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Abstract: Grassland coverage, aboveground net primary production (ANPP), and species composition
are used as indicators of grassland degradation. However, soil salinization deficiency, which is also
a factor of grassland degradation, is rarely used in grassland degradation assessment in semiarid
regions. We assessed grassland degradation by its quality, quantity, and spatial pattern over semiarid
west Jilin, China. Considering soil salinization in west Jilin, electrical conductivity (EC) is used as an
index with ANPP to assess grassland degradation. First, the spatial distribution of the grassland was
measured with information mined from multi-temporal remote sensing images using an object-based
image analysis combined with classification and decision tree methods. Second, with 166 field
samples, we utilized the random forest (RF) algorithm as the variable selection and regression method
for predicting EC and ANPP. Finally, we created a new grassland degradation model (GDM) based
on ANPP and EC. The results showed the R2 (0.91) and RMSE (0.057 mS/cm) of the EC model were
generally highest and lowest when the ntree was 400; the ANPP model was optimal (R2 = 0.85 and
RMSE = 15.81 gC/m2) when the ntree was 600. Grassland area of west Jilin was 609.67 × 103 ha
in 2017, there were 373.79 × 103 ha of degraded grassland, with 210.47 × 103 ha being intensively
degraded. This paper surpasses past limitations of excessive reliance on vegetation index to construct
a grassland degradation model which considers the characteristics of the study area and soil salinity.
The results confirm the positive influence of the ecological conservation projects sponsored by the
government. The research outcome could offer supporting data for decision making to help alleviate
grassland degradation and promote the rehabilitation of grassland vegetation.

Keywords: remote sensing; aboveground net primary productivity (ANPP); soil salinity; grassland
degradation model (GDM); random forest (RF); principle component analysis (PCA)

1. Introduction

Grasslands make entire ecosystems more resilient to environmental changes by preventing
soil erosion and regularizing water regimes, particularly in arid/semiarid regions [1,2]. Area and
spatial distribution information of grasslands is important for understanding plant, animal, and bird
species survival [3]. Grasslands also play a vital role in sustaining human lives [4]. Grassland
degradation is the process of retrograde succession and productivity decline of the grassland ecosystem
under unreasonable utilization (overgrazing and irrational reclaiming) and unusual natural processes
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(drought, wind sand, water erosion, saline-alkali, waterlogging etc.) [5,6]. The main manifestations are
the height, coverage, yield and quality of grassland vegetation, the deterioration of soil habitat, and the
decline of production capacity and ecological function [7]. In the past several decades, the degradation
of grassland caused not only the decline of productivity of grassland itself, but also the deterioration
of ecological environment and the threat to human survival and development. In recent decades,
grassland degradation has become a severe global environmental problem (e.g., endangering regional
ecosystem services and functions) [8–10]. At present, about 90% of grasslands in China undergo
degradation and 34% of rangelands are moderately to severely degraded [11,12]. Human activities
can completely convert grasslands to other land functions [13], which could turn fertile soil into
barren lands (e.g., saline-alkali land, sand) that can no longer yield products [14–16]. Measuring the
degradation of grassland ecosystems is an urgent issue for both the government and local communities,
especially for semiarid and arid regions of China where ecosystems are more fragile.

Grassland degradation is conventionally studied through field investigation, but this method
is time-consuming and costly in large-scale research. Remote sensing offers numerous technologies
to monitor grassland degradation [17–19]. Most research on grassland degradation has been carried
out by measuring changes of grassland area [20,21], aboveground vegetation condition [22,23], and
other characteristics of grasslands [24]. The assessment methods of grassland degradation can be
divided into two categories: Visual classification and degraded index inversion. The former classifies
the levels of grassland degradation according to the characteristics of imagery, which has a higher
demand for classification experts in the professional aspect and is time-consuming and costly compared
with the latter. With the emergence of massive remote sensing data, the latter is more widely used
for grassland degradation assessment. Zhang et al. used Normalized Differential Vegetation Index
(NDVI) data (8 km spatial resolution) to evaluate grassland degradation over the Mongolia Plateau [25].
Li et al. estimated grassland aboveground biomass using multi-temporal MODIS data (250 m spatial
resolution) in the West Songnen Plain, China [22]. Tarantino et al. detected the changes in semi-natural
grasslands by cross correlation analysis with WorldView-2 images and Landsat 8 data [26]. Wang
et al. monitored grassland degradation through effective spectral feature parametrization methods
exactly distinguished the constructive species and degraded indicators using hyperspectral remote
sensing data [27]. Liu et al. assessed the grassland degradation from Landsat TM image in conjunction
with grass cover and proportion of unpalatable grasses (PUG) [24]. In review of previous researches,
although the low spatial resolution sensors have high temporal resolution, which enables a good
overview of grassland dynamics, they are not suitable for obtaining the details of area change and
monitoring degraded levels at regional scale [28]. High spatial resolution imagery has affluent detail
information and prominent texture information of terrestrial object which compensates for the spatial
limitation, but it could not be widely used for spatial assessment of grassland degradation at large
scale due to its small coverage and expensive cost [29]. Landsat 8 Operational Land Imager (OLI)
has a spatial resolution of 30 m. In addition, there is a panchromatic band with a resolution of 15 m,
which could fulfill the demands for monitoring grassland degradation. Therefore, the medium spatial
resolution was extensively applied for the evaluation of grassland degradation [23,30,31].

