.2015.11.002
http://dx.doi.org/10.1155/2014/354919
http://www.ncbi.nlm.nih.gov/pubmed/24901016
http://dx.doi.org/10.1080/17538947.2015.1131340
http://dx.doi.org/10.1016/j.cageo.2011.11.020
http://dx.doi.org/10.1016/j.isprsjprs.2013.06.006
http://dx.doi.org/10.1016/j.isprsjprs.2013.07.009
http://dx.doi.org/10.1016/j.compenvurbsys.2012.10.003
http://dx.doi.org/10.1016/j.compenvurbsys.2016.10.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Land Cover-Related Online Geoprocessing Systems 
	Current Efforts in Geoprocessing Service Composition 

	Methodology 
	Heterogeneous Service Encapsulation Strategy 
	Constraint Rule-Based Automatic Service Composition 

	System Architecture and Implementation 
	Architecture Design 
	System Implementation 
	Walk-Through Example 

	Evaluation and Discussion 
	Evaluation 
	Discussion 

	Conclusions and Future Work 
	References

