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Abstract: Population is a crucial basis for the study of sociology, geography, environmental studies,
and other disciplines; accurate estimates of population are of great significance for many countries.
Many studies have developed population spatialization methods. However, little attention has
been paid to the differential treatment of the spatial stationarity and non-stationarity of variables.
Based on a semi-parametric, geographically weighted regression model (s-GWR), this paper attempts
to construct a novel, precise population spatialization method considering parametric stationarity
to enhance spatialization accuracy; the southwestern area of China is used as the study area for
comparison and validation. In this study, the night-time light and land use data were integrated as
weighting factors to establish the population model; based on the analysis of variables characteristics,
the method uses an s-GWR model to deal with the spatial stationarity of variables and reduce
regional errors. Finally, the spatial distribution of the population (SSDP) of the study area in 2010
was obtained. When assessed against the traditional regression models, the model that considers
parametric stationarity is more accurate than the models without it. Furthermore, the comparison
with three commonly-used population grids reveals that the SSDP has a percentage error close to
zero at the county level, while at the township level, the mean relative error of SSDP is 33.63%, and
that is >15% better than other population grids. Thus, this study suggests that the proposed method
can produce a more accurate population distribution.

Keywords: population spatialization; spatial stationarity; geographically weighted regression;
DMSP/OLS; land use

1. Introduction

The study of populations, which straddles many fields, such as the environment, social
development, and economics [1–4], is one of the core elements affecting sustainable development
in today’s world [5]. According to one projection, the world’s population was estimated to have
reached 7.7 billion people as of April 2019 [6]; however, population growth has been accompanied by
numerous problems related to humanitarian issues, disaster planning, and assistance with economic
development. Available and accurate spatial population distribution data are useful ways to analyze
these types of problems [7]. Moreover, with the inclusion of population distribution, policies made by
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governments could be made more rational by considering the sustainable development of resources
and environmental protection [8], especially for populous countries. Therefore, the acquisition of
spatial pattern data related to population distribution is crucial and necessary.

Demographic data provide the main basis of general information related to population distribution
and composition [5]. In a large part of the world, authoritative demographical data are aggregated
by spatial or administrative units [9] at regular intervals (once a decade in China). Generally, with
the relatively coarse statistical analysis and limited types of data that are typically collected [10],
demographic data reveal entire population counts in entire administrative units, instead of providing
detailed spatial population distribution characteristics [11]. Therefore, these data cannot satisfy the
need for practical applications that link these data to their geographical distribution. However, gridded
population distribution datasets gained by spatialization can remedy these defects. Moreover, these
datasets can be flexibly integrated with other, finer spatial datasets and summarized at any specified
level of aggregation [12]. As supplements and substitutes of demographic data, gridded population
distribution grids datasets can promote the development of population-related studies.

Previous studies have applied remote sensing data extensively to model population
dynamics [13–16]. Night-time light data, especially from the defense meteorological satellite program’s
(DMSP’s) operational linescan system (OLS) [17], have been widely used for large-scale population
spatialization studies [18]. The free DMSP/OLS data have been proven to have excellent applicability
to the observation of population dynamics [1,17,19,20]. However, these data are unreliable for use in
spatialization when only using the original night-time light data [11]. To improve performance, many
studies have frequently combined DMSP/OLS data with auxiliary data [9,21–25]. When choosing
auxiliary data, researchers should consider improvements in simulation accuracy and avoid invalid
composition models. Currently, land use data are commonly used with night-time light data in
large-scale population spatialization studies; this has proven to provide a better performance than the
use of single night-time light data alone [26]. Briggs [24] proposed four strategies that were based on
land classification to conduct a regression analysis on light emissions, lit areas, and unlit areas of each
land use type in each region and then gained 200 m and 1 km spatial resolution population density
maps. In the present study, land use data were used to prevent the incorrect assignment of night-time
light and to derive population distribution weights. Generally, the use of night-time light data makes
it easier to distinguish an urban population, and attention is needed to accurately reflect the presence
of a scattered rural population, especially in developing countries with large populations.

