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Abstract: For improved drought planning and response, there is an increasing need for highly
predictive and stable drought prediction models. This paper presents the performance of both
homogeneous and heterogeneous model ensembles in the satellite-based prediction of drought
severity using artificial neural networks (ANN) and support vector regression (SVR). For each of the
homogeneous and heterogeneous model ensembles, the study investigates the performance of three
model ensembling approaches: (1) non-weighted linear averaging, (2) ranked weighted averaging,
and (3) model stacking using artificial neural networks. Using the approach of “over-produce then
select”, the study used 17 years of satellite data on 16 selected variables for predictive drought
monitoring to build 244 individual ANN and SVR models from which 111 models were automatically
selected for the building of the model ensembles. Model stacking is shown to realize models that
are superior in performance in the prediction of future drought conditions as compared to the linear
averaging and weighted averaging approaches. The best performance from the heterogeneous
stacked model ensembles recorded an R2 of 0.94 in the prediction of future (1 month ahead) vegetation
conditions on unseen test data (2016–2017) as compared to an R2 of 0.83 and R2 of 0.78 for ANN and
SVR, respectively, in the traditional approach of selection of the best (champion) model. We conclude
that despite the computational resource intensiveness of the model ensembling approach, the returns
in terms of model performance for drought prediction are worth the investment, especially in the
context of the continued exponential increase in computational power and the potential benefits of
improved forecasting for vulnerable populations.

Keywords: ensemble; support vector regression; artificial neural networks; drought risk management;
drought forecasting; ensemble member selection

1. Introduction

Droughts are temporary and recurrent events characterized by the absence of precipitation over
an extended period of time [1]. Usually, one distinguishes between meteorological, hydrological,
agricultural, and socio-economic droughts, as documented in UNOOSA [2]. The need for drought
monitoring is commonly accepted and is well understood in the context of losses arising from drought
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occurrence and the need for planned action. Losses from past droughts are documented, for example
in Government of Kenya [3] and Cody [4] with a detailed review of a range of impacts in Ding et al. [5].

Common approaches for drought monitoring have been described in detail in Rembold et al. [6],
AghaKouchak et al. [7] and Mishra & Singh [8] amongst others. Drought monitoring usually happens
in the context of drought early warning systems (DEWS) that are increasingly either near real time or
ex-ante (predictive). Well known near real time (NRT) systems include for example the univariate system
of BOKU (University of Natural Resources and Life Sciences, Vienna) [9] and the Famine Early Warning
Systems Network (FEWSNET) [10], both using Moderate Resolution Imaging Spectroradiometer
(MODIS) vegetation data. The US drought monitor [11] is a well-known multi-variate system.

Predictive systems are either based on a single variable/index, a multi-variable index or multiple
indices (variables). Single variable indexes, especially those based on the standardized precipitation
index (SPI), are for example deployed in Ali et al. [12] and Khadr [13]. The single variables approach
mostly predicts one type of drought mostly meteorological. The single variable indices are generally
easy to interpret as compared to multi-variable (super-index) indices like in the case of the Enhanced
Combined Drought Index (ECDI) in Enenkel [14] and Multivariate Standardized Drought Index (MSDI)
in Hao & AghaKouchak [15]. While ECDI integrates four input datasets (rainfall, soil moisture, land
surface temperature, and vegetation status), the MSDI integrates the Standardized Precipitation Index
(SPI) and the Standardized Soil Moisture Index (SSI) for drought characterization. Increasingly, the use
of multiple variables in predictive drought systems is gaining strength. In those systems, multiple
indices are used to build predictive systems. Examples include the use of 11 variables and indices in
Tadesse et al. [16]. In the work of Adede et al. [17], 10 variables are used in the prediction of future
vegetation conditions. Adede et al. [17] further documents the limitation of the methods applied in
common predictive systems including: the use of single techniques and the loss of opportunity in the
selection of single models even in multivariate systems.

The increasing popularity of predictive DEWS is based on their ability to aid stakeholders to react
before a crisis occurs especially in the light of increased damages suffered from droughts. The significant
limitation of drought forecasting is the chaotic behavior of the atmospheric system and its interaction
with the land surface. The proliferation of multiple indices and variables for drought monitoring has
led to the need for multi-variate models that are both highly predictive and stable over time to support
proactive drought risks management (DRM) initiatives. One way to improve stability and accuracy of
models is model ensembling.

Variously, model ensembling is defined as the formulation of multiple individually trained models
and the subsequent combination of their outputs [18–21]. In this sense, model ensembling is akin to the
innate human nature of seeking multiple opinions in decision making. Model ensembling, therefore,
aims to produce more accurate and more stable predictors that arise from the ability to average out
noise and with that achieve better generalizability [20,22]. According to Mendes-Moreira et al. [23],
model selection has three advantages: (1) reduces computational costs, (2) increases prediction accuracy,
and (3) avoids the multi-collinearity problem.

The common issues in model ensembling include (i) the process for over-production of ensemble
base models, (ii) the selection of the base models for ensemble membership, and (iii) the combination
of the outputs of the ensemble members. At the heart of the over-production of base models is
hyper-parameter tuning. Hyper-parameter tuning is critical in instances when automation of model
building and selection is a key objective like in Nay et al. [24] in which three hyper-parameters needed
to be tuned for a gradient boosted machine (GBM). The issue of the selection of ensemble membership
deals with the question of which sub-set of the models from the model over-production process offer
the best predictive power. The problem of ensemble membership selection is for example documented
in Partalas et al. [25], Re & Valentini [21] and Reid [26]. The distinct approach to ensemble member
prediction includes greedy search [25], ensemble pruning [21] and statistical ensembling methods
in Escolano et al. [27]. Greedy search takes local optimal decisions when changing the size of a
current set and differs from ensemble pruning that uses both statistical and semi-definite programming
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approaches to determine best ensemble sizes. On the other hand, the statistical ensemble method
uses resampling to estimate the accuracy of individual members and multiple comparisons to choose
ensemble membership.

Related work on ensemble modeling includes the use of bagging and boosting that both aim to
generate strong learners from weak learners [20,28]. While bagging reduces variance by averaging
predictions from multiple sub-sets of the training data, boosting increases model performance by
sequentially learning models. Apart from bagging and boosting, an increasingly common approach to
model ensembling is stacking. Stacking a meta/super learner is used to combine weak base predictors
to reduce generalization error. Dzeroski & Zenko [29] documents stacking as having a performance at
least comparable to the selection of the best classifier. The study in Belayneh et al. [28], for example,
uses both bagging and boosting, and a single index in drought prediction using wavelet transforms,
while Ganguli & Reddy [30] used the copula method on support vector regression (SVR) to simulate
ensembles of drought forecasts. On the contrary, the systems in Wardlow et al. [31] and Tadesse
et al. [32], for example, use multiple indices in the forecasting of future vegetation conditions.

Model ensembles can either be homogeneous, and thus based on the same technique [33],
or heterogeneous and hence multi-technique [26]. Theoretically, due to the diversity of their membership
as a result of different base learners [26], heterogeneous models should outperform homogeneous
model ensembles. The superiority of the heterogeneous ensemble is for example empirically shown
in the diagnosis of cancer [34]. The objective of this study is to investigate the performance of both
homogeneous and heterogeneous multi-variate model ensembles in the prediction of vegetation
conditions using ANN and SVR as the chosen case study techniques. The model ensembles are realized
using three different ensemble approaches: non-weighted averaging, weighted averaging and ANN
driven model stacking and their performance evaluated against that of the champion models.

2. Material and Methods

2.1. Study Area

The study area (Figure 1) covers an area of over 215,000 km2 in Northern Kenya. The area
covers four counties that are classified as arid counties within Kenya’s arid and semi-arid lands
(ASALs). The study area is characterized by both low rainfall and low vegetation cover with an average
normalized difference vegetation index (NDVI) of below 0.4 except for May and November where
NDVI peaks at 0.43. The rainfall averages around 250 mm for Turkana, Marsabit and Mandera and a
little higher at around 370 mm in Wajir. Kenya experiences a bimodal rainfall pattern with two rainy
seasons in March–May (MAM) and October–December (OND). Across the counties in the study area,
5–6 months are considered “wet”. Additional details are documented in Klisch & Atzberger [9], Adede
et al. [17] and De Oto et al. [35].
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Figure 1. The study area (to the right) and its location within Kenya. The inset (left) provides the
location of Kenya in Africa while the map of Kenya (center) shows the grouping of the 47 Kenyan
counties into arid and semi-arid lands (ASAL) and non-ASAL.
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2.2. Geodata

The study uses 22 variables and indices derived from rasterized information about vegetation,
precipitation, temperature, and evapotranspiration. The variables are grouped into three
dataset-categories: vegetation, precipitation and water balance datasets. The data used in the
study covered the period March 2001 to December 2017 and are as described in Table 1.