In the selection of degradation indicators, previous studies evaluated the degraded level by
vegetation cover, vegetation biomass, aboveground net primary production (ANPP), PUG and
grassland species. Aboveground net primary production is the energy value that producers can use
for growth, development, and reproduction, and it is also the material basis for the survival and
reproduction of other biological members in the ecosystem. Moreover, ANPP is a parameter that can
reflect environment changes because it is sensitive to biological and abiotic factors [32]. Variability
in ANPP has been used as an indicator to measure the loss of ecosystem function due to grassland
degradation in several studies [33,34]. These studies took full account of the grassland situation above
the ground, but did not consider the soil circumstance of grassland. Moreover, grassland salinization,
a common phenomenon due to the buildup of salts in soil, is the primary form of grassland degradation
in arid, semi-arid, and dry sub-humid areas [35,36]. West Jilin Province of China is a typical semiarid
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region that lies between saline-alkali land and wind-blown sand land. The low-lying terrain and
poor drainage blocked the waterways from releasing salts, consequently causing soil salinization
and grassland degradation [37,38]. The research shows that the area of soil salinization accounts for
34% of West Jilin Province. About 77% of grassland areas were salt-affected [39]. The grasslands in
this area used to be good pasture with high yield and good grass quality, but due to uncontrolled
exploitation and utilization of land resources, the vegetation cover has been seriously degraded in
recent years. Previous research established that soil salinization was a factor in grassland degradation
in semiarid and arid regions [37,40]. This has been accompanied by serious salinization; the grassland
degradation has also been enhancing itself through a negative feedback mechanism caused by land
cover change and soil salinization [37,41]. Yu et al. (2018) reported that grassland was the most severely
affected by salinity among all vegetation land covers in West Jilin Province. Other authors studied
salinization characteristics of saline and alkali grassland soils in semiarid regions and analyzed the
differences in grassland patterns with different salinity and alkali levels [41]. The growth of vegetation
is directly affected by the soil properties. It is necessary to establish an evaluation system of grassland
degradation based on grassland biomass and soil salinity in semiarid regions and then analyze the
spatial distribution of degraded grassland combined with auxiliary data in the study area [42,43].
In previous studies, more attention has been paid to aboveground biomass, plant coverage, and species
of vegetation than soil properties in estimating grassland degradation. Therefore, this paper aims to
establish a new grassland degradation model (GDM), designed for semiarid regions and based on the
spatial distribution of ANPP and soil salinity to grassland degradation measured from satellite imagery.

Random forest (RF) has been widely used in vegetation biomass and soil parameter estimation
in recent years [44,45]. The RF is a popular ensemble learning method that can be used to establish
predictive models for both classification and regression problems using the random uncorrelated
decision tree [46]. Compared with general regression analysis, RF has very fast speed of processing,
and it performs well in dealing with big data. The RF does not need to worry about the multivariate
collinearity problem. RF method is not sensitive to noise in training samples. Therefore, the accuracy
of models could be much higher compared with other machine learning and the traditional statistical
regressions [47]. Here, the inversion models of ANPP and electrical conductivity (EC) were established
by the RF obtaining the relationship between remote sensing imagery’ spectral information and
field samplings.

This research has the following objectives: (1) measure the grassland extent and their spatial
distribution over west Jilin Province in 2017; (2) formulate the relationships between reflectance
bands, spectral indices, and field measurements of ANPP and EC using RF; and (3) and establish
the grassland degradation model by principle component analysis (PCA) using the predicted ANPP
and EC. We expect that the outcome of this research could offer a remote-sensing-based grassland
degradation monitoring methodology for long-term land resource management in semiarid regions.