To obtain a population grid, models based on mathematical relationships established between
demographic data and spatial variables are popular and reliable [27]. Therefore, based on the use
of stable data, it is important to select and improve mathematical methods to produce very accurate
results [10]. Commonly used methods mainly include dasymetric mapping methods [28,29], spatial
regression models [30,31], and multi-source data fusion methods [18,32]. These methods have been
used to construct several typical and widely used population distribution datasets, such as the Gridded
Population of the World (GPW) [33], LandScan [34], the WorldPop project (WorldPop) [35], and the
China Gridded Population Datasets (CGPD) [36]. However, some problems of models limit the
accuracy and precision of the modeled results. These widely-used methods usually do not fully
consider the parametric spatial stationarity (e.g., the population density weights determined by the
same kinds of lands may be fixed or may vary with different positions), which may introduce a
misallocation of population weights. In large-scale population spatialization studies, regression models
are widely used, currently [37]. Many studies have redistributed population based on traditional global
models, such as the ordinary least-squares (OLS) model, which presumes that the all relationships
between the parameters and the results are stationary, resulting in an “average” behavior between the
estimated parameters [38]. High rates of error usually result for areas with weak relationships in the
OLS model [39]. Some studies have employed geographically weighted regression (GWR) [11], the
most widely used method that allows all parameters to change geographically (or to be non-stationary).
Although results indicate that the accuracy of GWR-based models is higher than that of OLS-based
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models, variables affect populations with different spatial patterns, and some of them may not vary,
while others have global effects. In addition, numerous research studies have used zoning to enhance the
model accuracy. Sutton [40] employed the economic level as a zoning criterion. Cheng [41] conducted
zoning research according to the population size and the level of urbanization in counties. Zeng [26]
used night-time imagery clustering and a shortest path algorithm to create eight zones. However, most
of the zoning methods have divided a study area into very few zones, although inter-zonal differences
were emphasized; no method has revealed the differences in the spatial distribution of a population
within a zone [37]. The enhanced effect is not very significant. Furthermore, methods that employ
suitable zones and assign weights still have limited validity and versatility when used with population
modeling, especially for regions with a scarce amount of data (or complex environments). In this study,
we used the term “traditional” to describe these methods which cannot differentiate between the spatial
stationarity and non-stationarity of variables. Suitably estimating the population density of different
distribution patterns under different regions is still a major limitation of generally-used population
spatialization methods. Moreover, the population distribution datasets derived from these traditional
methods face the awkwardness of an even population density occurring inside individual regions.
In recent studies, models that consider the spatial stationarity of variables have usually performed
better than other traditional models [39,42]. Considering spatial stationarity, sufficiency may also be
an important factor in further enhancing the accuracy of a population model. Therefore, in the present
study, spatial stationarity was incorporated in a population model to differentiate among various
spatial patterns with the goal of improving the model’s accuracy.

Based on the above arguments, our study aimed to obtain suitable and accurate estimates of
populations with a novel population spatialization method which integrates demographic, night-time
light, and land use data. The method uses an s-GWR-based model which mixes parametric stationarity
and non-stationarity to enhance the precision of population spatialization. The southwestern area
of China was selected as the study area for verification. In addition, we analyzed the effects of the
variability of variables in the modeled population by comparing global (OLS), local (GWR), and mixed
(s-GWR) modeling approaches in the study area. Subsequently, we derived a spatial distribution of the
population (SSDP) using an s-GWR model of the study area in 2010 for effectiveness assessments. This
study may help to avoid the concealment of the local heterogeneities between regions when compared
with traditional global and local models, and it provides a fast and accurate method to generate gridded
population data. Moreover, the comparison with previous population datasets attempts to identify
any flaw that affects the accuracy of the analysis, which, in turn, can assist in reasonably improving
future population distribution modeling attempts.

2. Study Area and Datasets

2.1. Study Area

The study area in southwestern China includes all or part of four provinces: Yunnan, Sichuan,
Guizhou, and Chongqing. This study area spans from 21◦08′ N to 34◦18′ N and 97◦20′ E to 110◦11′ E
(Figure 1) while covering an area of 1,127,800 km2. Southwestern China has a complex terrain, which
can be divided into three terrain units, including the Sichuan Basin with surrounding mountainous
regions and hilly regions of the Yunnan–Guizhou Plateau, and the alpine regions of the Qinghai–Tibet
Plateau [43]. Meanwhile, due to the unbalanced economic development in the study area, there are
more economically developed regions mainly distributed over the eastern region with relatively flat
terrain, such as the Chengdu Plain. The region has 46 municipal boroughs and 435 county-level
administrative regions. According to census statistics, in 2010, the study area’s population was close to
190 million (including 76 million urban residents and a rural population of 117 million), accounting for
14.18% of the total population. The population is distributed unevenly across these regions due to
the differences in economy and geography, and it is more densely populated in the east than in the
west [44]. It is noticeable, however, that southwestern China includes one of the main areas targeted in
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China’s Develop-the-West strategy and serves as an important maritime export region of the maritime
silk road under China’s Belt and Road Initiative. Therefore, this region is an ideal study area on account
of the diverse population density and its important role in China.
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Figure 1. Study area of four southwestern provinces in China: (a) Land use patterns; (b) night-time
light imagery in 2010; and (c) location of the study area in China.