Table 1. The study base datasets: categories, sources and description. The sources are grouped into three
classes: (1) precipitation-related indices, (2) vegetation-related indices, and (3) water balance indices.

Base Dataset Source Description

Vegetation

Normalized Difference Vegetation
Index (NDVI) LPDAAC Didan [36,37]

Combination of both MODIS Terra
(MOD13Q1) & MODIS Aqua (MCD13Q1)
using the Whittaker smoothing approach [9]

Precipitation

Rainfall Estimates (RFE) RFE from both TAMSAT
[38] and CHIRPS [39]

TAMSAT version 3.0 product & CHIRPS
version 2.0 product aggregated and
spatially sub-set by BOKU

Water Balance

Land Surface Temperature data
(LST) LPDAAC [40]

MODIS Terra Land Surface
Temperature/Emissivity 8-Day L3 Global
1km SIN Grid V006 product (MOD11A2)

Evapotranspiration (EVT) LPDAAC [41]
MODIS/Terra Net Evapotranspiration 8-Day
L4 Global 500 m SIN Grid V006
(MOD16A2).

Potential Evapotranspiration
(PET) LPDAAC [41] MODIS/Terra Net Evapotranspiration 8-Day

L4 Global 500 m SIN Grid V006 (MOD16A2)

Standardized
Precipitation-Evapotranspiration
(SPEI)

SPEI Global Drought
Monitor [42]

The standardized difference between
precipitation and potential
evapotranspiration [43].

LPDAAC = Land Processes Distributed Active Archive Center; MODIS = Moderate Resolution Imaging
Spectroradiometer; TAMSAT = Tropical Applications of Meteorology using Satellite; CHIRPS = Climate Hazard
Group InfraRed Precipitation; BOKU = University of Natural Resources and Life Sciences, Vienna.

2.3. Predictor and Target Variables

The above datasets are transformed to indices/variables that are then used for the predictive
study following two rescaling approaches: (i) the calculation of relative range differences and (ii) the
standardization approach.

The relative range difference is calculated as shown in Equation (1).

RRh(c, i) = 100 ∗
(

[X(c, i) −MIN(c, i)]
[MAX(c, i) −MIN(c, i)]

)
(1)

where RRh is the scaled relative range difference, X(c,i) the current value, MIN(c,i) the historical
minimum, and MAX(c,i) the historical maximum.

The standardization approach involves fitting the base dataset to an appropriate probability
distribution so that the mean of the transformed variable is zero and the standard deviation is
equivalent to one. The necessary computations are outlined for example in Vicente-Serrano et al. [43]
and WMO [44].

Both the relative range and standardised transformations are done at the pixel level (c) for each
time step (i) prior to aggregation. The variables/indices used in this predictive modelling study are
from the datasets listed in Table 1 and are described in Table 2.
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Table 2. Variables used in the study to predict vegetation condition index (VCI). Near infrared (NIR)
and Red are the spectral reflectances in near infrared and red spectral channels of MODIS satellite.

No Variable Variable Description Index Calculation

1 NDVIdekad NDVI for last dekad of the month NDVI = (NIR-Red)/(NIR + Red)

2 VCIdekad VCI for the last dekad of the month Transformed NDVI based on Equation (1)

3 VCI1M VCI aggregated over 1 month Transformed NDVI based on Equation (1)

4 VCI3M VCI aggregated over the last 3 months Transformed NDVI based on Equation (1)

5 TAMSAT_RFE1M TAMSAT RFE aggregated over 1 month TAMSAT RFE version 3 product (in mm) [38]

6 TAMSAT_RFE3M TAMSAT RFE aggregated over the last 3
months TAMSAT RFE version 3 product (in mm) [38]

7 TAMSAT_RCI1M TAMSAT Rainfall Condition Index
(RCI) aggregated over the last 3 months TAMSAT RFE based on Equation (1)

8 TAMSAT_RCI3M TAMSAT RCI aggregated over the last 3
months TAMSAT RFE based on Equation (1)

9 TAMSAT_SPI1M
TAMSAT Standardized Precipitation
Index (SPI) aggregated over the last 1

month

TAMSAT RFE transformed to a normal
distribution so that SPImean c,i = 0 [44].

10 TAMSAT_SPI3M TAMSAT SPI aggregated over the last 3
months

TAMSAT RFE transformed to a normal
distribution so that SPImean c,i = 0 [44]

11 CHIRPS_RFE1M CHIRPS RFE aggregated over 1 month CHIRPS RFE version 3 product (in mm) [39].

12 CHIRPS_RFE3M CHIRPS RFE aggregated over the last 3
months CHIRPS RFE version 3 product (in mm) [39].

13 CHIRPS_RCI1M CHIRPS RCI aggregated over the last 1
month CHIRPS RFE based on Equation (1)

14 CHIRPS_RCI3M CHIRPS RCI aggregated over the last 3
months CHIRPS RFE based on Equation (1)

15 CHIRPS_SPI1M CHIRPS SPI aggregated over the last 1
month

CHIRPS RFE transformed to a normal
distribution so that SPImean c,i = 0 [44].

16 CHIRPS_SPI3M CHIRPS SPI aggregated over the last 3
months Same as Index No. 15

17 LST1M LST aggregated over 1 month Average LST over the last one month

18 EVT1M EVT aggregated over 1 month Average MODIS EVT over the last month

19 PET1M PET aggregated over 1 month Average MODIS PET over the last month

20 TCI1M Temperature Condition Index (TCI)
aggregated over 1 month MODIS LST based on Equation (1)

21 SPEI1M
Standardized Precipitation

Evapotranspiration Index (SPEI)
aggregated over 1 month

Follows the standardization approach on the
difference between precipitation (Pi) and

potential evapotranspiration (PETi) using the
logistic probability distribution

22 SPEI3M SPEI aggregated over the last 3 months Same as Index No. 21

Note: Variables 1–4 are vegetation indices while variables 5–16 are two sets of precipitation indices from TAMSAT
(5–10) and CHIRPS (11–16), respectively. The study methodology is designed to select between TAMSAT and
CHIRPS for the modeling process. Variables 17–22 are commonly used together with the vegetation and precipitation
indices in predictive drought modeling and are used in this study as water balance variables.

The NDVI dataset in Table 1 (variable 1) is smoothed in NRT using a modified Whittaker smoothing
algorithm [9,45]. The study in Atkinson et al. [46] documents the performance of the Whittaker smother
against four others. The NDVI dataset is directly sourced from BOKU University, Vienna. Those
smoothed and gap-filled NDVI values are used to calculate the three remaining vegetation datasets
(variables 2–4) in Table 2. All vegetation datasets are calculated at the pixel level prior to aggregation
in both time and space. The vegetation condition index (VCI) variables are calculated following the
relative range formula in Equation (1). The precipitation datasets from both CHIRPS and TAMSAT are
also calculated at the pixel level prior to aggregation. While the RCI-based datasets (variables 7,8,13,
and 14) follow Equation (1), the SPI variables (variables 9,10,15, and 16) have the base dataset (RFE)
fitted to a probability distribution then transformed to a normal distribution so that the SPI has a mean
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of zero (0) and a standard deviation of one (1) as recommended by WMO [44]. The SPEI datasets are
also standardized following the logistic probability distribution [42,43].

2.4. The Learning Scenario

To be able to develop predictive drought monitoring models, the phenomenon of drought needs
to well defined. Following the literature review, we considered the following key characteristics in
its definition: spatial coverage, severity and duration. With these key concepts, we formulate the
predictive drought monitoring problem using Equation (2).