2. Materials and Methods

2.1. Materials

2.1.1. Study Area Descriptions

The west Jilin Province (43◦59′~46◦18′ N, 121◦38′~126◦11′ E), one of the most serious saline-alkali
areas in the world [48], is located in the southern Songnen Plains in northeast China. The elevation
of the study area ranges from 100–200 m above sea level [49]. The area is influenced by temperate,
semi-arid continental monsoon climate. The mean annual precipitation is about 411 mm, which
increases gradually from west to east. The mean annual evaporation is about three times as much
as precipitation and increases from east to west. High evaporation and low precipitation are major
factors for soil salinization over west Jilin Province [39,50]. Average winter temperature is −16 ◦C and
summer is 23 ◦C. Winds are generally moderate year round, averaging 3–6 m/s [51,52].
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Grassland is the most widely distributed land cover type except cropland in this area. The species
of grass are Leymus chinensis, Phragmites australis, Leymus secalinus, Spodiopogon sibiricus, Cleistogenes
polyphylla, Chloris virgate, and Iris lactea var. chinensis. During past decades, the proportion of
Leymus chinensis decreased, but the proportion of unpalatable grassland increased with the increasing
prominence of ecological environment problems. The soils are Chernozem (Haplic Chernozem, FAO,
Rome, Italy), meadow soil (EutricVertisol, FAO, Rome, Italy), aeolian soil (Arenosol, FAO, Rome,
Italy), Solonetz (Solonetz, FAO, Rome, Italy), and Chestnut soil (Haplic Kastanozem, FAO, Rome,
Italy). The widespread fragmented, scar-like saline lands are part of the grassland. In the past
decades, about 20% of the grasslands in the west Jilin Province have been reclaimed as farmland due to
population growth and increased food demand; additionally, some regions of grasslands were depleted
by overgrazing [53]. These land uses all led to the rapid reduction in the area of natural steppes [54].
The phenomenon of grassland degradation is noticeable, seriously restricting the development of both
natural ecology and social economy. Figure 1 shows the location of the study area.
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Figure 1. Locations of study areas and the samplings’ locations mentioned in this paper, with true color
composite image of Landsat Operational Land Imager (OLI) in 2016 and 2017.

2.1.2. Remote Sensing and Pre-Processing

We used a total of six scenes from Landsat 8 OLI (https://www.usgs.gov/) and two Sentinel-2A
scenes (https://scihub.copernicus.eu/) from the year 2017. The sentinel-2A scenes were only used to
verify the accuracy of land cover type classification in 2017. Most of the image data for this study
is cloud-free and acquired during similar seasons (August–September). The spatial resolution is
30 m, which is sufficient for grassland and other land use analysis [49]. Geo-rectification, atmospheric
correction, and radiometric calibration were applied to each image prior to interpretation to correct
additive and multiplicative atmospheric effects; band reflection and spectral indices could be calculated
after processing [55]. In order to better understand the relationship between spectral information and
measured data in the field, we selected eight spectral indices, which include Normalized Differential
Vegetation Index [56,57], Enhanced Vegetation Index (EVI) [58], Soil Adjusted Vegetation Index
(SAVI) [59], and Salinity Index (SIs) [60,61]. All spectral indices are listed in Table 1.

https://www.usgs.gov/
https://scihub.copernicus.eu/
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Table 1. The expressions of spectral indices.

Spectral Index Expression Full Name

NDVI (NIR − Red)/(NIR + Red) Normalized Difference Vegetation Index
DVI NIR − Red Different Vegetation Index
EVI NIR/Red Enhanced Vegetation Index

SAVI (NIR − Red)/(NIR + Red + 0.5) × 1.5 Soil Adjusted Vegetation Index
SI

√
Green×Red Salinity Index

SI2
√

Green2 + Red2 + NIR2 Salinity Index2

SI3
√

Green2 + Red2 Salinity Index3
SI4 SWIR1/NIR Salinity Index4

2.1.3. Field Data and Samplings’ Processing

Soil and grassland biomass samples were collected from 170 sampling sites located in grassland
with different status. Three 0.5 m2 plots at peak biomass were selected in each area (10–21 August 2016
and 8–19 August 2017); green and recently dead grass material at the soil surface was clipped and
placed in paper bags [62]. After obtaining the grassland biomass, soil samples were collected from the
0–5 cm layer under the corresponding grassland. All grassland samples were dried for at least 48 h at
65 ◦C and then weighed. In order to more effectively compare with previous studies, grassland biomass
(g) units are expressed in the form of carbon (gC) [35,63]; biomass and the conversion coefficient (0.45)
were used to measure ANPP according to Piao et al. (2002) and Chen et al. (2008). The expression is as
follows:

Bg =
NPP

Sbn
(
1 + Sug

) (1)

Bg represents the hay yield of grassland per unit area (g/m2); Sbn represents the conversion
coefficient, the value is 0.45 and the unit is g/gC; and Sug represents the ratio coefficient of biomass
between the aboveground and underground parts of the grassland. In this study, we only analyze the
ANPP; therefore, the value was 0.