2.2. Data Sets and Pre-Processing

2.2.1. Night-Time Light Imagery

In this study, we used radiance-calibrated DMSP/OLS imagery from 2010 with a 30 arc-second
resolution, which was provided by the U.S. National Geophysical Data Center (NGDC) (https://ngdc.
noaa.gov/eog/dmsp/download_radcal.html (accessed 1 May 2019)). The original stable DMSP/OLS
data experienced “blooming” and “overflowing”. In addition, despite having a great number of
research achievements based on the saturation correction of stable DMSP/OLS data [45,46], some
uncertainty still exists [9,22]. This product was developed to solve the saturation effect, which exists
in the stable DMSP/OLS night-time light product by merging the imagery collected at different gain
settings; it also contains a global radiation corrected imagery time of the series 1996–2010. Moreover,
the Digital Number (DN) values of stable DMSP/OLS night-time light range from 0 to 63, but the
radiance-calibrated product does not have this restriction, making it an ideal dataset for this method of
research. Albers Conical Equal Area projection was applied to the light data, and the re-projected map
was resampled to 1 km using a nearest-neighbor resampling algorithm; then, data were masked by the
boundary of the study area. Figure 1b shows the night-time light imagery after processing.

2.2.2. Land Use Data

The land use data employed here came from the National Land Use/Cover Database of China
(NLUD-C) produced by the Chinese Academy of Sciences. It contained data on land use/cover in
China for five periods (including the 1980s, 1995, 2000, 2005, and 2008) [47–51] and was updated in
2010 [52]. The original data were produced at a 1:100,000 scale and fell into six land use categories
and 25 sub-categories based on a hierarchical classification system. The NLUD-C has been the most
accurate (more than 95.41%) and authoritative dataset for the study of land use in China for years.

To maximize the accuracy of the original data and unify resolution, we converted 25 land use
sub-categories to 25 raster files with a 1 km resolution using the fishnet tool in ArcGIS (ESRI, Inc.,
Redlands, CA, USA) software. The area of each land cover type in each cell was calculated as the
percentage of cell area as a pixel value; thus, each raster layer corresponded to a particular land cover
type. Figure 1a shows the distribution of land use in the study area.

https://ngdc.noaa.gov/eog/dmsp/download_radcal.html
https://ngdc.noaa.gov/eog/dmsp/download_radcal.html
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2.2.3. Population Data and Boundary Map

China conducts a census every ten years. There have been six nationwide population censuses:
1953, 1964, 1982, 1990, 2000, and 2010. In this study, the original 2010 census data were obtained
from the State Statistical Bureau. County and township-level administrative boundary maps (scale of
1:4,000,000) were provided by the Institute of Geographic Sciences and Natural Resources Research of
the Chinese Academy of Sciences. Due to the influence of digitization errors and other factors, such
as the boundary changes of administrative regions, the boundaries of administrative units did not
completely match with census data. After necessary adjustment, ArcGIS software was used to correlate
attribute data with the corresponding spatial data of administrative units; eventually, valid data were
obtained from 435 counties and 6157 towns.

For rational verification of the experimental results, the three latest and widely used population
distribution datasets from 2010 were also used in this study: GPWv4, LandScan, and CGPD. All
data were masked by the boundary of the study area and re-projected to Albers Conical Equal Area
projection using a bilinear resampling algorithm with a 1 km spatial resolution. It was noticeable
that the bilinear resampling algorithm used four known pixel values around the sampled point to
participate in the calculation, and it could do some smoothing on the data. If there was no pixel on one
or both sides, the edge or linear information was lost. Table 1 shows the details of the data used in
this study.

Table 1. List of datasets and sources.

Data Type Resolution Source

DMSP/OLS night-time light 30 s National Geophysical Data Center, USA
Land use/cover data 1:100,000 National Land Use/cover Database, CHN

Census data County and township levels State Statistical Bureau, CHN
Boundary County and township levels Chinese Academy of Sciences, CHN
GPWv4 30 s Center for International Earth Science

Information Network, USA
LandScan 30 s Oak Ridge National Laboratory, USA

CGPD 1 km Resources and Environmental Sciences
Data Center, CHN

3. Method and Modeling

The spatialization of a population is a spatial disaggregation process where census data are
downscaled to a grid with auxiliary data and statistical techniques [53]. In this paper, we employed
Pearson’s correlation test to verify the statuses of land use types, which can reflect the range of
population activities suitably. Then, DMSP/OLS data were integrated with the selected land types
to extract independent variables, aiming to reflect inter and intra-class differences. After conducting
a statistical analysis on these parameters for each county, we used a geographic variability test to
distinguish among spatial patterns of variables (global or local) to introduce the incorporating the
spatial stationarity of variables into the population model. Based on the results, an SSDP was generated
by an s-GWR model with the selected variables. Finally, an accuracy assessment that contrasted with
previous studies was applied on the SSDP. Figure 2 shows the key steps involved in modeling the
population in this study.
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3.1. Extracting Independent Variables

3.1.1. Correlation Test between Population and Land Use

In population disaggregation, a population should not be evenly distributed across each kind of
land use. Therefore, Pearson’s correlation coefficient (PCC) was applied to select proper land types
that were associated with the population. In the process of modeling a population with land use data,
considering the actual situation of population distribution, the water and unused land types do not
participate in the analysis of spatialization. Next, we summarized the area data of the 12 remaining
land sub-categories and census data in each county with zonal statistics by using ArcGIS software;
then, the correlation coefficient was calculated between land types and population by using SPSS (IBM
Corp., Armonk, NY, USA) software.