D(i, j) = f (x1, x2, x3 · · · xn) (2)

where D(i, j) is a quantification of drought severity (intensity) for a spatial extent i at time j, and f is a
function that accepts a set of n (n ≥ 1) variables and transforms them to approximate the real value for
drought severity D(i, j). The n variables x1, x2, x3 · · · xn are predictor variables that are used in drought
monitoring. We interpret f as machine learning (ML) technique generated functions using artificial
neural networks (ANN) and support vector regression (SVR) as case study techniques. The study in
Atkinson & Tatnall [47], for example, provides an introduction to the use of ANN, particularly the
backpropagation algorithm in remote sensing. A valuable review of support vector machines (SVM) in
remote sensing can be found in Mountrakis et al. [48].

The learning scenario in this study therefore involves the need to define D(i, j) for all the four
counties in the study area and to over-produce and select the appropriate f’s to be selected for
model ensembling.

2.5. Definition of Drought (D(i, j))

Given that drought severity, D(i, j), cannot be directly quantified, the practice is to use proxy
index(es) in its quantification. The most common proxies are the SPI and the VCI. Based on McKee
et al. [49], the SPI values are typically between −3 and +3 with higher values indicating wet conditions,
and vice versa. The VCI [9,50,51], on the other hand, is a relative range normalization of the NDVI in
the 0–1 range (both end points included) that is generally scaled to the 0–100 range. Values below 0
and beyond 100, respectively, are possible if new minima or maxima occur.

From the properties of both the SPI and VCI, we chose the VCI as the basis of definition of drought
for four reasons:

• with a range of 0 to 100, VCI is easy to interpret.
• as an index, VCI is indicative of agricultural drought, which is a later stage drought as compared

to meteorological drought indicated by SPI.
• VCI is more directly related to food and fodder availability in the study area compared to SPI.
• VCI is a measured quantity as opposed to the SPI that is, for the case of this study,

a modelled quantity.

The task of drought prediction is therefore expressed as the task of predicting future (1 month ahead)
VCI values aggregated over 3 months (VCI3M) using lagged values of the studied predictor variables.
The aggregation over 3 months was chosen as this better reflects drought severity and duration.

2.6. Handling of Duplicate Precipitation Datasets and Variable Selection

The study processed a duplicate set of precipitation variables from TAMSAT and CHIRPS,
respectively (see Tables 1 and 2). To avoid including redundant variables from the same group, and
in order to test which of the two precipitation datasets is most predictive, a variable selection was
performed in this study. The aim was to select between TAMSAT and CHIRPS variables for the
prediction of future drought intensity as defined by VCI3M.
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Multiple methods were used in the selection between the two datasets. Test for normality
using both density plots and Shapiro Wilk test informed the choice of methods for variable selection.
Subsequently, correlational analysis, step-wise regression, Akaike information criterion (AIC), Relative
importance (RImp) of variables, and a modelling approach to variable selection were used to establish
which datasets between TAMSAT and CHIRPS to use in the modeling process.

2.7. Modelling Methodology

With the drought prediction problem formulated as in Equation (2), the modelling methodology
is reduced to the search for all the f’s built from ANN and SVR that approximate drought severity
(D(i, j)). A subset of these f ’s deemed to offer the best approximation of (D(i, j)) based on an objective
performance measure are then chosen and their outputs combined to predict future (D(i, j)) values.

2.7.1. Model Building

Bagging, as a method of model ensembling, is used as a standard to build both the ANN and SVR
models in a setup in which the training dataset (2001–2015) is resampled as indicated in the model
building process (Figure 2). The main steps in the model building process are sampling, actual model
building and model performance evaluation for both ANN and SVR techniques. Not indicated in the
model building process is normalization of the variables prior to building of the models.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 8 of 29 
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membership. The actual model building process using both ANN and SVR are preceded by a model
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and second, the use of cut-off criteria on models considered predictive enough to be included in the
ensembles. Not included in this scheme is the fact that all variables were normalized prior to modeling
to ensure the input variables were all at a comparable range.
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2.7.2. Model Space Reduction & the Ensemble Membership

After the selection between TAMSAT and CHIRPS variables, the study has 16 variables. The initial
cardinality of the modelling space, with VCI3M as the target variable, is a massive 65,535 models from
all the 16 lagged predictors.

To achieve a reduction in the cardinality of the model space, we group the variables into categories
and follow this up with assumptions. The 16 variables are grouped into three categories:

• vegetation (VCI3M, NDVIDekad, VCI1M & VCIdekad),
• precipitation (RFE1M, RFE3M, RCI1M, RCI3M, SPI1M & SPI3M) all from TAMSAT, and,
• water balance variables (LST1M, EVT1M, PET1M, TCI1M, SPEI1M & SPEI3M).

The grouping of variables is for example validated for soundness in Adede et al. (2019). The process
of model space reduction is presented in Figure 3.
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variable of a type (precipitation, vegetation and water balance) reduces the set of possible models
from 65,535 to 244. The selection of models with higher performance (R2

≥ 0.7) and the subsequent
elimination of overfit models further reduces the model space to 143 models. The set of 143 models is
subjected to the ensemble membership selection process using a greedy version of iterative elimination
of models from the ensemble as long as no significant loss in performance is recorded. In this way,
a final model space with 111 models is achieved.

All the 244 models were built using both the ANN and SVR techniques. A further reduction was
achieved by only retaining the 145 models that had R2

≥ 0.7 from both the ANN and SVR techniques.
Two further models were removed as they were indicating overfitting problems—here characterized to
have more than a 3% loss in performance (ANN) between training and validation. This reduced the
model space from 145 to 143 ANN models that were the basis of the search for the smallest sub-set
of the ensemble membership that is most predictive. Even though model selection was done suing
R2, it was the case that adjusting for the possible influence of the number of variables in the models
through the use of adjusted R2 resulted in the same ranking of the models. Alternative model selection
using root mean squared error (RMSE) also results in a similar ranking of the models.

The ensemble membership was realized from an experimental process. The experimental process
involved the ranking of all the models by descending R2, the iterative elimination of the lowest ranked
models in batches of five from the ensemble, and a recalculation of the performance of the ensemble
as measured by R2. The elimination was stopped when a significant reduction in performance was
realized. After such a drop-in performance, the last batch of five were eliminated and added to the
model one at a time to the best former set of models. The membership was then chosen as the least
membership for which R2 is greedily maximized. This process led to the final 111 models (Figure 3).
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2.7.3. Sampling Process

To build the requisite set of models, the dataset (March 2001 to December 2017) was partitioned
into in-sample and out-sample data in an approach similar to that used in Adede et al. (2019)
and Nay et al. (2018). The in-sample data was, subsequently, repeatedly and randomly split into
training and validation datasets in the ration of 70:30 for each iteration of the model building process.
The partitioning of the dataset (Figure 4) has the in-sample data covering the period 2001 to 2015,
whereas the out-sample that was exclusively used for model testing covers the period 2016–2017.
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Figure 4. Sampling approach for model building (training and validation) and model testing. Only data
from 2001 to 2015 was used for model building. Models were only tested using data from 2016–2017.
The in-sample was randomly split (70:30) for model building and validation.

2.7.4. ANN and SVR Model Building Process: Model Parameters and Model Assessment

The 244 models formulated after the assumptions were subjected to an automated brute-force
process that built, assessed and logged the performance of each of the models, both for the ANN and
for the SVR case study techniques (Figure 2).

The choice of the model hyper-parameters for the ANN process followed the rule of thumb in
Huang [52] together with an experimental process. The selected ANN had a three-layer fully connected
architecture (excluding input layer) with a formation of 2–5–3–2 (12 nodes and 2 hidden layers).
The ANN were trained using resilient backpropagation (RPROP) using the logistic activation function.
RPROP has relatively fast convergence speed, accuracy and robustness without the requirement for
parameter tuning as documented in Riedmiller & Braun [53] and in Chen & Lin [54]. For SVR, we did
an initial run that realized the best performance of all the models at an epsilon of 0.2 and a cost
parameter of 32. The search for the single optimal configuration for the SVR technique followed the
grid search approach using the statistical computing software R.

