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Abstract: The heavy industry in India has witnessed rapid development in the past decades. This has
increased the pressures and load on the Indian environment, and has also had a great impact on the
world economy. In this study, the Preparatory Project Visible Infrared Imaging Radiometer (NPP
VIIRS) 375-m active fire product (VNP14IMG) and night-time light (NTL) data were used to study
the spatiotemporal patterns of heavy industrial development in India. We employed an improved
adaptive K-means algorithm to realize the spatial segmentation of long-term VNP14IMG data and
artificial heat-source objects. Next, the initial heavy industry heat sources were distinguished from
normal heat sources using a threshold recognition model. Finally, the maximum night-time light
data were used to delineate the final heavy industry heat sources. The results suggest, that this
modified method is a much more accurate and effective way of monitoring heavy industrial heat
sources, and the accuracy of this detection model was higher than 92.7%. The number of main
findings were concluded from the study: (1) the heavy industry heat sources are mainly concentrated
in the north-east Assam state, east-central Jharkhand state, north Chhattisgarh and Odisha states, and
the coastal areas of Gujarat and Maharashtra. Many heavy industrial heat sources were also found
around a line from Kolkata on the Eastern Indian Ocean to Mumbai on the Western Indian Ocean.
(2) The number of working heavy industry heat sources (NWH) and, particularly, the total number of
fire hotspots for each working heavy industry heat source area (NFHWH) are continuing to increase in
India. These trends mirror those for the Gross Domestic Product (GDP) and total population of India
between 2012 and 2017. (3) The largest values of NWH and NFHWH were in Jharkhand, Chhattisgarh,
and Odisha whereas the smallest negative values, the Slope_NWH in Jharkhand and Chhattisgarh
were also the two largest values in the whole country. The smallest negative values of Slope_NWH
and Slope_NFHWH were in Haryana. The Slope_NFHWH in the mainland Gujarat had the second
most negative value, while the value of the Slope_NWH was the third-highest positive value.

Keywords: adaptive K-means algorithm; heavy industry heat sources; NPP-VIIRS; active fire data;
night-time light data

1. Introduction

Over the few past decades, India has become one of the world’s fastest-growing major economies
and is now considered a newly industrialized country [1]. The amount of heavy industry, which is an
important component of basic industry and provides technical equipment, power, and raw materials
for all sectors of the national economy, has also soared in India [2]. This industry effectively supports
the economic development of the country. However, this growth has been accompanied by a large
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increase in greenhouse gas emissions and other air pollutants from heavy industrial production [3].
Therefore, real-time maps of the layout of heavy industrial development are becoming important for
studies of Indian economic development and air pollution issues [2,4].

Many scholars and nonprofit organizations or institutions have focused their attention on the
global distribution of one or more energy types or industries. The British Petroleum (BP) company [5]
and the International Energy Agency (IEA) [6] provide regular, annual reports of energy (coal, oil,
gas, etc.) prospects. The Global Power Emissions Database (GPED) [7] was formed from individual
power-generating units for 2010 [3]. In addition, the India Coal-Fired Power Plant Database (ICPD) [8]
is also available for India. These databases include a large amount of information that can be used for
mining and strategic development in India. However, traditional statistical methods usually involve a
lot of human error; in addition, the real-time distribution of heavy industry in India is not available.

Satellite images, which can be considered to be objective, true data, have become the most effective
way to monitor the dynamics of Land-Cover (LC) and Land-Use (LU) (also referred to as LULC) [9,10].
Heat sources, such as the combustion of fossil fuels in cement plants and steelworks and the flaring of
petroleum gas in oil fields [2,11], are also vital for most heavy industries. Therefore, thermal anomaly
products derived from remote sensing data provide new ways of revealing the objective and real-time
distribution of heavy industry in India. Recently, it has been widely and well-used in the detection of
global-scale self-ignition fire point data [12–16]. Also, the night-time thermal anomaly product from
the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project
(NPP) Visible Infrared Imaging Radiometer (VIIRS) has been successfully applied in studies of volcanic
activity [17] and oil exploitation [18]. NPP VIIRS night-time fire data (resolution 750 m) were used to
identify industrial heat sources considering their time, space, and temperature information [11,19].
Also, better active global fire-points product named NPP VIIRS active fire product (VNP14IMG), with
375-m resolution and covering day- and night-time thermal anomaly, was provided by Schroeder et
al. [20] and Giglio et al. [21]. It effectively provided an improved response for fires with small areas.
Then, Ma et al. [2] proposed a heavy industry heat source detection model based on an improved
adaptive K-means algorithm using long-term VNP14IMG data. This produced good results for
mainland China; however, due to the complexity of the Indian geographical coverage, the precision
was not so good when this was applied to India.