The PCC is, in essence, a statistical method that can quantitatively measure the correlations
between variables. Therefore, the PCC is usually treated as the criterion used for selecting variables.
The formula for PCC is shown as follows:

r =
N
∑

xiyi −
∑

xi
∑

yi√
N
∑

x2
i − (

∑
xi)

2
√

N
∑

y2
i − (

∑
yi)

2
, (1)

where r is the value of the correlation coefficient; xi is the population count of county i; yi is the area of
a certain land category in county i; and N is the number of counties in the study area. The range of
PCC is from −1 to 1. With an increase in the absolute value of PCC, the correlation between these two
variables increases or adversely decreases when the absolute value approaches zero.



ISPRS Int. J. Geo-Inf. 2019, 8, 495 7 of 19

3.1.2. Integrating DMSP/OLS Data with Land Use Data

In this population spatialization model, the amount of night-time light observed should indicate
different weights for the populations present in different land use types; the value of a population
cannot be negative [26]. Thus, the land types shown to have a significant, positive r value in Section 3.1.1
were selected for extraction. With reference to previous methods, we first developed three raster layers
from radiance calibrated in a DMSP/OLS image: light emission, lit areas, and unlit areas. Then, an
overlay analysis was used to integrate these three layers with the selected land use types. Finally, we
were able to obtain three datasets: light emission in pixels (LE), the number of lit pixels (NL), and
the number of unlit pixels (NU). Note, according to the criterion of “non-residential area, no light”,
during the process of overlay analysis, night-light data needed to be related to the residential area.
However, the population is not always distributed in the built-up areas, due to the accuracy flaws and
display standard issue of map spots in land use products, which are based on satellite remote sensing.
In other land types, scattered rural settlements may exist, such as isolated houses of farmers and
herdsmen, tents, gers, and other facilities. The above-mentioned scattered but numerous residential
facilities cannot be reflected in a 1:100,000 scale land use map, but they do exist. To reduce the possible
underestimation of sparse populations in rural areas, populations in other land use types should not be
ignored. Thus, the area information of additional land types should be included in a model. Therefore,
we used the “Zonal Statistics” tool to summarize all independent variables at the county level for the
spatialization process.

3.2. Spatialization of Population

The spatialization model can be described by the regression relationships between populations,
land use types, and night-time light data. The model was built by simultaneously using the OLS
and GWR models in addition to an s-GWR model. Three commonly used indicators of regression
performance exist: the Akaike information criterion (AICc), determination coefficient (R2), and adjusted
R2. The AICc is effective for verifying the goodness of fit [54]. According to the rule-of-thumb, a
model with an AICc difference, which is greater than or equal to two, has an actual improvement in
fitness [55]. To complete the process, GWR 4.0 [56] software was used.

The global linear relationship between a population and the extracted variables can be described
quantitatively by an OLS regression model. The model can be expressed as follows:

yi = α0 +
k∑

j=1

α jxi j + εi, (2)

where yi is the estimated population; k is the number of independent variables; αj is the coefficient of
the jth variable xij; εi is the random error that meets spherical perturbation assumptions; and α0 is a
constant that is set to zero.

The OLS model ignores the spatial non-stationarity of the coefficient. The GWR model is an
extension of the general linear regression model and places emphasis on parametric non-stationarity [11].
The geographical locations of the data are embedded into the regression model; therefore, the regression
coefficient becomes a function related to the spatial location. Additionally, the locally spatial relationship
between the population and the extracted variables can be expressed by the GWR.

However, because of the different economic levels and living habits of the population in the
study area, different population distribution patterns exist, so populations determined by the same
variable may be fixed and varied depending on the location. Nevertheless, the semi-parametric,
geographically weighted regression (s-GWR) model was proposed to cope with this situation, in which
characteristics of global and local models were mixed and the fixed global variables were allowed
to coexist with other variables that change geographically [57]. Generally, this mixed model has
commonly been used for spatial relationship analysis and has performed better than other models