The EC was obtained by soil laboratory tests. First, each soil sample was crushed by pestle after
air-drying. Second, we prepared a 1:5 soil:water suspension by passing 10 g soil through a 2 mm
sieve. The suspension was mechanically shaken at 15 rpm for 1 h to dissolve soluble salts. Finally,
we tested the electrical conductivity using LEICI DDS-307A meter [16,64]. Results of the test showed
that four data points’ values were aberrant, so we deleted the data from these four sampling points
when establishing the inversion models. Currently, 166 valid sampling points have been divided into
two parts which included a training dataset (n = 116) and a validation dataset (n = 50).

Auxiliary data was used to support the interpretation and result analysis. Digital Elevation Model
(DEM, resolution 30 m) data was used for classification and geo-rectified. The reference/validation
sites for classification of land cover in 2017 were obtained from field survey, random extraction from
Sentinel-2A, and from Google Earth.

2.2. Methods

2.2.1. Object-Based Image Analysis (OBIA) and Decision Tree

Object-Based Image Analysis (OBIA) divides the image into non-overlapping objects; there is
no gap between objects, which is in accord with the topological relationship. OBIA involves pixels
being grouped into objects based on either spectral similarity of images or an external variable such as
ownership, soil type, or geological altitude [65]. An image object provides richer information, including
spectral information, texture, and geometric features, as well as the relationship between different
objects, such as distance [66]. There are three parameters that determine the segmentation effect:
Scale, shape, and compactness [67,68]. The optimal scale of segmentation is determined by multiple
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experiments and comparing effects. In this paper, the scale set to 100 for Landsat OLI could satisfy our
research requirements; the value of shape and compactness parameter was 0.3 and 0.6, respectively.

Decision tree (DT) is the process of using informative rule sets to realize classification [69].
The rules are easy to understand and the classification process is also in line with the cognitive process
of human beings [70]. The most distinctive characteristic of a decision tree is the flexibility to use
multi-source data such as vector data, different spatial resolution images, and other auxiliary data
(geographical, meteorological, and economic). Moreover, the decision tree could accept auxiliary data
as input data with incomplete records [71]. Therefore, interpretation of grassland was completed by
OBIA and DT. It is more difficult to extract grassland information compared with other vegetation
types such as farmland and forestland. Thus, the distribution of grassland was extracted in two
steps: (1) excluding the easily identifiable land cover types (non-vegetation, farmland, and forestland);
(2) confirming the edge of the grassland according to measured data and spectral information (Figure 2).
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(The threshold of each rule set varied with images. NIR is near-infrared band, R is red band,
G is green band. NDWI is the Normalized Difference Water Index, calculated from G and NIR bands).

2.2.2. Random Forest Regression

RF is a powerful machine learning classifier, which has good anti-noise ability for regression
performance yet has not been thoroughly evaluated in remote sensing [72,73]. RF is composed of
multiple decision trees, which can be predicted by combining a series of decisions of basic models [74]
improving the prediction accuracy by the average value of multiple classification decision trees on
each subsample [75]. RF uses a random input subset or variables in node partition instead of the best
variables, aims to reduce the generalization error, and achieves the highest accuracy [76]. Ultimately, RF
algorithm has the prominent advantages of being nonparametric, prediction results with high accuracy,
and the ability to measure the importance of variables compared to linear regression algorithms [73,76].

The fourteen variables used for grassland degradation assessment comprise eight spectral indexes
and six spectral bands. The variables for predicting ANPP and EC were screened by RF, which
excludes variables with a lower score of importance. R software package “randomForest” was used to
implement inversion of ANPP and EC, and the inversion models were confirmed by three parameters:
ntree, mtry, and nodesize [44,45]. The nodesize value defaulted to one, which represents the minimal size
of the terminal nodes of the tree; ntree specifies the number of decision trees contained in a random
forest; mtry specifies the number of variables in the node for the binary tree. Figure 3 illustrates how
to establish the relationship between remote sensing imagery and field measurement to obtain the
inversion models of soil salinity (EC) and ANPP inverse using RF.

The ntree boot samples (containing approximately one third of the elements of original dataset)
were randomly extracted with playback from the original dataset; the unselected samplings comprise
out-of-bag (OOB) data for testing. The prediction accuracy of each decision tree is determined by the
average OOB [77]. The importance score can test the variables importance, which is calculated by the
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increase percent in mean square error through permuting each variable when others are not changed.
Finally, the accuracy of RF is measured by the coefficient of determination (R2) and root mean square
error (RMSE). In addition, model uncertainty should be carefully presented as the model output [78].
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In our study, we not only verified the overall accuracy of the models, but also analyzed the spatial
distribution of the uncertainty of the inversion models. The spatial distribution of uncertainty provides
a map of the uncertainty rather than an RMSE and can therefore help understand and improve the
model from a geographical aspect. The flowchart is showed in Figure 4 and the specific steps are
as follows:

(1) Create a fishnet structure covering the region of grassland with a cell size of 2500 m and then
extract the center point of each cell to represent the locations (Figure 4a).