In addition, large and heavy equipment and facilities (such as heavy equipment, large machine
tools and large buildings) are also important characteristics of heavy industry. So, the use of lighting is
also common and necessary in those areas. Night-time light (NTL) data, especially the VIIRS day/night
band (DNB) data, can provide the day and night distribution of lights for the whole world [22,23].
Therefore, in this study, NTL data were used to modify Ma’s model [2]. The new heavy industry heat
source detection model for revealing spatiotemporal patterns in and the development of heavy industry
in India based on an improved adaptive K-means using VNP14IMG and NTL was then developed.
As part of this study, VNP14IMG and NTL data were acquired and preprocessed. We adopted an
improved adaptive K-means algorithm using long-term VNP14IMG data to construct heat-source
objects. Then, many hot features, including geometric, statistical, and heat source attribute features,
were extracted for each heat-source object. In addition, the initial heavy industry heat sources were
discriminated from other heat-source objects using a threshold recognition model based on hot features.
Finally, maximum night-time light data were used to delineate the final heavy industry heat sources.

The remainder of this article is organized as follows. Section 2 describes the study area, data
sources, main data preprocessing steps, and methodology. Section 3 shows the experimental results
that were obtained using the VNP14IMG and NTL data and discusses and assesses the distribution of
heavy industrial heat sources in India. Conclusions are drawn in Section 4, and recommendations for
future research are given.
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2. Materials and Methods

2.1. Study Area

India is a country in South Asia, lying to the north of the equator between 6◦44′ N and 35◦30′ N
and 68◦7′ E and 97◦25′ E. It is surrounded by the Indian Ocean, the Arabian Sea, and the Bay of Bengal.
Since market-based economic reforms began in 1991, India has emerged as a global player with one of
the fastest-growing major economies and is now considered a newly industrialized country [24]. It is
also the world’s second-most populous country (with more than 1.3 billion people) as well as being the
most populous democracy in the world. India is a federal republic governed under a parliamentary
system and comprises 29 states and seven union territories, giving a total of 36 entities (as shown in
Figure 1). It should be noted, however, that Jammu and Kashmir state, marked by the red dashed line,
lies within the disputed Kashmir region.

Figure 1. The 36 States and Union Territories of India.

2.2. Data Sources

2.2.1. VIIRS Active Fire/hotspot Data

In this study, the VNP14IMG data were selected as input data for the evaluation of the distribution
of heavy industrial heat sources in India. This product is based on reprocessed nominal-resolution
Collection 1 data from the NASA Land Science Investigator Processing System (Land-SIPS) [20]. Using
the MOD14/MYD14 algorithm, several modifications were implemented to accommodate the unique
characteristics associated with the VIIRS 375-m data [25]. The newly improved 375-m data, compared
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to the traditional coarser-resolution (≥ v1 km) fire products, provide a greater response for fires that
cover relatively small areas and improved mapping of large fire perimeters. So, it is well suited to
support fire management as well as to meet other scientific applications’ needs. VNP14IMG data
(19 January 2012 to now) can be freely obtained from the Fire Information for Resource Management
System (FIRMS) [26]. Three million nine hundred ninety-eight thousand four hundred sixty-five
observed Indian fire hotspots, ranging from 19 January 2012 to 31 December 2018, were used in this
paper, and their spatial density is shown in Figure 2.

Figure 2. Spatial density of the 3,998,465 fire hotspots in Indian regions (including Jammu and Kashmir
state).