ISPRS Int. J. Geo-Inf. 2019, 8, 495 8 of 19

in recent studies [39,42]. Compared to simplex global or local methods, the s-GWR model realizes
semi-parametric non-stationarity by combining globally fixed and geographically varying terms. Thus,
this study attempts to introduce it to population estimates, and the population distribution can be
expressed by s-GWR as follows:

yi =
l∑

m=1

αmzim +
k−l∑
j=1

β j(ui, vi)xi j + εi, (3)

where αm is the fixed coefficient of the mth global independent variable zm, and βj(ui, vi) is the jth
parameter estimate for the local variable xij at each location (ui, vi). To derive the mixed pattern of
s-GWR, a geographical variability test, which is similar to stepwise regression, was applied in the
present study to assess the variability between variables with the help of GWR4.0 software. Then, we
were able to differentiate between the global and local patterns of variables. A geographical variability
test is a kind of recursive model that uses comparisons to select variables as either fixed or varying
terms under a criterion such as AICc. We compared the model where the kth variable was switched to
a fixed term to the model treating all variables as variable terms to test the geographical variability of
the kth varying coefficient. If the AICc of the switched model is smaller, it is best to assume that the
kth variable is spatially stationary and the “Diff of Criterion” value for the variable appears positive.
Otherwise, a larger AICc indicates that a spatially non-stationary relationship and a negative “Diff
of Criterion” of selected variables exist. The 11 variables extracted were tested by this comparison
routine using the same bandwidth. Furthermore, it was necessary to carry out a spatial autocorrelation
test before constructing the GWR model; therefore, Moran’s I tool in the ArcGIS software was used to
analyze the spatial distribution pattern of the population.

The three models mentioned above were constructed at the county level and then applied to the
pixel level. An adjustment had to be made to resize the estimated population to match with census
data at the county level. The adjustment method can be expressed as follows:

yin
′ = yin × (

yi

yi
), (4)

where yin’ is the pixel-level population after adjustment; yin is the estimated population of the nth pixel
in county i; yi is the census data of the ith county; and yi is the total estimated population of a county.

3.3. Accuracy Assessment

It was necessary to carry out an accuracy assessment to analyze the applicability of gridded
population production. In reference to the methods used to verify and validate simulation results in
previous studies [5,9,11], except for the aforementioned indicators (such as r, R2, and AICc), the mean
error (ME), mean relative error (MRE), root mean square error (RMSE), and median percentage error
(MPE) were applied for validation. They are defined as

ME =
1
n

n∑
i=1

pi − pi

pi
, (5)

MRE =
1
n

n∑
i=1

∣∣∣pi − pi
∣∣∣

pi
, (6)

RMSE =

√√√√√ n∑
i=1

(pi −
−
pi)

2

n
, (7)
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where n is the number of statistical units; pi denotes the total estimated population in statistical units;
and pi is the actual population. In addition, MPE is equal to the 50th percentile of n relative errors.

4. Results and Discussion

4.1. The Results of the Population Spatialization Models

4.1.1. The Extraction Results of Variables

The correlation coefficients (r) between the land use types and census data of the county level
in the study area are presented in Table 2. In particular, r values significant at the level of 95% in
the t-test can be adopted. Therefore, the results show there are ten effective values; specifically, two
sub-categories of farmland and three sub-categories of the built-up area have positive associations
with the population, while others have negative ones.

Table 2. The correlation coefficient between land use sub-categories and the population.

Paddy Field Non-Irrigated
Field Forest Shrub Sparse

Woodland
Other

Woodland
Dense

Grassland

0.576 ** 0.548 ** −0.323 ** −0.241 ** −0.022 0.011 −0.223 **

Moderately
Dense

Grassland

Sparse
Grassland Urban Area

Rural
Residential

Area

Other
Built-Up

Area
Waters Unused

Land

−0.266 ** −0.223 ** 0.504 ** 0.312 ** 0.226 ** − −

Notes: ** significance = 0.01.

According to previous work [11] and a correlation test, three sub-categories of built-up layers
(urban areas, rural residential areas, and other built-up areas) were used to develop variables with
three layers of DMSP/OLS data. Then, two farmland sub-categories (paddy fields and non-irrigated
fields) were used to represent the weight of the probability of the spare population distribution. All in
all, to model the population, we extracted eleven independent variables, as shown in Table 3: LE, NL,
and NU for urban areas, rural residential areas, and other built-up areas, in addition to areas of paddy
fields and non-irrigated fields.

Table 3. Summary of semi-parametric, geographically weighted regression model (s-GWR) models
and results of a geographic variability test.

Variable Min Median Maximum DIFF of
Criterion

Farmland Paddy field −801.74 358.8 1393.817 −1.344
Non-irrigated

field 197.968 443.282 1143.394 −81.126

Urban area LE −326.563 21.798 548.14 −48.856
NL −19,447.847 12,331.588 95,261.748 −3.5
NU − −368.957 − 6.272 *

Rural
residential area LE −780.177 −10.471 364.444 1

NL −26,636.113 6978.858 97,907.33 −2.757
NU − −2629.097 − 10.192 *

Other built-up
area LE −1589.355 59.123 1072.292 −13.763

NL −116,595.952 535.835 98,971.153 −2.281
NU − 3014.622 − 4.248 *

Notes: * variables were changed to a global pattern.
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4.1.2. The Spatialization Results

