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Abstract: This paper presents a novel approach for automatic, preliminary detection of damage in
concrete structures using ground-based terrestrial laser scanners. The method is based on computation
of defect-sensitive features such as the surface curvature, since the surface roughness changes strongly
if an area is affected by damage. A robust version of principal component analysis (PCA) classification
is proposed to distinguish between structural damage and outliers present in the laser scanning
data. Numerical simulations were conducted to develop a systematic point-wise defect classifier that
automatically diagnoses the location of superficial damage on the investigated region. The method
provides a complete picture of the surface health of concrete structures. It has been tested on two real
datasets: a concrete heritage aqueduct in Brooks, Alberta, Canada; and a civil pedestrian concrete
structure. The experiment results demonstrate the validity and accuracy of the proposed systematic
framework for detecting and localizing areas of damage as small as 1 cm or less.

Keywords: structural damage assessment; TLS; automatic damage classification; robust PCA;
systematic threshold

1. Introduction

Concrete structures are subject to damage and material degradation over their lifetimes due to
human activities and environmental and natural hazards [1]. It is crucial to detect and characterize the
extent and seriousness of the damage on the surface of the concrete in order to assess the integrity and
safety of the structure. Early detection of a potentially dangerous situation allows timely interventions
and maintenance procedures that can improve the current condition and preserve the structure prior
to costly repair or even catastrophic collapse, and could lead to a longer lifetime for the structure [2].
Therefore, development of suitable inspections is extremely important to achieve accurate and reliable
surface diagnosis of the condition of the concrete structure [3,4].

Based on the simple visual appearance, the type of concrete damage can be categorized as cracking,
crazing, spalling, scaling, delamination, dusting, blistering, efflorescence, and discoloration [5].
Cracking is a path of the local separation of a structural element or material into two, or more, pieces.
Crazing, also called pattern cracking or map cracking, is the formation of closely spaced shallow
cracks in an uneven manner. Spalling can be described as the breaking of layers or pieces of concrete
from the surface of a structural element. Concrete scales when the finished surface flakes or peels off.
Delamination is when the top surface of the concrete becomes separated from underlying concrete
and is similar to blistering. Dusting, also called chalking, is the formation of fine and loose powdered
concrete on the hardened concrete by disintegration. Blistering is the formation of hollow bumps of
different sizes on the concrete surface. Efflorescence is the formation of deposits of salts on the concrete
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surface. The salts formed are generally white in color. Discoloration of a concrete surface can appear
as gross color changes in concrete as spotted or mottled light or dark blotches on the surface, or early
light patches of efflorescence [5].

Damage assessment of historic concrete structures is critical for their preservation and sustainability.
However, they pose technological challenges at different levels, from the selection of proper sensors
to the design of a structural health evaluation paradigm. The complex behavior of these structures
necessitates the use of reliable tools for the preservation and risk mitigation. Consequently, correct
diagnosis of their health conditions is provided, and potential vulnerabilities are identified in order to
prevent the risk of damage and to design adequate solutions in advance [6]. The inspection technologies
available today have difficulty in detecting slowly progressive and locally limited damage, especially
in hard-to-reach areas in the structure [7].

Traditional diagnostic methods of concrete damage assessment first carry out periodic visual
inspections. Following the preliminary visual inspection, a more thorough field survey of the defects
identified is required to enable detection of deep material pattern of anomalies. Non-destructive
tests (NDT) might be required to evaluate the preliminary inspections and define an intervention
plan [8]. Various NDT tests on concrete structures have been presented in the literature, including
the penetration method, the rebound hammer test, the ultrasonic pulse velocity test and so on [9].
Structural damage can be detected using embedded sensors that detect structural stiffness changes or
corrosion initiation, for example, vibrating wires [10] and fiber optic interferometric sensors [11] based
on vibration tests, neural networks, wavelet transforms, and nonlinear finite element methods [12].
Despite very high accuracy (up to a few hundredths of a millimeter), these methods are time consuming,
subject to human error, and capable of point wise measurements in one-dimension and thus can only
evaluate a few discrete areas of the structure [13]. In the last few decades, high quality remote sensors
have overcome the limitations associated with the traditional inspections [14].