(2) Assign each center point an RMSE value that is calculated based on values of sample locations.
The value of the center points is the average RMSE value of multiple sampling points; the
sampling points are close to the center points with a control distance (Figure 4b), which is set as
3000 m based on the area of the study area and density of sampling points in this study.

(3) Move window to the next point until all center points are processed (Figure 4c).
(4) Delete points with null value and generate the spatial uncertainty of the model by the spatial

analysis tools.
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2.2.3. Grassland Degradation Model from the Principal Component Analysis

Both ANPP and EC are important indicators of grassland degradation. However, the grassland
degradation model must use their weighted combination, where the weights cannot be determined
from empirical studies due to the lack of reference. If the weights are determined arbitrarily, it is
difficult to justify or make the model generalizable. Herein, the weights of these two parameters were
calculated by principal component analysis.

The principle of PCA is to attempt to recombine the original variables into a new group of
independent comprehensive variables by orthogonal transformation. The transformed variables are
called principal components, each one being described by an eigenvector and its eigenvalue of the
covariance matrix of the input variables [79]. The principle components are combined by mutually
uncorrelated variables with maximal variance. The intuitive purpose of PCA is to reduce the dimension
of redundant data features, while retaining the most important part of the data features, so that the
main components can maintain the integrity of all the data information. The GDM value will be the
first principal component calculated by PCA method. The formula expression is as follows:

F = AU (2)

X is a matric with n rows and m columns. A is an adjusted data matric, which is equal to experiment
value (X) minus the average of each column, F represents the new variables which are calculated by
PCA, and U is a matric of the eigenvalue vectors which is calculated through A’s covariance.

F = AU =


a11 a12 · · · a1k
a21 a21 · · · a2k

...
...

an1 an2 · · · ank



λ11 λ12 · · · λ1m
λ21 λ22 · · · λ2m

...
...

λn1 λn2 · · · λnm

 =


v11 v12 · · · v1k
v21 v22 · · · v2k

...
...

vm1 vm2 . . . vmk

 (3)

C is the matrix of parameters’ coefficients which were calculated by eigenvalue and eigenvalue
vector. The expression is as follows:

Ci = Ui

√
Eigenvaluei (4)

i is the number of principle components, and Ci is the coefficient matrix of the parameters to the i
principal component of analysis result. In this part, input data were the spatial distribution of ANPP
and EC, which were calculated by RF method. The first component was the output result through
orthogonal transformation.
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3. Results

3.1. Random Forest Modeling for EC and ANPP

RF has the ability to rank the importance of variables before predicting ANPP and EC. Using the
RF method, we ranked the importance score of all variables and selected the variables with higher
scores as the variables for establishing the inversion models [45]. We measured variables of importance
for estimating ANPP and EC. Figure 5 shows the band Green and SI were more noticeable for the EC
model, and the band Coastal, NDVI, and SAVI had more importance than other predicted variables for
establishing the ANPP model. Taking this into consideration, we chose bands Green, Red, Blue, NIR
and spectral indexes SI and EVI as the predicted variables for inverse EC model and bands Coastal,
SWIR, Red, Blue and spectral indexes SAVI and NDVI as the predicted variables for establishing the
ANPP model.

The inversion results of ANPP and EC were determined by three parameters: nodesize, ntree,
and mtry [80]. Generally, mtry was tested one by one until the ideal value was found. The ntree can
roughly judge the value of the error stability in the model by graph. Optimized parameters’ value was
determined by the root mean square error. The result implies that the optimal model for ANPP was
established when ntree was 600 and mtry was 4; for EC, the inversion model was best when ntree was
400 and mtry was 3. R2 of the ANPP and EC models was 0.85 and 0.91, and RMSE was 15.81 g/m2 and
0.057 mS/cm, respectively.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 10 of 19 
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Figure 5. The importance score of variables for estimating aboveground net primary production
(ANPP) and electrical conductivity (EC). The higher the importance scores the more important the
variable for estimating ANPP and EC. SWIR is Shortwave Infrared; NIR is Near Infrared.