Model performance evaluation was done using the coefficient of determination (R2). Error
measures like mean absolute error (MAE), root mean squared error (RMSE) and mean absolute
percentage error (MAPE) were also calculated.

2.8. Homogeneous and Heterogeneous Model Ensembling Approaches

The different models built were selected and their scores combined in two distinct approaches:
homogeneous ensembles in which only models from one technique are combined and heterogeneous
ensembles that combines the outputs from both ANN and SVR techniques.

For both the homogeneous and heterogeneous ensembles, three methods of ensembling (Figure 5)
were investigated:

• simple averaging (non-weighted) that assumes equal weights for the individual models,
• rank weighted averaging that uses performance in validation as weights and,
• model stacking that uses an ANN perceptron to learn model weights.
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Figure 5. Schema of the model ensemble approaches for simple averaging (left), weighted averaging
(center) and model stacking (right). In the simple averaging approach, the models have equal weights
and so the model outputs are non-weighted. In the weighted averaging approach, the performance
of the models in the validation dataset is used to assign weights to the model. The model stacking
approach uses the outputs of the individual models as inputs to a meta model (ANN perceptron) that
is then used to tune weights assigned to the individual models.

In the weighted averaging approach, the prediction of each model is weighted by the performance
(R2) of the model in the validation dataset as a proportion of the sum of the R2 of all the models in
the ensemble. Although the model stacking approach uses the same procedure as that of weighted
averaging to scale the model weights, the process of realizing the weights is different. In model
stacking, the prediction of each model in the validation dataset is used as an input to a perceptron that
is then used to learn the set of weights to the inputs that realizes the best performance for the ensemble
in the estimation of future vegetation conditions.

2.9. Performance Evaluation of the Model Ensembles

The process for evaluating the performance of the model ensembles had the following steps:

• the selection of a common measure of performance.
• the identification of the base models for comparison.
• scenarios of performance of the best individual models as compared to model ensembles.

Performance in regression was evaluated using R2 while performance in classification was
evaluated using accuracy. The best ANN and SVR models were used as the base models. Performance
in classification was analyzed following the five vegetation deficit classes defined on VCI3M as used in
Klisch & Atzberger [9], Adede et al. [17], Klisch et al. [55], and Meroni et al. [56] (2019). This classification
is presented in Table 3.
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Table 3. Drought classes used to assess the performance in classification. The drought classes quantify
the vegetation deficit as described in Klisch & Atzberger [9], Adede et al. [17], Klisch et al. [55], and
in Meroni et al. [56]. VCI3M is the 3-monthly Vegetation Condition Index (VCI) from filtered and
gap-filled MODIS NDVI data.

VCI3M VCI3M
Description of Class Drought Class

Limit Lower Limit Upper
≤0 <10 Extreme vegetation deficit 1
10 <20 Severe vegetation deficit 2
20 <35 Moderate vegetation deficit 3
35 <50 Normal vegetation conditions 4
50 ≥100 Above normal vegetation conditions 5

3. Results

3.1. Selection between TAMSAT & CHIRPS

As a basic design choice, we decided to use either TAMSAT or CHIRPS variables for drought
prediction. The choice between TAMSAT and CHIRPS was undertaken using multiple methods, taking
into account that the non-SPI datasets of both TAMSAT and CHIRPS are not normally distributed.
The choice was informed by the following four indicators:

• the spearman’s correlation on the 1-month lag of the variables with VCI3M
• Akaike information criterion (AIC)
• relative importance of variables as partitioned by R2

• using SVR and general additive model (GAM) techniques

From the multiple selection metrics, even though both precipitation datasets were competitive
in drought prediction, TAMSAT generally produced better-ranked variables and was the dataset
chosen for model building. The single highest correlation was observed for 3-monthly TAMSAT SPI.
The spearman’s correlation on the 1-month lag of all variables with VCI3M as the predicted variable
returned the results in Table 4 for each of the indicators for each of the TAMSAT and CHIRPS datasets.
Between the TAMSAT and CHIRPS variable pairs, the TAMSAT variables are more highly correlated
to drought severity as compared to CHIRPS variables, except for RCI1M.

Table 4. Spearman’s correlation of VCI3M against 1-month lag of TAMSAT/CHIRPS rainfall indicators.
In bold, the higher value for each comparison.

Data Set RFE1M RFE3M RCI1M RCI3M SPI1M SPI3M

TAMSAT 0.23 0.39 0.33 0.64 0.38 0.64
CHIPRS 0.10 0.26 0.34 0.53 0.34 0.52

Furthermore, for the SPI variable pairs, TAMSAT offers better agreement with VCI3M which is in
itself an advantage given the popularity of the SPI in drought monitoring. The Akaike information
criterion (AIC) is generally used to estimate the quality of a model relative to others, while taking into
account the degrees of freedom. AIC had the 3-month aggregates of both SPI and RCI from TAMSAT
as the best predictors as presented in Table A4 (Appendix A.3). These results were confirmed by the
relative importance of variables as partitioned by R2 that also ranked SPI3M and RCI3M from TAMSAT
ahead of the other variables as shown in Table A5 (Appendix A.3). A final selection of variables using
SVR and general additive model (GAM) techniques posted the result in Figure 6. The top performers
in each case were two TAMSAT variables: SPI3M and RCI3M.
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Figure 6. R2 for SVR and GAM models for variable selection. The presented R2 is between drought
severity (VCI3M) and the precipitation variables of either TAMSAT or CHIRPS. The single variable
models were developed with the same configurations using the in-sample datasets covering the
period 2001–2015.

From the analysis above, the study decided to choose the TAMSAT datasets over the CHIRPS
datasets. For the remainder of the document, only TAMSAT-related results will be presented.

3.2. Correlation between 3-Monthly Vegetation Condition Index and the Individual Predictor Variables

The results of the correlation analysis between the selected drought indicator (i.e., the 3-monthly
vegetation condition index VCI3M) and the individual predictor variables from MODIS and TAMSAT
are summarized in Table 5. As indicated in Table 5, the variables TCI, LST and PET are negatively
correlated to VCI3M, while all others have a positive correlation to VCI3M. The correlation between
the predictor variables is provided in Figure A1 (Appendix A.4). The correlation between vegetation
variables is generally high. The problem of multi-collinearity is however avoided by the assumption to
use only one variable from each of the groups in individual models.

Table 5. Correlation between the lagged predictor variables and future vegetation conditions (VCI3M).
The precipitation variables are those derived from TAMSAT.

Lagged Variable Correlation with Drought Severity (VCI3M)

TCI1M_lag1 −0.58
LST1M_lag1 −0.45
PET1M_lag1 −0.34

NDVIDekad_lag1 0.16
SPEI1M_lag1 0.19
RFE1M_lag1 0.23
SPEI3M_lag1 0.28
RCI1M_lag1 0.33
SPI1M_lag1 0.38
RFE3M_lag1 0.39
EVT1M_lag1 0.59
RCI3M_lag1 0.64
SPI3M_lag1 0.64
VCI3M_lag1 0.82
VCI1M_lag1 0.88

VCIdekad_lag1 0.89
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3.3. Performance of ANN and SVR in the Training Dataset (2001–2015)

Using ANN and SVR, 244 prediction models for 1-month ahead VCI3M values were trained using
the different combinations of the study variables. Out of the 244 models subjected to the ANN model
training process, 145 models (~59%) have an R2

≥ 0.7 in the validation dataset (Figure 7, top). Only a
few models (~6%) were found to have been overfit as indicated by the gray bars and only two for
models with R2

≥ 0.7.
Similar findings were obtained using SVR for drought prediction (Figure 7, center). In terms

of model overfitting, 21 of the 244 SVR models (~9%) are overfitted, however, they are confined to
models with R2

≤ 0.5. Like the case for ANN (Table A2 in Appendix A.2), there is no occurrence of
overfitting in the top 30 (Table A3 in Appendix A.2) and top 100 models ordered by descending R2 in
the validation dataset.

The analysis of the performance of the pairings of the 244 ANN and SVR models is presented in
Figure 7 (bottom). The ANN and SVR techniques turned out to be competitive in model validation:
127 models (52%) posted similar performance (no difference in R2 of the validation data set), with
ANN outperforming SVR in 105 pairings (43%) and SVR outperforming ANN in 12 pairings (5%).