Evidently, digital imaging and light detection and ranging (LiDAR) are considered as the
best solutions for concrete preliminary damage detection due to their ability to offer high spatial
resolution [15]. Consequently, damage occurring to any part of the structure can be detected and
localized. For instance, Jenkins et al. [16] performed visual inspection and structural condition
monitoring of railway tunnels based on imagery data and an image processing software package
carrying out operations such as image registration and stitching, 3D reconstruction and change
detection. Image-based health monitoring techniques to acquire 3D point clouds (PCs) on real
scenes are low-cost and very precise, but the quality of the images is significantly affected by the
surrounding environmental conditions and exhaustive images are needed to achieve the required
resolution [17]. The recent development of robotic equipment such as unmanned aerial vehicles (UAVs)
facilitates the acquisition of high-resolution aerial photos from which 3D PCs are obtained through
Structure-from-Motion (SfM) [18] and MultiView-Stereo (MVS) photogrammetry algorithms [19,20].
Skarlatos and Kiparissi [21] showed that for small and medium size objects and distances, an SfM
algorithm followed by an MVS algorithm is superior to terrestrial laser scanner (TLS) in terms of
accuracy, density, modelling quality and cost. However, factors such as poor texture and weak network
geometry may limit the effectiveness of SfM-MVS. In addition, they demonstrated that, for large-scale
objects such as historic structures, a laser scanner is better in terms of quality and processing time. A
single scan acquired with laser scanner technology can cover a full 360◦ × 310◦ panoramic view and
directly generate a dense 3D PC within few minutes with much higher precision and resolution [22].

In the last few years, much research has focused on automatic methods for structural deformation
monitoring from remotely sensed data captured by TLS due to its ability to offer high spatial resolution
at high speed and high accuracy [23,24]. Valença et al. [25] used geometric information surveyed
by TLS for accurate image orthorectification, solving one of the major drawbacks of applying image
processing for cracks characterization on large concrete bridges. Hancock et al. [26] studied change
detection of fire-damaged concrete using TLS intensity data.
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For applications where the structure is not moving rapidly, a laser scanner having a sequential
data collection scheme is capable of monitoring the structure over long-term time epochs. However,
the change detection between pre- and post-event (the event might be an earthquake, although here, in
the context of monitoring practice, event refers to the passage of time which causes damage to the
structure) PC pairs derived from repeated TLS acquisition over the same area relies on the pre-event
data, which is almost never available for old historic structures. Since these structures have not
sustained damage within only a few years of this study, obtaining a temporal deformation monitoring,
that is, the change detection between pre- and post-event PCs, is not applicable. Alternatively, instead
of change detection on pre- and post-event PCs, damage assessment of the structure with respect to
the design model or the idealized state of the structure will be the focus of this study.

This research solely uses the spatial TLS point cloud (PC) coordinates to localize geometric damage
of any type which makes roughness as small as 1 cm or larger on a concrete surface. The synergistic
application of deeper diagnostic techniques is essential to validate the identified surface damage.
Therefore, complementary to the visual inspections facilitated by this research, concrete diagnostic
procedures presently applied in the field of civil engineering such as NDT tests on the visually identified
defects are required to enable inspection of the internal and deeper parts of the structure.