The Moran’s I value of the population of a county was 0.451, which was processed at the 0.01
significance level. A positive Moran’s I value stands for a positive spatial autocorrelation of the
total population. Therefore, the distribution of the population shows a cluster tendency, which is
an essential requirement of the geographical regression model. The spatialization of the population
based on selected variables was constructed using OLS, GWR, and s-GWR models with GWR4.0
software. Table 4 summarizes the goodness of fit that was used to evaluate the performance of the
regression accuracy, which included R2, adjusted R2, and AICc values. This indicates that the global
regression model OLS can explain 78.3% of the variability of the population. Then, when the model was
converted to a geographical regression model, considering the local effects of all eleven independent
variables, the explanatory power increased to 89.2%, and the AICc value declined from 11,569 to
11,403 (Table 4); therefore, the model fit was significantly ameliorated. Table 3 shows the coefficients of
selected variables obtained using an s-GWR model. Because of the possible interplay of a single land
area’s three factors (LE, NL, and NU), some of the coefficients were negative. We retained those factors,
since they played a combined positive role in a pixel. Meanwhile, Table 3 shows the results of the
“DIFF of Criterion”, which was exported by a geographic variability test, and the positive NU values of
the urban areas, rural residential areas, and other built-up areas indicated that they were not suitable
to be spatially non-stationary. Therefore, these three variables were considered to be global, while
the other eight variables switched to being considered as local terms in s-GWR. Finally, although the
goodness of fit of OLS and GWR suggested that they can export rather good and reasonable results in
the spatialization of a population, the s-GWR model explained 92.7% of the variance of the population,
further reducing the AICc to 11,315; thereby, making the model fit better as a result of considering
the spatially non-stationarity of variables. When compared with the above regression results, this
indicated that the s-GWR model produced an improvement over the OLS and GWR models.

Table 4. Comparison of the models’ fitting performances.

Index OLS GWR s-GWR

R2 0.783 0.892 0.927
Adjusted R2 0.777 0.866 0.9

AICc 11,569.558 11,403.654 11,315.878

Figure 3 shows the spatial distributions and regional variations of the local R2 values measured in
the s-GWR and GWR models. The local R2 had high values for the middle and northern areas and
lower values in the southern areas. The local R2 values of s-GWR of southwestern Sichuan and northern
Yunnan showed an improvement over GWR; the local R2 of >84% of the counties was higher than
that of the GWR model, proving that the s-GWR model had a better performance than the traditional
global and local models.

Based on land use, night-time light, and census data, we generated a 1 km spatial distribution of
the population in the study area in 2010 using the s-GWR model (SSDP), which, when compared to the
mean density by county, had the same general tendency as the population but provided more details
(Figure 4). Furthermore, when contrasted with the land use and night-time light maps (Figure 1),
the SSDP showed that the high population density area matched with the locations of lit residential
land; conversely, the farmland areas or unlit areas corresponded to low population densities, which
confirmed the distribution of the population in China. Additionally, the built-up areas carried the
greatest population distribution weights, and sparse populations in rural areas were assigned to
farmland. Lit residential land accounted for about 3% of the study area, where more than 41% of the
total population lived, and the rest was accounted for by the wide, unlit area with a low population
density. To a great extent, the SSDP constructed by census data using the s-GWR model matched the
real distribution of the population spatially.
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4.2. Evaluation at both County and Town Levels

Accuracy assessment has always been difficult in population spatialization research. In general,
the following methods are commonly used for assessment analysis: (a) comparing the results with
previous studies; (b) using the data with finer statistical units for contrast verification; and (c) sampling
verification in a field study. Considering the availability and operability of the data, we adopted a
combination of those methods to assess the accuracy of SSDP; therefore, we chose to use the GPWv4,
LandScan, and CGPD in 2010 for validation contrast at the county and township scales individually.
The census data were treated as the true values. A previous study presented some conclusions about
the comparison between population grid products which were used for contrast [5], and the assessment
of SSDP was as follows.