Additionally, we analyzed the spatial distribution of the uncertainty of the inversion models.
The introduction of the method has been described in Section 2.2.2. Figure 6 shows the spatial map of
uncertainty for grassland degradation parameters. Figure 6a shows that the higher RMSE of the ANPP
model was distributed in the north and east of the study area. RMSE in the central region was mainly
below 10 gC/m2, and that in northwest of the region was above 20 gC/m2. This means that the model
of ANPP was more effective in the central region than the north or the east regions. Figure 6b shows
that the RMSE of EC below 0.10 mS/cm nearly covered the entire area except for the central region and
a small part of the north region. For the EC model, the predicted values were much higher than the
measured values when the value of EC was above 1 mS/cm.
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3.2. Spatial Distribution of ANPP and EC Using RF

The spatial distribution of grassland in west Jilin Province was obtained by OBIA and using
a decision tree. The accuracy of grassland classification was assessed by field survey and random
extraction points from higher resolution images. The overall grassland classification accuracy was
92.55%. Larger patches of grassland were mainly distributed in the central and north area, while
smaller patches of grassland were scattered in the south of the study area. The grassland area was
606.73 × 103 ha over west Jilin Province in 2017.

The relationships between Landsat OLI imagery and sampling measurements were obtained by
RF aiming to predict ANPP and EC. Figure 7 shows the spatial distribution of ANPP and EC over west
Jilin Province. The Figure 7a showed that the ANPP value of grassland ranged from 32.912 gC/m2

to 273.794 gC/m2 and the mean value was 106.231 gC/m2. 44.45% of the area had an ANPP value
between 75–125 gC/m2, mainly in the central and north regions. 29.79% of the area had 125–200 gC/m2,
concentrated in the central and eastern regions. 17.43% of the area was below 75 gC/m2 located in the
middle regions.
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(b) the spatial distribution of soil salinity.

In order to have a clear understanding of the degree of soil salinization in the study area, we ranked
four levels for soil salinity using EC. When the value of EC was below 0.2 mS/cm, the region was
considered non-salt affected; EC ranging from 0.2 mS/cm to 0.4 mS/cm was considered slightly salted;
EC ranging from 0.4 mS/cm to 0.8 mS/cm was considered moderately salted, and EC above 0.8 mS/cm
was intensively salted. Figure 7b showed that the non-salt affected area showed scattered distribution,
mainly in the central and eastern parts of the region and only accounts for 16.39% of the total grassland
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area. Intensively salted regions were concentrated in the low-lying terrain area in the center of the study
area, and moderately salted regions were scattered in the middle and south of the area. The salt-affected
area was 509.72 × 103 ha, accounting for 83.61% of the study area; slightly salted was the most common
occurrence in salt-affected lands (116.88 × 103 ha), accounting for 19.17% of the area. The areas of
moderately salted and intensively salted were 183.82 × 103 ha and 209.02 × 103 ha, accounting for
30.15% and 34.28% of the grassland, respectively.

3.3. Assessment of Grassland Degradation

To effectively estimate grassland degradation, we considered both aboveground vegetation and
soil salinity (EC) of grassland. Grassland degradation model was established by combining the change
rate of EC and ANPP using the PCA method. The covariance matrix was built from the ground sample
data. Through matrix decomposition, we obtained two eigenvalues of 0.738 and 0.083. The first
component is defined by the largest eigenvalue 0.738 and the corresponding eigenvector (−0.261,
0.685)T. F1 represents the final data of GDM. The expression of GDM is as follows:

GDM = F1 = −0.224×ANPPadj + 0.588× ECadj (5)

ANPPadj and ECadj are adjusted ANPP and EC, respectively.
The map of grassland degradation was obtained by the above model. The first principal component

contains more information than ANPP or EC, respectively. We classified the first component to four
levels (non-degraded, slightly degraded, moderately degraded and intensively degraded) referenced
on China’s grassland degradation classification indicator studies [81] and China’s national standard
of “parameters for degradation, sandification, and salification of rangelands” (GB19377-2003) [23,28].
The evaluation of non-degraded grassland in the national standard is based on the characteristics of
surface vegetation and soil conditions of the same grassland types in the same hydrothermal conditions
near the monitoring area [82]. The results showed that the intensively degraded grassland almost
coincided with the intensively salted-affected area, and the values of ANPP in the intensively degraded
region were less than 75 gC/m2. The slightly degraded areas of grassland were mainly distributed in
the moderately salt-affected and slightly salt-affected areas where the values of ANPP above 125 gC/m2.
For moderately degraded region of grassland, the values of ANPP ranged from 55 to 125 gC/m2. This
part of the grassland was located on the moderately salt-affected and intensively salt-affected areas. The
results of statistical analysis show that 61.31% of grassland was degraded; the area was 373.78 × 103 ha.
Figure 8 shows that the non-degraded area of grassland was located in the center and east of the study
area, the intensively degraded area was located in the middle and north of the area, the moderately
degraded area was scattered throughout the whole region, and slightly degraded area was mainly
located on the west of the area. Intensively degraded land was most common in the grassland degraded
area, accounting for 34.52%, followed by moderately degraded land. The moderately degraded area
was 88.29 × 103 ha. There was only 12.30% grassland showing as slightly degraded; the area was
75.01 × 103 ha.
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4. Discussion