VIIRS Nightfire product (VNF), using Day/Night Band (DNB), near-infrared (M7 and M8),
short-wave infrared (M10), and mid-wave infrared (M12 and M13) to detect subpixel heat sources,
has been used in gas [27] and industrial heat sources detection [11]. So, VNF data were downloaded
from the Earth’s Observation Group (EOG) [26]. Their spatial distribution maps from VNF data and
VNP14IMG data were made to compare in the study area (Figure 3) on 01/01/2018. It showed that
VNP14IMG data were quite abundant in India. The fire/hotspot number of VNP14IMG was more tban
five times than VNF. Its spatial distribution range was also bigger than the VNF data. So, VNP14IMG
data were used lastly to detect heavy industries.
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Figure 3. Spatial distribution comparison of VIIRS Nightfire product (VNF) and NPP VIIRS active fire
product (VNP14IMG) on 01/01/2018. (a) The spatial distribution comparison of 301 VNF on 01/01/2018.
(b) The spatial distribution comparison of the 1760 VNP14IMG hotspot.
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2.2.2. NPP−VIIRS Night-time Light Data

NPP−VIIRS night-time light (NTL) data were also used in this study. Compared with the Defense
Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) data, the night-time
light data had a higher spatial resolution (15 arc-seconds, about 750 m) and a wider radiometric
detection range [22,27]. These data can be obtained from NOAA’s National Centers for Environmental
Information (NOAA/NCEI) website [28]. However, as it is a preliminary product, these data are not
filtered to remove detected light associated with gas flares, fires, volcanoes, or aurorae, and the dataset
has not been processed to remove background noise [29]. In addition, the VIIRS annual night-time light
data are being discontinued by NOAA, and only annual data from 2015 and 2016 are supported [30].
Therefore, the ‘Flint’ annual data were also obtained from the Chinese Academy of Sciences [31].
These data are not affected by fires, volcanoes, and background noise as they have been through
statistical cleaning and average noise reduction preprocessing. Therefore, these annual products can
be considered as the surface light, and ‘Flint’ version Beta 1 [32] was used in this study. This ‘Flint’
imagery consists of 15 arc-second grids, spanning the range −180 to 180 degrees longitude and from
−65 to 75 degrees latitude. The digital pixel numbers (DN) range from 0–255. The ‘Flint’ India light
data for India in 2018 is shown below as Figure 4.

Figure 4. ‘Flint’ India light data for 2018 (including Jammu and Kashmir state).

2.2.3. Auxiliary Data

Indian national, state, and taluk boundaries were acquired from the Global Administrative
Areas (GADM) provided by the Center for Spatial Sciences at the University of California, Davis [33].
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The latest version (version 3.6, released on 6 May 2018) was used. The coordinate reference system
based on the WGS84 datum was adopted for the boundary files. In order to support the verification of
heavy industry heat sources in India, high-resolution images from Google Earth were also utilized in
this paper.

2.3. Data Preprocessing

The size of the long-term time series of active fire/hotspot data was huge, and the ‘Flint’ data
consisted of global data; therefore, some preprocessing work was necessary for this study. In order to
obtain information about heavy industry heat sources in India, the VNP14IMG and NTL data were
processed, as shown below (Figure 5). This processing consisted of two main parts: data preprocessing
and a heavy industry heat source detection model.

Figure 5. The architecture of the heavy industry heat source detection model using the active fire/hotspot
data and night-time light data for India.

2.3.1. NPP-VIIRS Active Fire/Hotspot Data Preprocessing

For the same reason in a previous paper [2], the long-term time series of VNP14IMG products
was also needed to be divided. It was almost impossible to divide one area of heavy industry into two
or more administrative taluks in India. So, according to the taluk-level administrative boundaries, the
3,998,465 fire hotspots were then divided according to the taluk-level administrative boundaries.

2.3.2. Preprocessing of NPP-VIIRS Night-time Light Data

For most heavy industrial production activities, the use of lighting is also necessary. Therefore,
superimposed light data can be used to verify industrial heat sources and filter out false ones. Also,
due to economic problems or policy decisions, including regional plans and environmental protection
policies, only a small fraction of large, heavy enterprises worked continuously between 2012 and 2018:
most enterprises operated for only a few years or months. Thus, some preprocessing of the data was
needed. The main processing step was as follows.
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Step 1: The annual and global ‘Flint’ night-time light data were clipped according to the Indian
national boundary to obtain annual Indian ‘Flint’ night-time light data.

Step 2: The annual Indian ‘Flint’ night-time light data were re-sampled from 750m to 375 m in
order to maintain the same spatial resolution as the NP14IMG products.