Given that no models with R2
≥ 0.7 were overfit from the SVR process, the choice of models for

model ensembling (Figure 3) was therefore a function of models from the ANN process. The selection
of the appropriate models for ensemble membership was thus from the 143 ANN models paired with
the corresponding SVR models of the same formula.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 14 of 29 
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Figure 7. Performance of ANN (top) and SVR models (center) in the prediction of VCI3M grouped
by performance (R2). Models indicating significant overfitting problems are highlighted in gray. The
model training uses the in-sample data (2001–2015) and follows on training with 70% and validating
on 30% of the data as described in Section 2.7.3 on sample selection. (bottom) Performance difference
between ANN and SVR model pairings in the validation dataset. The performance of the ANN and
SVR models are rounded off to two decimal places prior to the calculation of the performance difference.
The zero (0) difference represents 127 cases for which the SVR model equals the ANN models in
performance. To the left of zero difference are the cases (12) in which SVR models outperform ANN
models while to the right are cases (105) for which ANN models are superior to SVR models.

3.4. Selection of Ensemble Membership

Ensemble membership, also model pruning, is the selection phase of model ensembling. From the
143 models that had an R2

≥ 0.7 and were not overfit, the construction of the ensemble membership
faced the key question: Is there a smaller ensemble size that would perform the same, if not better
than all the 143 models combined? This question was answered following the process described in
Section 2.7.2 on model space reduction and the ensemble membership selection. The corresponding
results are shown in Figure 8.
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Figure 8. Ensemble membership selection showing the reduction from 143 models to 111 models
(green dot) in the ensemble using the back-forward selection procedure. The models are eliminated in
batches of five (blue lines) but in instances where a drop of performance is realized, a forward selection
beginning with the last smallest ensemble size is done by the addition of one model at a time (orange
lines in the plot). The values are rounded off to maximum two digits.
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The elimination of the ranked models in batches of five (blue line) and the forward selection in
single units (orange line) realize the best smallest performances of the ensemble membership at a
total of 111 models (highlighted as green dot). For the ensemble membership, we hence opted for the
size of 111. Such an ensemble size provides a good trade-off between computational complexity and
performance. Note that in Figure 8 we also continued the process down towards a single variable in
order to verify that no other model would outperform the ensemble membership size.

3.5. Performance of the Best ANN and the Best SVR Models in Out-of-Sample Data (2016–2017)

In training, two different models have been identified as the best performing (champion) models
for each of the ANN and SVR techniques. Both the ANN and SVR champion models posted an R2 of
0.86 in the validation dataset. The performance in training was also a comparable R2 of 0.81 for the
ANN to 0.85 for the SVR model.

The performance of the ANN and SVR techniques in the out-of-sample dataset using the 96 data
points for the period 2016–2017 (Figure 4) is a contradiction of the performance in model validation.
The ANN champion posted a relatively stable performance of an R2 of 0.82 (4% loss in performance)
while the SVR champion lost performance to record an R2 of 0.78. The performance in the test data at
county level for both the ANN and the SVR is as provided in Table 6.

Table 6. Performance (R2) of the champion models for each of the counties in the study area on the
out-of-sample dataset covering the period 2016–2017. Note that the models are non-county specific.
Also reported is the overall performance across all four counties.

Mandera Marsabit Turkana Wajir Overall

ANN 0.79 0.79 0.86 0.79 0.82
SVR 0.70 0.77 0.88 0.71 0.78

The results at county level indicate the consistency of ANN champion in out-performing the
SVR champion except for Turkana where SVR outperforms ANN. Given that the models built are
non-county specific, the performance of the best ANN and SVR models across the counties remains
acceptable at an R2

≥ 0.79 and R2
≥ 0.71 for ANN and SVR, respectively. In the following, we use the

R2 from Table 6 as the baseline performance of the best model approach to model selection. These
values will be used as the basis for comparison with the performance of both the homogeneous and
heterogeneous model ensembles.

3.6. Performance of Homogeneous Model Ensembles in out-of-Sample Data (2016–2017)

From the 111 models selected for the investigation of model ensembles, we build both homogeneous
models of ANN and SVR independently. The performances of the homogeneous ANN and SVR
models were then investigated in both regression and classification. For each technique, results from
the three ensembles approaches of non-weighted, weighted and stacked are presented.

3.6.1. Performance of Homogeneous Ensembles in Regression

The performance of the homogeneous model ensembles in regression is provided in Tables 7
and 8 for ANN and SVR techniques respectively. For both ANN and SVR techniques, the model
stacking approach to the formulation of model ensembles offers the best improvement as compared
to the best (champion) model approach. In general, across the counties, the weighted together with
the non-weighted approaches to model ensembling provide competitive performance to the best
model approach, but underperform compared to the model stacking. For all four counties, the stacked
homogeneous ANN model yields higher R2 on the out-of-sample test data set, compared to the SVR
stack. The differences are particularly strong for Mandera and Wajir.
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Table 7. Performance (R2) of the ANN homogeneous model ensembles for each county. Each approach
has the results derived from the non-weighted, weighted and stacked approaches of model ensembling.
For comparison, the ANN champion model is also included (top row). In bold, the best results.

Approach Mandera Marsabit Turkana Wajir Overall

ANN Champion 0.79 0.79 0.86 0.79 0.82
ANN Homogeneous Simple Average 0.78 0.86 0.88 0.80 0.84

ANN Homogeneous Weighted Average 0.79 0.86 0.88 0.81 0.85
ANN Homogeneous Stacked 0.93 0.87 0.89 0.93 0.91

Table 8. Performance (R2) of the SVR homogeneous model ensembles for each county. Each approach
has the results derived from the non-weighted, weighted and stacked approaches of model ensembling.
For comparison, the SVR champion model is also included (top row). In bold, the best results.

Approach Mandera Marsabit Turkana Wajir Overall

SVR Champion 0.70 0.77 0.88 0.71 0.78
SVR Homogeneous Simple Average 0.71 0.80 0.87 0.73 0.80

SVR Homogeneous Weighted Average 0.71 0.80 0.87 0.73 0.80
SVR Homogeneous Stacked 0.88 0.85 0.88 0.88 0.88

3.6.2. Performance of Homogeneous Ensembles in Classification

The summary of the classification performance of both the ANN and SVR homogeneous ensembles
is presented in Tables 9 and 10, respectively.

Table 9. Classification accuracy for the ANN homogeneous ensembles. Each approach has the
results derived from the non-weighted, weighted and stacked approaches of model ensembling. For
comparison, the ANN champion model is also included (top row). In bold, the best results.

Approach Mandera Marsabit Turkana Wajir Overall

ANN Champion 0.71 0.75 0.71 0.67 0.71
ANN Homogeneous Simple Average 0.67 0.83 0.67 0.63 0.70

ANN Homogeneous Weighted Average 0.67 0.79 0.67 0.63 0.69
ANN Homogeneous Stacked 0.79 0.88 0.75 0.71 0.78

Table 10. Classification accuracy for the SVR homogeneous ensembles. Each approach has the
results derived from the non-weighted, weighted and stacked approaches of model ensembling. For
comparison, the SVR champion model is also included (top row). In bold, the best results.

Approach Mandera Marsabit Turkana Wajir Overall

SVR Champion 0.58 0.75 0.83 0.58 0.69
ANN Homogeneous Simple Average 0.63 0.83 0.67 0.63 0.69

ANN Homogeneous Weighted Average 0.63 0.83 0.71 0.63 0.70
ANN Homogeneous Stacked 0.79 0.88 0.75 0.71 0.78

Using the three approaches to the building of model ensembles, for both the ANN and SVR
approaches, it is clear that the homogeneous ensembles are superior to the traditional champion model
selection approach.

3.7. Performance of Heterogeneous Model Ensembles in out-of-Sample Data (2016–2017)

The performance of the heterogeneous model ensembles of ANN and SVR was assessed both in
regression and classification. Like in the case of homogeneous models, we use the champion models
(ANN and SVR) as the base models for the evaluation. Given that the predictions for the models were
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averaged for each model across the techniques, 222 models for each input data point in the test data
were used.