4.1. Random Forest versus Partial Least Squares Regression

To better demonstrate the advantages of the RF method in predicting grassland degradation
parameters, we compared the prediction results of the RF and PLSR methods. The PLSR is an extension
of multiple regression analysis, in which the effects of linear combinations of several predictors on
a response variable (or multiple response variables) are analyzed. Some researchers used PLSR to
estimate the biomass [83] and EC in the past [84,85]. PLSR uses its inferable ability to simulate the
possible linear relationship between spectral reflectivity and measured ground data. At the same time,
PLSR can also include multiple response variables to effectively deal with strong noise and collinearity
of predictive variables [86]. PLSR takes advantage of additional variables or non-linear preprocessing
of variables to deal with the non-linearity situation. However, the strategy of using additional factors
would cause over-fitting and reduce its real prediction ability [87]. RF could use averaging to improve
the predictive accuracy and control over-fitting.

Table 2 shows the result of estimating ANPP and EC using PLSR. For ANPP, the inversion models
implied that NDVI and SWIR were the best variables. For the EC model, the most influential variable
was the Green band. In our previous study, we found that the Green reflection rose significantly when
the EC value was above 1mS/cm, which explained why the inversion results of the power exponent
model had high accuracy [39].

Validation data (n = 50) was used to validate the predictive performance of the models. Figure 9
shows the accuracy of the RF and PLSR models. The validation results show that the R2 of the RF
models were significantly higher than the PLSR model. Figure 9a,c showed the relationship between
actual value and predicted value by RF; Figure 9b,d showed the relationship by PLSR. For ANPP, the R2

increased from 0.57 to 0.87 and from 0.81 to 0.95 for EC. These inversion models which were established
by RF had the highest R2 and lowest RMSE. The RF models explained over 85% of ANPP/EC variation,
with RMSE of 13.13 gC/m2 and 0.046 mS/cm, respectively. The results indicated that RF is a more
suitable technique than PLSR for the estimation and mapping of ANPP and EC.
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Table 2. The model comparisons of grassland degradation parameters.

Type of Model ANPP R2 RSME (gC/m2)

Linear ANPP = 234.561NDVI + 34.067 0.540 ** 20.696
Polynomial ANPP = 133.798NDVI2 + 153.18NDVI + 43.186 0.545 ** 20.592
Exponential ANPP = 43.896e2.494NDVI 0.529 ** 21.065

LTU ANPP = 256.824 + 351.608NDVI − 287.695SWIR 0.571 ** 20.048

Type of Model EC R2 RSME (mS/cm)

Linear EC = 4.2862Green − 0.5525 0.682 ** 0.471
Polynomial EC = 7.1997Green2

− 0.7424Green + 0.0748 0.735 ** 0.437
Power exponent EC = 3.982Green1.867 0.738 ** 0.429

LTU EC = 6.296Green − 1.982SWIR − 0.186 0.703 * 0.452

* represents significance at the 0.05 level; ** represents significance at the 0.01 level; bold number means the
maximum value in a column; LTU means linear equation in two unknowns. The unit for ANPP was gC/m2, and
unit for EC was mS/cm.
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RF has integrated learning, both variance and deviation are relatively low, and the generalization
performance is superior compared with classical regression trees. RF can provide an effective method
to balance the error of datasets when there is an imbalance in classification. Because RF is a tree model,
we can use it directly without normalization. Although RF resembles the “black box” method more
than PLSR, it still interprets the meaning of decision trees by variable importance [88].