Limitations of Previous Work

Structural monitoring based on measuring temporal changes between PCs of different epochs,
registered in a common coordinate system, has been well studied in the literature [27]. Due to the
inability to exactly reposition a scanner at the same location and the finite laser beam footprint,
individual measurements from repeated scans will not exactly coincide [28] and thus it is not possible
to scan the same point in different epochs even if the scans are well registered. Therefore, temporal
changes are mostly detected with respect to an object or at least a certain neighborhood of a point in
the reference situation. By creating a 3D reference surface model from the points, rather than trying
to detect deformation by single-point comparison, surface change is measured as the distance along
the local surface normal [29,30]. Limitations of this approach include: (1) a specific surface model is
needed for different applications with objects of specific geometric characteristics, Puente et al. [31]
detected damage on planar masonry walls by measuring cloud-to-plane distances between repeated
laser scanning data and were able to detect changes at the noise level of individual laser scanner
observations while avoiding 3D point cloud registration; (2) when deformation is derived by computing
the differences between surface models fitted to different epochs, the estimated deformation field is
basically one-dimensional [32,33]; (3) cloud-to-mesh approaches do not take into account the local
orientation of the surface represented by the PCs [27]; and (4) meshing TLS data not only adds a level
of error by interpolation, but can also create erroneous surfaces [22]. Additionally, meshing PCs have
severe limitations specially for sophisticated historic structures presenting roughness at all scales [34].

Barsanti et al. [35] evaluated a region-growing algorithm to group points into clusters based on
the angular comparison between locally estimated surface normals. They concluded that working on
PCs does not seem to be the most suitable approach for creating a 3D segmentation to analyze historic
concrete structures. On the other hand, when they applied the segmentation directly on meshes,
appropriate results were only produced with the manual process and not with a completely automatic
approach. Lague et al. [36] measured surface changes via a direct comparison of PCs without meshing
or gridding. The first step is surface normal estimation and orientation in 3D at a scale consistent with
the local surface roughness. In the second step, the mean surface change is measured by computing
the local distance between the PCs of two epochs along the normal surface direction, which tracks 3D
variation in surface orientation. Precise registration allows in situ change detection down to 6 mm at
95% confidence over ranges of 50 m, depending on the instrument used. The main drawback is that
the deformation is one-dimensional, along the direction of surface normal. Additionally, if a change in
surface orientation has occurred between two epochs, the average normal is considered. Consequently,
the deformation direction will be incorrect [15].
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It is clear that it is possible to detect deformations below the nominal single point accuracy (a few
millimeters) if appropriate modelling in combination with statistical error propagation is used [29].
However, for various applications, feasibility studies on the limits of TLS in detecting the minimum
deformation with a predefined probability are a critical task [22,27].

In this study, change detection looks for a binary answer: whether and where a scene has been
damaged, and thus classifies points into classes damaged/non-damaged. Although using imagery for
damage classification is an extensively researched topic, to the best of the authors’ knowledge, only a
few publications have reported damage detection based on classifying spatial 3D points. Therefore,
damage classification of spatial TLS PCs is a new research area that has the potential to enhance the
current practice of inspections in structural health monitoring.

Current methods of damage detection based on PC classification are, firstly, limited to detecting
specific shapes of defects occurring on specific geometric surfaces, such as flat planar structural
components and are vulnerable to scan parameters such as incidence angle. For instance, Kim et al. [37]
used surface normal vectors for localization of spalling defects on a flat surface. Shallow spalling defects
less than 3 mm deep could barely be detected even when the detectability of defects was enhanced
by an optimal incidence angle. Secondly, current methods are highly dependent on appropriate
threshold values and thus might not be able to correctly model construction errors and surface
inhomogeneities [38]. Thirdly, some methods are based on dividing the point cloud into sub-areas,
with a predefined size, that are designated as damaged or undamaged. This subdivision reduces the
resolution of the detection [39]. Moreover, they mostly avoid data artefacts such as registration errors by
using non-registered data captured from a single position and, thus, they do not apply robust statistical
methods to deal with data artefacts [38]. Distinguishing between damage and outliers is very critical
in PC damage assessment [40]. Therefore, a robust statistical method such as robust PCA is required
to enable detection of smaller and more detailed damage. For instance, Tang et al. [41] attempted to
suppress noise in TLS PCs while maintaining information about surface flatness and achieved detection
of flatness defects as small as 3 cm across and 1 mm thick only on horizontal surfaces.