At the county scale, owing to the adjustment of the population in SSDP, the percentage error
was close to zero. In addition, to show the broad-scale patterns of error, a scatter plot with a box was
applied (Figure 5). The relative errors (REs) with signs of towns in each dataset were expressed by
different dots. Short horizontal lines on both ends indicate the minimum and maximum values, and
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intersecting lines mark the 1% and 99% percentiles. Figure 5 shows that the range of MEs was −0.2
to 1.38 for GPWv4, −0.6 to 0.9 for LandScan, and −0.8 to 0.7 for CGPD, and outliers were uniformly
distributed in the low and high-value areas. Although an adjustment method was applied to the three
datasets, the fluctuation of error indicated that the adjustment by county census data in SSDP was
effective and necessary.
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Towns are the fourth level of administrative division in China and have a mean spatial resolution
of 13.4 km [5]. Based on the generation of random numbers, we selected 500 towns. At the town scale,
the 500 randomly chosen towns were used for the evaluation based on the accessibility and integrality
of the township boundary and census data; then, the REs were calculated between the estimated
population and census data in each town. Table 5 shows the accuracy justification indices based on the
ME, MRE, RMSE, and MPE in these datasets at the township scale. The ME was 38.42% for GPWv4,
22.68% for LandScan, and 31.66% for CGPD, with MRE values of 48.51%, 57.25%, and 55.52% attained,
respectively. When using the s-GWR model to estimate the population size, remarkable decreases in
ME (7.59%) and MRE (33.63%) were attained. Meanwhile, this action was repeated by RMSE and MPE.
The RMSE can reflect the deviation between the predicted and actual data, while the MPE commonly
stands for the central tendency of data. The LandScan analysis showed a similar degree of dispersion
(29,187) to CGPD, when compared to 25,161 of GPWv4, and both were significantly higher than the
value of 17,381 for SSDP. The MPEs in ascending order were 0.3% for SSDP, 7.27% for LandScan, 17.13%
for CGPD, and 30.68% for GPWv4. The results show that the total population was overestimated using
these four products to different degrees, and this may have been caused by the misallocation of the
population to incorrect areas in underdeveloped ones with sparse and scattered human settlements.
The SSDP was expected to provide better precision and fewer errors. Figure 6 shows the correlations
between the predicted population and census data in the 500 towns selected. Each point stands for
the predicted population value and the corresponding statistical population value at the township
level. We can see that the results of SSDP are more linear and concentrated than the other three in
the relationship between the estimated population and census data. Moreover, when compared with
the correlation coefficients of GPWv4 (0.739), LandScan (0.717), and CGPD (0.56), the SSDP had the
highest value (0.763) between the estimated and statistical population.



ISPRS Int. J. Geo-Inf. 2019, 8, 495 13 of 19

Table 5. Comparison of accuracy in four population grids.

Index SSDP GPWv4 LandScan CGPD

ME 0.075 0.384 0.226 0.316
MRE 0.336 0.485 0.572 0.555

RMSE 17,381.578 25,161.567 29,187.063 29,187.083
MPE 0.239 0.35 0.419 0.356
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To straightforwardly expose the error structure of these datasets in townships, we graded the
relative error into five ranges and calculated the number of towns in different error ranges; this is
illustrated as a bar graph (Figure 7). The towns whose ME values ranged from −20% to 20% were
classified to be in an “accurately estimated” (AE) category due to having a relatively good estimation
performance. Based on the ME values, the populations of the others were ordered as “extremely
underestimated” (EUE; ≤−50%), “underestimated” (UE; −50% to −20%), “overestimated” (OE; 20% to
50%), or “extremely overestimated” (EOE; ≥50%). From EUE to EOE, the percentages of total samples
that fit into those five ranges were 7.01%, 18.63%, 44.08%, 16.63%, and 13.62% for SSPD; 2.4%, 7.21%,
29.05%, 32.06%, and 29.25% for GPWv4; 14.82%, 18.43%, 24.24%, 14.62%, and 27.85% for LandScan;
and 8.41%, 14.02%, 29.45%, 20.04%, and 28.05% for CGPD, respectively. As mentioned above, the
population sizes were overestimated in the datasets, as it can be seen that the percentages of towns
with OE populations were 61.32% for GPWv4, 42.47% for LandScan, and 48.09% for CGPD, which
are much higher than their respective rates of UE (9.61%, 33.25%, and 22.44%); however, the SSPD
had better performance in OE (30.26%) townships. The results show that overestimated populations
of the GPWv4, LandScan, and CGPD were clustered mainly on the eastern Qinghai–Tibet Plateau,
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northwest Yunnan Province, and Yunnan–Guizhou Plateau, which are all sparsely populated across
wide areas. As for the SSPD, there were less overestimated towns and there were more dispersed. The
percentage of BE townships in the SSDP increased to 44.08%, which was the highest value among
these four datasets. Therefore, the s-GWR model was effective for decreasing errors and increasing
precision, including reducing the rate of overestimated populations and improving the accuracy of
estimated populations.
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Meanwhile, we also used a scatter plot with boxes to show the details of errors in townships
(Figure 8). Figure 8 shows that the REs of SSPD were more concentrated around zero, as the standard
deviation of SSPD was 0.47 when compared with the values of GPWv4 (0.71), LandScan (0.79), and
CGPD (0.84). Whether using the mean or median error, the SSPD performed better than the others.
Additionally, the box plots showed that the range of MEs was −0.9 to 2.5 for SSDP, −0.9 to 8.4 for
GPWv4, −0.9 to 4.3 for LandScan, and −0.9 to 8.3 for CGPD; this indicated that these datasets were
skewed. No obvious differences were observed in the low-value area. When combined with the
scatter plot analysis, we can see that the outliers were mainly distributed in the high-value area and
were triggered by overestimation; SSDP attained a good result. Simultaneously, the variation in the
population distribution between the county and township scales helped to clarify that the global model
that did not consider the non-stationarity of variables is probably not suitable for the local area. In
summary, not only was there minimal integrated error attained from the SSDP data derived by s-GWR,
but there was also a minimum deviation error for predictions; this indicates that the SSDP conforms
better to the actual distribution of the population than the other three products.
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5. Conclusions

A population grid can directly reflect the range and intensity of human activities and is an effective
indicator that provides necessary data for the study and characterization of the relationship between
humans and the environment (climate, land cover, air pollution, etc.). In recent decades, downscaling
has been widely used with the census population data to create grid level data using fusions with
auxiliary data.