3.7.1. Performance of Heterogeneous Ensembles in Regression

The performance of the heterogeneous models is presented in Table 11, at county level with the
champion ANN and champion SVR as the base models. The heterogeneous stacked approach in
regression is seen to offer the best improvement in performance across each of the counties and on the
entire dataset. The improvement in performance by R2 using the heterogeneous stacked approach
compared to the ANN champion as the base ranges from 0.05 (Turkana) to 0.17 (Wajir). The overall
regression performance increases by 0.12 units.

Table 11. Performance (R2) of the heterogeneous model ensembles for each county. Each approach has
the results derived from the non-weighted, weighted and stacked approaches to model ensembling.
For comparison, the ANN and SVR champion models are also included. In bold, the best results.

Approach Mandera Marsabit Turkana Wajir Overall

ANN Champion 0.79 0.79 0.86 0.79 0.82
SVR Champion 0.70 0.77 0.88 0.71 0.78

Heterogeneous Simple Average 0.74 0.82 0.87 0.76 0.82
Heterogeneous Weighted Average 0.76 0.83 0.88 0.78 0.82

Heterogeneous Stacked 0.94 0.94 0.91 0.96 0.94

Given the superiority of the heterogeneous stacking approach, we present in Figure 9a further
analysis of their performance in regression based on the out-of-sample data (2016–2017). For each of
the four counties, 24 data points are presented showing the observed (in blue) and the predicted (in
orange) drought indicator.
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The heterogeneous stacked model, as indicated in Figure 9, posts an excellent agreement between
the measured vegetation conditions as compared to the predicted values with an R2 of between 0.91
and 0.96 for the counties.

3.7.2. Performance of Heterogeneous Ensemble in Classification

The classification accuracy of the heterogeneous ensemble as compared to that of the champion
models is presented in Table 12.

Table 12. Classification accuracy of the heterogeneous ensemble. Each approach has the results derived
from the non-weighted, weighted and stacked approaches to model ensembling. For comparison, the
ANN and SVR champion models are also included. In bold, the best results.

Approach Mandera Marsabit Turkana Wajir Overall

ANN Champion 71 75 71 67 71
SVR Champion 58 75 83 58 69

Heterogeneous Simple Average 63 83 71 63 70
Heterogeneous Weighted Average 63 83 71 67 71

Heterogeneous Stacked 71 88 79 83 80

The accuracy of the heterogeneous model ensembles in classification shows quite an overall
improvement in performance of 9 and 11% for the ANN and SVR processes, respectively (last
column). For Turkana county, the SVR champion however slightly outperforms the three approaches
in heterogeneous model ensembling.

The corresponding month by month performance of the heterogeneous stacked classifier is as
presented in Figure 10 and as visualized in Figure A2 (Appendix A.5). The months in blue indicate
when the class prediction is correct while grey indicates non-correct predictions. This illustrates that
the heterogeneous stacked ensemble accuracy ranges from a best of 88% in Marsabit to a minimum of
71% for Mandera. Clearly, the performance of the heterogeneous stacked classifiers with an overall
accuracy of 80% is superior to that of the best champion model (ANN) that posts accuracy of 71% over
the entire test dataset (Table 9). Only for Turkana, the SVR champion performs better compared to the
heterogeneous stacked classifier, as highlighted in Table 12.
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Figure 10. Performance of the heterogeneous stacked ensemble classifier for the each of the counties
showing months of difference in grey and those of agreement in blue. Predictions were made 1 month
ahead. The classification accuracies are: (a) 71% for Mandera county; (b) 88% for Marsabit county; (c)
79% for Turkana county and; (d) 83% for Wajir county.
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Moderate to extreme vegetation deficits correspond to the occurrence of drought events. Their
correct prediction forms another important judgment on the utility of the outputs of the modelling
approaches. Table 13 presents the performance in the prediction of moderate to extreme vegetation
deficits across the different classes for the counties in the study area.

Table 13. Performance in the prediction of moderate to extreme droughts using the heterogeneous
stacked ensemble compared to the best ANN and SVR models. In bold, the best results.

County ANN Champion SVR Champion Heterogeneous
Stacked Ensemble

Mandera 0.62 0.46 0.69
Marsabit 0.71 0.71 0.94
Turkana 0.75 0.00 0.83

Wajir 0.72 0.61 0.78
Overall 0.70 0.69 0.82

The heterogeneous stacked ensemble is shown to offer the best performance in the prediction of
moderate to extreme vegetation deficit with accuracies of 82% compared to 69–70% for ANN and SVR
champions. At the same time, the accuracies are more consistent over space.

4. Discussion

From the results realized in this study (Section 3), several key findings can be highlighted.
The investigation of correlation shows higher correlation between the vegetation datasets and drought
severity as compared to the precipitation and other datasets. This is explainable given that we define
drought severity in terms of vegetation deficit, therefore, making vegetation conditions good predictors.
Rainfall anomalies, on the other hand, may or may not lead to significant changes in vegetation
conditions, depending for example on available water resources. For the same reason, many studies
focusing on agricultural drought prefer observing directly the vegetation conditions, without relying
on rainfall data, which are anyhow often sparse and/or associated with high uncertainties [57].

Theoretically, heterogenous ensembles are expected to outperform both champion models and
homogenous ensembles in both regression and classification. This, in the most part, is the case in this
study as is also in Petrakova et al. [24]. An overall R2 of 0.94 in regression and an accuracy of 80% in
classification makes heterogenous model ensembling superior to both the homogenous ensembles
and champion model approach to prediction of future vegetation conditions. The superiority of the
ensembles against champion models especially, as indicated by overall prediction accuracy, is however
not guaranteed for generalization across the spatial units. The case in Table 12 has the ANN champion
and the SVR champion outperforming the heterogenous ensembles in classification accuracy for
Mandera and Turkana respectively. This observation makes for the caution in use of model ensembles
as in some tasks, loss of performance can be realized. Similar findings were observed in the estimation
of software efforts in Elish [58] and Kocaguneli et al. [59]. The study in Elish [58] had a voting ensemble
model derived from five techniques outperforming single models of the techniques in only three out of
five datasets. Kocaguneli et al. [59] saw heterogenous ensembles realize accuracies that were far from
outperforming single learners.

The building of models that are not specific to each spatial unit of analysis provides an opportunity
to scale this approach to the prediction of vegetation conditions across multiple spatial extents. Together
with the illustrated generalizability with time (on future test data), this makes for a highly generalizable
approach to predictions. Models fine-tuned for each spatial unit separately, were for example reported
in Nay et al. [24].

The superiority in performance between ANN and SVR and indeed between any two machine
learning techniques is one in which the jury is still out. In this study, the ANN technique is shown
to generally outperform SVR in predictive performance in the ratio of 43% to 5% and a tie in 52% of
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the cases respectively. This superiority of the ANN to SVR is also observed in the prediction of pipe
burst rates in Shirzad et al. [60]. Other studies like that in Mokhtarzad et al. [61] document the SVR
to be superior to the ANN. Depending on the application of the techniques, it remains non-clear to
pick out one as superior to the other. What is clear in this study, however, is that the ANN champion
model outperforms the SVR champion in the unseen data even though they remain competitive in
model training.

The ANN technique is particularly documented to be more susceptible to overfitting in cases
of large networks. This is however not the case in this study that documents overfitting as more
pronounced in SVR as compared to ANN (9% to 6%). This result should be interpreted also in the
context that overfitting remains confined to only models with R2

≤ 0.5 in SVR as compared to the ANN
technique that has two overfit models with R2

≥ 0.7. The reduced occurrence of overfitting can be
attributed to the use of an adequate sample size in the model training process, thus avoiding the high
dimension, low sample size (HDLSS) learning scenarios as documented in Liu et al. [62].

5. Conclusions

The output from the drought prediction are linked to the end-of-month drought monitoring
results to provide the forecasts of the month ahead. Currently, the results are used within Kenya’s
National Drought Management Authority (NDMA) as an internal decision tool, especially to support
drought response planning to ensure timely drought response.