4.2. The Importance of Soil Salinity

The west Jilin Province is an ecologically sensitive and fragile zone with a wide area of soil
salinization and is one of only three alkali lands in the world. Soil salinization seriously restricts the
development of natural steppes and animal husbandry [42]. Soil salinity is a major driving factor of
grassland degradation. Numerous grasslands are distributed on the salted soils in west Jilin province,
and the issue of grassland soil salinization is attracting increasing attention. With the exacerbation of
soil salinization, the exposed proportion of alkali spots significantly increased [39,54]. Soil salinization
is one of the major factors restricting the sustainable development of ecology in the west of Jilin
province, reducing the production of vegetation, increasing the proportion of non-palatable grassland,
and affecting the diversity of vegetation species [22,39]. Figure 10 shows the different statuses of
grasslands at different levels of soil salinity; Figure 10a showed the grassland coverage, the coverage
rate from high to low is a1 > a3 > a4 > a2, Figure 10b showed the levels of salt-affected soil, the order of
soil salinization is b3 > b2 > b4 > b1 from high to low. The soil salt level in Figure 10b3 was higher than
other samples; however, the plant coverage was not the lowest. If the grassland degradation model only
focused on the grassland cover or yield of grass, this situation would be mistaken for non-degraded
areas. In fact, with the increase of soil salinization, the rate of dominant grass species has decreased.
GMD overcame the over-reliance on grassland coverage and grass production ability to analyze
grassland degradation and produced an effective model which was closer to the actual situation.
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Due to soil salinity, 83.61% of grasslands were salt-affected regions. Moreover, the moderately and
intensively salted regions were the most common types in salt-affected grassland areas. Therefore, the
salinization of grassland is a factor that cannot be ignored in the evaluation of grassland degradation.
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In past studies, the total area of grassland decreased and grassland was the most severely
salt-affected vegetation type in past decades [7,16,39]. Moreover, soil salinity is the key factor of
grassland degradation in west Jilin Province [89]. In this paper, we realized that the extremely salted
areas had high correlation with strongly degraded grassland. It was found that the health and
prosperity of grasslands are highly correlated with soil status; however, this notion is not clearly
pointed out in most grassland degradation studies, and soil salinity was seldom integrated into the
model calculation of grassland degradation. In previous studies, more attention has been paid to
aboveground biomass, plant coverage, and species of vegetation than soil properties in estimating
grassland degradation. This groundbreaking study achieves a comprehensive evaluation of grassland
degradation from a new point of view.

4.3. Uncertainties of Grassland Degradation

Remote sensing offers multiple sensing technologies to monitor grassland degradation. Monitoring
grassland degradation via establishing models using measurements and satellite imagery has become
much more reliable means compared with traditional methods. There are two major problems facing
the assessment of degradation: (i) the uncertainty of baseline assessments and indicator systems and
(ii) the misuse of remotely sensed data sources. Liu et al. assessed the grade of grassland degradation
using the grass coverage ratio and the proportion of unpalatable grasses, which were sampled by
1 m2 plots; then the risk of degradation model of grassland was obtained by weighted summation
with a weight of 0.5 assigned to each parameter [24]. Wei et al. realized the grassland degradation by
change rates of grassland cover and NPP, and then quantitatively assessed the contribution of driving
forces [8]. Some studies assessed the grassland degradation by interpreting remote imagery with
different levels [90]. In these studies, there was some uncertainty in grassland degradation, caused by
the selection of degradation indicators and weights allocation of assessment indicators. Moreover,
the image resolutions, influence of bands, interpreter’s cognition for study area, and professional
skills have an impact on the results of grassland degradation. Previous studies show that the spatial
distribution of the grassland was primarily affected by the salt in the surface soil over semi-arid or
arid regions [37]. In our paper, we selected ANPP and soil salinity as the research parameters of
grassland degradation system according to the soil characteristics of west Jilin Province. Moreover,
in weight distribution of parameters, we use the PCA method instead of artificial decision to reduce the
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uncertainty caused by human interference. Although we have ameliorated the grassland degradation
assessment method, there are still some uncertainties. Figure 6 shows the spatial uncertainties of
ANPP and EC models and how to reduce the higher RMSE in the south and eastern regions. Further
improving the accuracy of grassland degradation is the main focus of our future research.

5. Conclusions

In this research, we assessed grassland degradation by not only its coverage but also its quality
and productivity. We established a new grassland degradation model, which was specially designed
for semiarid regions, based on aboveground net primary production and soil salinity using 166 field
samplings. The grassland degradation parameters were assessed by RF verifying the relationship
with spectral indices and individual bands from the satellite images. The result shows that the
RMSE of ANPP was 15.81 gC/m2 (R2 = 0.85) and that of EC was 0.057 mS/cm (R2 = 0.91). GMD was
obtained by estimating ANPP and EC using PAC. GMD revealed 61.31% of grassland was degraded
in the study area. Intensively degraded land was most common in the grassland degraded area,
accounting for 34.52% of the area, followed by moderately degraded. The moderately degraded area
was 88.29 × 103 ha. Only 12.30% of grassland showed slight degradation, and the area was 75.01 × 103

ha. Our results demonstrate that our method is a viable solution to grassland degradation monitoring
through remote sensing and in-situ data collection of ANPP and EC. In addition, government-aided
restoration and protection measures should be implemented in a routine manner, with higher intensity,
to minimize future grassland degradation in the west Jilin Province of China.
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