Step 3: Maximum night-time light data were produced by selecting the maximum value from the
annual Indian night-time light data for 2012 to 2018.

2.4. Heavy Industry Heat Source Detection Model

In this study, we propose an Indian heavy industry heat source detection model that uses
VNP14IMG and NTL data. This model consists of six parts: constructing the heat source object
detection model using real-time VNP14IMG data, extracting the hot features of the heat source objects,
detecting the initial heavy industrial heat sources based on an empirical threshold, calculating the
mean night-time light value for each heavy industrial heat source object, detecting the final heavy
industrial heat sources based on the empirical threshold for the mean night-time light, and, finally,
assessing the results. Details of the model are described in this section.

Step 1: Static and persistent industrial heat sources in the VNP14IMG time series were found to
be concentrated around the hot centers due to the stability of their positions and temporal consistency.
The heat source object detection model that used long-order VNP14IMG data based on an improved
adaptive K-means algorithm was then implemented [2].

Step 2: Extraction of the hot features of heat source objects. In this study, geometric, statistical, and
heat source attribute features were used. The central point of the heat source, as well as the width and
the height of the max-circumscribed rectangle, were used as the geometric features. For the statistical
feature extraction, the number of fires/hotspots, the density of fires/hotspots per unit area, the initial
and final detection times of the heat source object, and the mean and variance of the time interval
sorted by date were adopted. For the heat source attributes, the minimum, maximum, mean, and
variance attribute information of the VIIRS I-4 band brightness temperature (bright_ti4), the I-5 band
brightness temperature (bright_ti4), scan direction pixel size (scan), track direction pixel size (track),
and fire point radiation Power (FRP) were extracted for each heat source object.

Step 3: Heavy industrial heat source objects are static and persistent, whereas biomass fires are
usually sparsely distributed. The initial heavy industrial heat source identification was based on an
empirical threshold [2]. Subsequently, the initial heavy industry heat sources were identified from
heat-source objects.

Step 4: Once the initial vector data of the initial heavy industry heat sources had been registered to
the raster data of the max night-time light data using the same WGS84 projection, the mean night-time
light value was calculated for each initial heavy industrial heat source object.

Step 5: The final detection of the heavy industry heat sources was carried out by applying the
empirical threshold algorithm to the mean night-time light data.

Step 6: Assessment of results. The number of working heavy industry heat sources (NWH), the
total number of fire hotspots for each working heavy industry heat source area (NFHWH), as well as
Slope_NWH and Slope_NFHWH [2], were used to analyze the distribution of the heavy industry heat
sources in different statistical areas for different years.

3. Results and Discussion

3.1. Heavy Industrial Heat Source Distribution Characteristics at the National Level

The spatial distribution of 711 heavy industrial heat sources in Indian regions (Figure 6) revealed
that heavy industrial heat sources were mainly concentrated in north-east Assam, east-central Jharkhand,
the north of Chhattisgarh and Odisha, and coastal areas of Gujarat and Maharashtra. Another interesting
phenomenon was that a large number of heavy industrial heat was found lying close to a line between
Kolkata on the Eastern Indian Ocean and Mumbai on the Western Indian Ocean. The spatial distribution
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of the 711 heavy industrial heat sources across India was not the same as that shown by the spatial
density distribution image for the 3,998,465 fire hotspots (Figure 2), especially in the case of Punjab
and Madhya Pradesh. Further investigation revealed that most of the fire hotspots in Punjab and
Madhya Pradesh were due to burning straw, especially in May, October, and November. Additionally,
heavy industrial heat sources founded in regions 1, 2, and 3 were mainly connected to petroleum
development, whereas in region 4, they were linked to coal mining and steel production. And, each
heavy industrial heat source detected were verified using Google Earth Map one by one. Six hundred
fifty-nine heat sources can be easily confirmed as heavy industrial factories by Google Earth images.
The type of the other 52 results cannot be curtained due to the lack of more field measured data. So,
the accuracy of this detection model was higher than 92.7%. As the database of real heavy industrial
heat sources has not been obtained, the recall ration can be calculated.

Figure 6. Spatial distribution of 711 heavy industrial heat sources in Indian regions (including Jammu
and Kashmir state).