The traditional approach to model selection ends up with one champion model, usually selected
based on their performance in the validation dataset. We demonstrate that this approach is prone to
loss of model performance. The building of model ensembles, on the other hand, not only guarantees
stability but ensures an increased accuracy in model performance. In order to realize such ensembles,
we found that the use of a simple backward-forward approach in the selection of models for ensemble
membership was viable as it reduced the model space to a total of 111 models from a set of 143 models.

The model ensembling approaches investigated in the study included non-weighted averaging,
weighted averaging and model stacking as applied to both homogeneous and heterogeneous model
ensembling approaches. Empirically, it was shown that heterogeneous ensembles combining models
from SVR and ANN family which are generally more robust as compared to homogeneous ensembles.
Also, model stacking is indicated to be the surest way to realize model ensembles that are better in
performance as compared to the champion model approach. In fact, it is empirically shown that a loss
in performance could be suffered when linear or weighted averaging approaches are used, especially
when the models in the ensembles are selected based on a common performance metric.

The performance of the models learnt using the heterogeneous model stacking approach is noted
to be robust both in terms of 1-month ahead regression and classification. Moreover, although the
ensemble models were not trained specifically for different administrative units, they generalized well
for the four individual units even when testing on unseen out-of-sample test data. This is a key finding
since it implies that the approach is robust enough to learn a single model applicable in the prediction
across multiple administration units.

We nevertheless advise evaluating the use of more techniques in the model ensembles and the
building of many more ensembles using different ensemble sizes to settle the question of performance
of model ensembles fully. To further increase the utility of drought prediction, we also recommend
to study more extended forecasting periods (up to 3 months) and to estimate how much this would
degrade the prediction skill.
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Appendix A.

Appendix A.1. The Test for Normality for Precipitation Datasets

The results of the Shapiro–Wilk test for normality for the TAMSAT and CHIRPS precipitation
datasets is presented in Table A1.

Table A1. Shapiro-Wilk test on normalized CHIRPS and TAMSAT datasets.

No Variable p-Value

1 TAMSAT_RFE1M 0.0000
2 CHIRPS_RFE1M 0.0000
3 TAMSAT_RFE3M 0.0000
4 CHIRPS_RFE3M 0.0000
5 TAMSAT_RCI1M 0.0000
6 CHIRPS_RCI1M 0.0000
7 TAMSAT_RCI3M 0.0000
8 CHIRPS_RCI3M 0.0000

With the null hypothesis corresponding to the sample drawn belonging to a normally distributed
population, we reject normality for all cases in Table A1 where the p-value ≥ 0.05 at α = 0.05. The
non-SPI variables were not normally distributed, thereby justifying the use of non-parametric methods
in their analysis.

Appendix A.2. The Top 30 ANN and SVR Modoles

Tables A2 and A3 provide a listing of the top 30 models from each of the ANN and SVR techniques
with an indication of overfitting as less of an occurrence amongst the top models from each of
the techniques.
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Table A2. Performance of the top 30 ANN models in training and validation ordered by descending R2

in the validation dataset.

No Model R2

Training
R2

Validation
Overfit
Index Overfit

1 VCI3M_lag1 + TAMSAT_RCI3M_lag1 + SPEI1M_lag1 0.81 0.86 0.05 No
2 VCIdekad_lag1 + TAMSAT_RFE1M_lag1 + TCI1M_lag1 0.87 0.86 −0.01 No
3 VCIdekad_lag1 + TAMSAT_RCI3M_lag1 + TCI1M_lag1 0.87 0.86 −0.01 No
4 VCIdekad_lag1 + TAMSAT_SPI3M_lag1 + TCI1M_lag1 0.87 0.86 −0.01 No
5 VCI1M_lag1 + TAMSAT_RCI3M_lag1 + TCI1M_lag1 0.87 0.86 −0.01 No
6 VCI3M_lag1 + TAMSAT_SPI3M_lag1 + SPEI1M_lag1 0.82 0.85 0.03 No
7 VCI1M_lag1 + TAMSAT_SPI3M_lag1 + TCI1M_lag1 0.87 0.85 −0.02 No
8 VCIdekad_lag1 + TAMSAT_SPI1M_lag1 + PET1M_lag1 0.87 0.85 −0.02 No
9 VCIdekad_lag1 + TAMSAT_SPI1M_lag1 + TCI1M_lag1 0.86 0.85 −0.01 No
10 VCI1M_lag1 + TAMSAT_SPI3M_lag1 + PET1M_lag1 0.87 0.85 −0.02 No
11 VCIdekad_lag1 + TAMSAT_SPI3M_lag1 + LST1M_lag1 0.86 0.85 −0.01 No
12 VCIdekad_lag1 + TAMSAT_SPI3M_lag1 + PET1M_lag1 0.87 0.85 −0.02 No
13 VCIdekad_lag1 + TAMSAT_RFE3M_lag1 + TCI1M_lag1 0.87 0.85 −0.02 No
14 VCI1M_lag1 + TAMSAT_RFE1M_lag1 + TCI1M_lag1 0.87 0.85 −0.02 No
15 VCI1M_lag1 + TAMSAT_SPI3M_lag1 + LST1M_lag1 0.86 0.85 −0.01 No
16 VCIdekad_lag1 + TAMSAT_RCI3M_lag1 + PET1M_lag1 0.86 0.85 −0.01 No
17 VCI1M_lag1 + TAMSAT_RFE3M_lag1 + TCI1M_lag1 0.86 0.85 −0.01 No
18 VCIdekad_lag1 + TAMSAT_RCI3M_lag1 + SPEI1M_lag1 0.86 0.85 −0.01 No
19 VCI3M_lag1 + TAMSAT_RCI3M_lag1 + SPEI3M_lag1 0.8 0.84 0.04 No
20 VCIdekad_lag1 + TAMSAT_SPI1M_lag1 + LST1M_lag1 0.86 0.84 −0.02 No
21 VCI1M_lag1 + TAMSAT_SPI1M_lag1 + PET1M_lag1 0.86 0.84 −0.02 No
22 VCI1M_lag1 + TAMSAT_SPI1M_lag1 + TCI1M_lag1 0.86 0.84 −0.02 No
23 VCIdekad_lag1 + TAMSAT_RCI3M_lag1 + LST1M_lag1 0.86 0.84 −0.02 No
24 VCI1M_lag1 + TAMSAT_RCI3M_lag1 + PET1M_lag1 0.86 0.84 −0.02 No
25 VCIdekad_lag1 + TAMSAT_RCI1M_lag1 + TCI1M_lag1 0.86 0.84 −0.02 No
26 VCIdekad_lag1 + TAMSAT_SPI3M_lag1 + SPEI1M_lag1 0.85 0.84 −0.01 No
27 VCIdekad_lag1 + TAMSAT_RFE1M_lag1 + LST1M_lag1 0.86 0.84 −0.02 No
28 VCI1M_lag1 + TAMSAT_RCI3M_lag1 + LST1M_lag1 0.86 0.84 −0.02 No
29 VCI1M_lag1 + TAMSAT_RFE1M_lag1 + LST1M_lag1 0.85 0.84 −0.01 No
30 VCIdekad_lag1 + TAMSAT_RFE1M_lag1 + SPEI1M_lag1 0.86 0.84 −0.02 No
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Table A3. Performance of the top 30 SVR models in training and validation ordered by descending R2

in the validation dataset.