With the gradual deepening of the study of population spatialization, a wealth of research
achievements have been attained based on night-time light data, but some problems still remain.
Existing methods often ignore details that show the spatial variation of a population, perhaps weakening
the accuracy of those methods. This paper discusses a population spatialization method based on
s-GWR that can take into account the incorporation of the spatial stationarity of coefficients. The local
and global patterns of variables were mixed when comparing this method to traditional global and
local models to improve the accuracy of population mapping by representing the density variation of a
population that varies with the geospatial position. Then, we estimated the population size by using
the performance advantages of night-time light and land use data. Based on the correlation coefficients,
the relationships between population and land use were described. Five land use classes (paddy
fields, non-irrigated fields, urban areas, rural residential areas, and other built-up areas), which had
significant positive correlations with the population, were selected. Then, we developed three indices
(LE, NL, and NU) for each type of built-up area by combining these with DMSP/OLS data. In addition,
two indices were developed based on the area of farmland considering the land use map error and the
scattered population distribution in non-urbanized areas. Local and global factors were distinguished
by a geographic variability test. Then, both local and global factors were fused by s-GWR in a mixed
population model. Based on the eleven variables obtained, the adjusted R2 of s-GWR reached 0.9, and
the AICc value was 11,315, which is an increase by as much as 14% and a decrease by as much as
254, respectively, when compared with the pure global and local models. The results indicate that the
s-GWR model can attain higher accuracy and stronger explanatory power than traditional models by
synthetically considering the incorporation of the spatial stationarity of variables.

Additionally, by adopting an s-GWR model, we developed a map showing the spatial distribution
of the population in the study area within four provinces in the southwest area of China in 2010 with
a 1 km resolution. To show the accuracy assessment intuitively, three commonly used population
datasets were used for comparison at the county and township levels along with census data, which
mainly included four precision indices (ME, MRE, RMSE, and MPE). The error analysis indicated
that the SSPD had improved significantly in terms of estimating accuracy controls when compared
with the other three datasets and when the spatial variability of population density was considered.
Compared with other models, the ME of SSPD decreased by up to 31%, MRE decreased by 24%, RMSE
by 67%, and MPE by 12% at the township scale. Then, the grading statistics of the relative error at
the township level showed that the accurately estimated towns of SSDP accounted for 44.08% from a
total of 500 towns, and 30.26% and 25.62% of the towns were over and under-estimated, respectively.
Compared to GPWv4, LandScan, and CGPD, SSPD performed better for accurate and overestimated
towns, especially in terms of correcting the skewness characteristic of overestimated populations
that existed in all four datasets and verified the results at the county scale. Furthermore, the overall
details of the error distribution indicated that the relative error of SSPD had a smaller range and was
concentrated around zero at the county level. The standard deviation of SSPD was 0.47, which was
obviously lower than that of GPWv4 (0.71), LandScan (0.79), and CGPD (0.84). By combining these
results with the results of the correlation test between estimated population and census data, it was also
proven that SSPD derived by the s-GWR model has an advantage over other datasets in redistributing
the population accurately.

The results of this paper confirm that when compared with traditional global or local models,
the s-GWR method that considers the incorporation of the spatial stationarity of variables performs
better, and SSDP has a higher accuracy than other datasets in the study area. This method can provide
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valuable information for correlative research studies, such as studies of disaster evaluation, urban
planning, and ecological assessment. Moreover, night-time light and land use data, which are all
freely available on a global scale, are, therefore, much more suitable for population spatialization on
a large scale where detailed data are lacking. When applied in SSDP, the low-cost process can be
replicated easily. Nevertheless, there were several problems in this long-term study: (1) The limited 1
km resolution of DMSP/OLS data and land use data may have restricted their application on a small
scale. Therefore, future research should consider utilizing finer resolution data, such as information
related to buildings and new night time light, like the Luojia 1-01 satellite, to conform to the tendency
of a higher pixel resolution level. (2) For sparsely populated areas, the population distribution datasets
were also shown to overestimate the population, because the population distribution was affected
by the collective influence of various factors, although the SSPD provided improved results when
compared with other datasets. (3) The resampling also affected the data due to smoothing, especially
for the areas with a sharp quantity change in population. (4) Before establishing an effective s-GWR
model, a key step is to choose an effective criterion of divisional stationarity and non-stationarity.
Therefore, before a perfect model that is widely used can be realized, population spatialization still
needs further study.
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