Recent changes in working heavy industry heat sources were compared, and the values of the
NWH and NFHWH for each year during the period 2012 to 2018 were calculated (Figure 7). The values
of NWH, and in particular, the NFHWH increased during this period. The trends in GDP and total
population in India (Figure 8) between 2012 and 2017 were similar [24], demonstrating that heavy
industries developed along with the development of the Indian economy as a whole.
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Figure 8. Changes in GDP and in the total population of India during the period 2012 to 2017. (a) GDP
current Billion US$ between 2012 and 2017. (b) Population total billion persons between 2012-2017.

High-resolution images from Google Earth (Figure 9) were selected to verify the results of the
model. Figure 9a,b are images of steel plants in Jharkhand and West Bengal. The two open-pit minefields
shown in Figure 9c,d are located in Jharkhand and Chhattisgarh. Figure 9e–h,j all show facilities related
to oil and gas production, processing, and storage in Andhra Pradesh, Gujarat, Rajasthan and Assam,
respectively. Figure 9i is an image of cement work named Gagal in Himachal Pradesh.

Figure 9. Cont.
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Figure 9. High-resolution imagery used to validate the model.

3.2. Characteristics of Heavy Industrial Heat Source Distribution at the State Level

The heavy industrial heat source characteristics for the 36 states and administrative regions of
India were analyzed using the NWH and NFHWH values. The boundaries of the administrative
divisions of these states contained land regions only, meaning that no NWH and NFHWH values for
sources at sea were included.

Figure 10a shows the NWH for the states with the 20 highest values. These included Jharkhand,
Chhattisgarh, and Odisha, followed by Gujarat and West Bengal. Furthermore, the NWH in Jharkhand
state accounted for nearly 13.8% of the total for Indian mainland sources. The sum of the NWH in
Jharkhand, Chhattisgarh, Odisha, and Gujarat accounted for 43.38% of the total; the total NWH for
the top 20 states accounted for 98.37%. In addition, the NWH for Jharkhand, which is one of the
richest mineral zones in the world and boasts 40% and 29% of India’s mineral and coal reserves,
respectively, increased continuously during the period 2012 to 2018 [34]. Chhattisgarh’s heavy industry
also developed due to its rich natural resources, policy incentives, and good infrastructure [35].

The NFHWH values indicate that there has been a reduction in the total amount of heavy industrial
production in the administrative areas studied (Figure 10b). The largest number of fire hotspots was
in Jharkhand, the same as the NWH shown in Figure 10a. However, the order of the five highest
NFHWH values in 2018 was different: the order was now, Jharkhand, Odisha, Chhattisgarh, West
Bengal, and then Gujarat. Moreover, the average NFHWH in Jharkhand between 2012 and 2018
accounted for nearly 29.05% of the Indian mainland total; the total NWH in Jharkhand, Odisha, and
Chhattisgarh accounted for 58.36%; and the total NWH for the top 20 states accounted for 99.78%.
In addition, NFHWH values in most states increased continuously after 2012, in line with India’s
economic development.
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Figure 10. Changes in heavy industrial heat sources at the state level. (a) NWH for the top 20 states
between 2012 and 2018. (b) NFHWH for the top 20 states between 2012 and 2018.