No Model R2

Training
R2

Validation
Overfit
Index Overfit

1 VCIdekad_lag1 + TAMSAT_SPI3M_lag1 + TCI1M_lag1 0.85 0.86 0.01 No
2 VCIdekad_lag1 + TAMSAT_RCI3M_lag1 + TCI1M_lag1 0.85 0.86 0.01 No
3 VCI3M_lag1 + TAMSAT_RCI3M_lag1 + SPEI1M_lag1 0.81 0.86 0.05 No
4 VCI3M_lag1 + TAMSAT_SPI3M_lag1 + SPEI1M_lag1 0.82 0.85 0.03 No
5 VCI1M_lag1 + TAMSAT_SPI3M_lag1 + TCI1M_lag1 0.85 0.85 0.00 No
6 VCIdekad_lag1 + TAMSAT_SPI3M_lag1 + PET1M_lag1 0.84 0.85 0.01 No
7 VCI1M_lag1 + TAMSAT_RCI3M_lag1 + TCI1M_lag1 0.85 0.85 0.00 No
8 VCIdekad_lag1 + TAMSAT_SPI1M_lag1 + TCI1M_lag1 0.85 0.85 0.00 No
9 VCIdekad_lag1 + TAMSAT_SPI3M_lag1 + LST1M_lag1 0.84 0.85 0.01 No

10 VCIdekad_lag1 + TAMSAT_RFE1M_lag1 + TCI1M_lag1 0.85 0.85 0.00 No
11 VCI1M_lag1 + TAMSAT_SPI3M_lag1 + PET1M_lag1 0.84 0.85 0.01 No
12 VCI1M_lag1 + TAMSAT_SPI3M_lag1 + LST1M_lag1 0.84 0.84 0.00 No
13 VCIdekad_lag1 + TAMSAT_SPI1M_lag1 + PET1M_lag1 0.84 0.84 0.00 No
14 VCI1M_lag1 + TAMSAT_RFE1M_lag1 + TCI1M_lag1 0.85 0.84 −0.01 No
15 VCI1M_lag1 + TAMSAT_SPI1M_lag1 + TCI1M_lag1 0.85 0.84 −0.01 No
16 VCIdekad_lag1 + TAMSAT_RCI1M_lag1 + TCI1M_lag1 0.84 0.84 0.00 No
17 VCIdekad_lag1 + TAMSAT_RCI3M_lag1 + LST1M_lag1 0.84 0.84 0.01 No
18 VCIdekad_lag1 + TAMSAT_RFE3M_lag1 + TCI1M_lag1 0.84 0.84 0.00 No
19 VCIdekad_lag1 + TAMSAT_RFE1M_lag1 + LST1M_lag1 0.84 0.84 0.00 No
20 VCIdekad_lag1 + TAMSAT_SPI1M_lag1 + LST1M_lag1 0.84 0.84 0.00 No
21 VCI3M_lag1 + TAMSAT_RCI3M_lag1 + TCI1M_lag1 0.83 0.84 0.01 No
22 VCIdekad_lag1 + TAMSAT_RCI3M_lag1 + SPEI1M_lag1 0.83 0.84 0.01 No
23 VCIdekad_lag1 + TAMSAT_SPI3M_lag1 + SPEI1M_lag1 0.84 0.84 0.00 No
24 VCIdekad_lag1 + TAMSAT_RCI3M_lag1 + PET1M_lag1 0.83 0.84 0.01 No
25 VCI1M_lag1 + TAMSAT_RCI3M_lag1 + LST1M_lag1 0.83 0.84 0.01 No
26 VCI1M_lag1 + TAMSAT_SPI1M_lag1 + PET1M_lag1 0.84 0.84 0.00 No
27 VCI3M_lag1 + TAMSAT_RCI3M_lag1 + SPEI3M_lag1 0.79 0.83 0.04 No
28 VCI1M_lag1 + TAMSAT_RFE3M_lag1 + TCI1M_lag1 0.84 0.83 −0.01 No
29 VCIdekad_lag1 + TAMSAT_SPI3M_lag1 + EVT1M_lag1 0.83 0.83 0.00 No
30 VCI1M_lag1 + TAMSAT_RCI1M_lag1 + TCI1M_lag1 0.84 0.83 0.00 No

Appendix A.3. Additional Results on Variable Selection

The AIC is presented in Table A4 for the TAMSAT and CHIRPS variables.

Table A4. Akaike information criterion for variables selection.

Variable Df Deviance AIC

TAMSAT_SPI3M_lag1 1 19.596 −683.66
TAMSAT_RCI3M_lag1 1 20.532 −646.53
CHIRPS_RCI3M_lag1 1 24.155 −517.16
CHIRPS_SPI3M_lag1 1 26.279 −450.07

TAMSAT_RFE3M_lag1 1 27.075 −426.32
CHIRPS_RFE3M_lag1 1 29.731 −351.83
TAMSAT_SPI1M_lag1 1 30.078 −342.59
CHIRPS_RCI1M_lag1 1 30.763 −324.68
TAMSAT_RCI1M_lag1 1 30.944 −319.99
CHIRPS_SPI1M_lag1 1 31.456 −306.93

TAMSAT_RFE1M_lag1 1 32.341 −284.85
CHIRPS_RFE1M_lag1 1 33.161 −264.93

The top two variables are shown to be TAMSAT variables, SPI3M and RCI3M, respectively.
The same results are achieved by the use of the relative variable importance as presented in Table A5.
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Table A5. Importance of variables by Partitioned R2.

Variable Relative Importance

TAMSAT_SPI3M_lag1 0.283
TAMSAT_RCI3M_lag1 0.197
CHIRPS_RCI3M_lag1 0.147
CHIRPS_SPI3M_lag1 0.096

TAMSAT_RFE3M_lag1 0.077
TAMSAT_SPI1M_lag1 0.050
CHIRPS_RFE3M_lag1 0.045
TAMSAT_RCI1M_lag1 0.029
CHIRPS_RCI1M_lag1 0.028
CHIRPS_SPI1M_lag1 0.024

TAMSAT_RFE1M_lag1 0.015
CHIRPS_RFE1M_lag1 0.009

The average relative importance for TAMSAT variables (0.11) shows them to be higher ranked
over CHIRPS variables (0.06).

Appendix A.4. Multi-Collinearity of Predictor Variables

An investigation of possible multi-collinearity between the pairs of the predictor variables is
provided in Figure A1.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 25 of 29 

 

The top two variables are shown to be TAMSAT variables, SPI3M and RCI3M, respectively. The 
same results are achieved by the use of the relative variable importance as presented in Table A5. 

Table A5. Importance of variables by Partitioned R2. 

Variable Relative Importance 
TAMSAT_SPI3M_lag1 0.283 
TAMSAT_RCI3M_lag1 0.197 
CHIRPS_RCI3M_lag1 0.147 
CHIRPS_SPI3M_lag1 0.096 

TAMSAT_RFE3M_lag1 0.077 
TAMSAT_SPI1M_lag1 0.050 
CHIRPS_RFE3M_lag1 0.045 
TAMSAT_RCI1M_lag1 0.029 
CHIRPS_RCI1M_lag1 0.028 
CHIRPS_SPI1M_lag1 0.024 

TAMSAT_RFE1M_lag1 0.015 
CHIRPS_RFE1M_lag1 0.009 

The average relative importance for TAMSAT variables (0.11) shows them to be higher ranked 
over CHIRPS variables (0.06). 

Appendix A.4. Multi-Collinearity of Predictor Variables 

An investigation of possible multi-collinearity between the pairs of the predictor variables is 
provided in Figure A1. 

 
Figure A1. The collinearity matrix for X (predictors) variables. The correlations are categorized such 
that high correlations are colored green, moderate correlations are colored yellow, and low 
correlations are colored red. 

From the correlation matrix (Figure A1), the following are observed: (1) relatively high 
correlation (of up to 1 for VCI1M and NDVIDekad) between vegetation datasets. The assumption not 
to use multiple vegetation variables in the same model is thus justified. (2) SPI and RCI are highly 
correlated even though, in general, the pairings of precipitation data could be used in the same model. 
(3) The water balance variables of LST, EVT, PET, TCI, and SPEI have acceptable correlation 
coefficients with vegetation and precipitation pairings. Grouping the variables in the modeling 
process into precipitation, vegetation and water balance variables is thus a sound assumption. 

Figure A1. The collinearity matrix for X (predictors) variables. The correlations are categorized such
that high correlations are colored green, moderate correlations are colored yellow, and low correlations
are colored red.

From the correlation matrix (Figure A1), the following are observed: (1) relatively high correlation
(of up to 1 for VCI1M and NDVIDekad) between vegetation datasets. The assumption not to use
multiple vegetation variables in the same model is thus justified. (2) SPI and RCI are highly correlated
even though, in general, the pairings of precipitation data could be used in the same model. (3)
The water balance variables of LST, EVT, PET, TCI, and SPEI have acceptable correlation coefficients
with vegetation and precipitation pairings. Grouping the variables in the modeling process into
precipitation, vegetation and water balance variables is thus a sound assumption.
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Appendix A.5. Maps Illustrating the Performance of the Heterogenouse Stacked Ensemble Classifier
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