The distributions of Slope_NWH and Slope_NFHWH values were mapped to illustrate the changing
trends for each statistical area during the seven-year period studied (Figure 11). The largest positive
value of Slope_NWH was in Jharkhand, followed by Chhattisgarh and Gujarat, indicating that the
number of heavy industry heat sources in these three states increased quickly. The smallest negative
Slope_NWH value was found in Haryana, followed by Tripura and Andhra Pradesh. However, these
negative values were all very small−0.49,−0.23, and−0.14, respectively. This means that the downward
trends here were very slow. In addition, for 18 of the large states in mainland India, the values were
positive and only four states had negative Slope_NWH values. Therefore, it can be concluded that the
total number of heavy industry heat sources in India increased, as confirmed by Figure 7.
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Figure 11. Changes in heavy industry heat sources at the state level from 2012 to 2018 (including
Jammu and Kashmir state). (a) The Slope_NWH values for different states. (b) The Slope_NFHWH
values for different states.
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The Slope_NFHWH values are displayed in Figure 10b. These values reflect the scale of production
associated with working heavy industry heat sources. The largest positive value of Slope_NFHWH was
the value for Odisha, followed by Chhattisgarh and Jharkhand. The Slope_NFHWH value in Odisha
was 1452.63 (the corresponding value of Slope_NWH was only 1.11), which was double the value in
Chhattisgarh. This means that the average scale of working heavy industry heat sources in Odisha
increased. The smallest negative Slope_NWH values were found in Haryana, followed by Gujarat and
Arunachal Pradesh, showing that Slope_NFHWH in Gujarat was the second most negative whereas
it Slope_NWH value was the third highest positive value. This shows that the average scale of the
working heavy industry heat sources in this state was declining. It should be noted that this trend
related only to the heavy industry heat sources in mainland Gujarat. In addition, there were 19 large
states on the Indian mainland for which the Slope_NFHWH values were positive and only nine states
with negative values. It can be concluded that, overall, the scale of heavy industry heat sources in all
of India increased, as supported by the details shown in Figure 6.

The distribution of heavy industry heat sources was then mapped to examine the heat source
characteristics for the 36 state administrative regions of India in 2018 (Figure 12). The NWH values for
2018 (Figure 12a) indicate that Jharkhand, Chhattisgarh, and Odisha have relatively large numbers
of heavy enterprises, with Gujarat following. In terms of NFHWH values (Figure 12b), Chhattisgarh
is followed by Jharkhand and Odisha. In addition, both NWH and NFHWH values are highest in
east-central India, followed by central India; in contrast, most of the northwest and south of the country
have a small number of heavy industry heat sources and fire hotspots caused by heavy enterprises.

Figure 12. Cont.
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Figure 12. Distribution of heavy industry heat sources at the state level (2018) (including Jammu and
Kashmir state). (a) The NWH values for different states (2018). (b) The NFHWH values for different
states (2018).

4. Conclusions

India has now emerged as a global player with one of the fastest-growing major economies and
is considered a newly industrialized country. Its heavy industry has grown rapidly in the past few
decades. This has exacerbated pressures on the Indian environment and has also had a great impact
on the world economy. The NASA’s Land-SIPS VIIRS 375-m active fire product (VNP14IMG) and
NPP-VIIRS night-time light data (NTL) can objectively reveal the spatiotemporal patterns of heavy
industrial development in the study area. We, therefore, proposed a heavy industry heat source
detection model that uses VNP14IMG and NTL. The spatial distribution and trends for heavy industry
heat sources were analyzed for India at the national and state levels. The results suggest that the
model is an accurate and effective means of monitoring heat sources produced by heavy industry.
The accuracy of this detection model was higher than 92.7%. The following conclusions can be drawn
from this study.

(1) Overall, heavy industry heat sources were found to be mainly concentrated in the north-east
Assam state, ease central Jharkhand, north Chhattisgarh, and Odisha, and the coastal areas of
Gujarat and Maharashtra. It is also interesting to note that a large number of heavy industrial
heat sources were found concentrated around a line between Kolkata on the Eastern Indian Ocean
and Mumbai on the Western Indian Ocean.

(2) The total NWH and NFHWH values for India increased throughout the period studied, especially
in the case of the NFHWH. These trends were similar to those for the GDP and total population
of India (Figure 7) between 2012 and 2017.
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(3) The largest values of NWH and NFHWH were in Jharkhand, Chhattisgarh, and Odisha. The two
largest values of Slope_NWH were in Jharkhand and Chhattisgarh. The smallest negative values
of Slope_NWH and Slope_NFHWH were in Haryana. In addition, the Slope_NFHWH value for
mainland Gujarat was the second most negative value, whereas it’s Slope_NWH was the third
highest positive one.

The results of this study suggest that real-time VIIRS active fire/hotspot data and NPP-VIIRS night-time
light data can successfully be used for monitoring Indian heavy industrial economic development.
This could be beneficial for Indian policy-makers and heavy industry regulation. Future studies
should focus on distinguishing biomass fires/hotspots from other fires/hotspots, which would allow
the monitoring of biomass burning related to agriculture and forest fires. Finally, we plan to add much
more fire data from different satellite sensors in order to improve temporary and spatial resolutions.
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