The outline of the work is as follows. A review of the research problems and proposed objectives
addressing these problems are stated in Section 2, followed by methodologies and simulations for
developing an automatic classification procedure in Section 3. Section 4 describes the initial experiments
conducted to gain heuristic knowledge on the collected dataset. Furthermore, the initial experiment
results and findings by numerical simulations are discussed in Section 5. Conclusions and discussion
of open problems are presented in Section 6.

2. PC Processing for Damage Assessment

PC processing and surface modelling methods can detect damage on the surface of a structure
according to the surface flatness, smoothness, and roughness with respect to a reference surface
simulating the intact condition of the structure [42]. In this regard, the methods in the literature are
based on classifying damage at either the point or the segment level. Geometric features, as descriptors
of the local neighborhood at each point, provide insight into the structural geometric condition and are
therefore used to classify the points [43]. PCA is a popular tool for linear dimensionality reduction and
is commonly used for feature extraction.

Santos et al. [44] demonstrated that Kernel PCA (KPCA) can reveal more complicated hidden
structures of the data than linear PCA and can enhance separation of damaged from undamaged
conditions in acceleration time-series data captured of an aluminum frame structure in laboratory
conditions. The KPCA algorithm is an extension of the linear PCA that maps data into a
high-dimensional space to model nonlinear patterns presented in the original observation space
and provide better classification performance [45]. Although, KPCA—similarly to kernel-based
learning methods such as support vector machines—can handle the nonlinear relationship between
features and class labels, its performance depends on the choice of kernel function and kernel
parameters. Cross-validation, the most commonly used method to obtain these optimal kernel
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variables, is time consuming for massive data sets such as PCs applied in this study [44,46]. This
research will demonstrate how a robust version of the linear PCA can improve shallow surface damage
classification of PCs by masking changes caused by data artefacts from changes caused by damage.

One of the main distinguishing factors of our method is the use of supervised classification
versus unsupervised classification. Supervised classification for damage assessment requires a user
to manually select labelled data (training data) in order to train a classifier. The number of training
samples needed to produce an accurate classification increases as the number of features increases.
The training time can thus create a significant limitation, which negatively impacts the efficiency. For
these reasons, this paper focuses on unsupervised classification approaches.

2.1. Statement of Problems

As mentioned, methods of structural damage assessment from spatial point clouds are based
on classifying points as either damaged or undamaged. In this context, a comprehensive solution
to the automated classification of raw TLS PCs is still a complex and challenging task due to the
following facts:

• Due to a lack of current knowledge about the best feature to be used for damage detection, as
many geometric features as possible are exploited, which increases the computational burden of
large point clouds in terms of memory consumption and processing time.

• The distinctiveness of geometric features greatly depends on the respective neighborhood
encapsulating those 3D points that are used to extract the features. Thus, applying an optimal
neighborhood size is essential to compute non-biased and distinctive geometric features to allow
the most accurate discrimination between different classes.

• The neighborhood size depends on irregular and varying point density and the variety of types of
objects/damage to be detected.

• Subjective, scene-dependent, and inconsistent similarity thresholds are used in most classification
and segmentation algorithms that change for different datasets captured in different environments.

• Outliers exist in the PCs due to data artefacts such as edge effects caused by occlusions, and the
features derived have proven to be sensitive to outlier.

Furthermore, particular to this research, an undamaged surface is only approximately smooth
and presents a roughness related to the characteristics of gravel used in concrete production. In
addition, their surfaces may be distorted compared to their designed shapes due to construction errors.
Therefore, reference surface model fitting cannot correctly model such distortions.

2.2. Automatic Damage Classification

A framework was developed to analyze 3D point clouds obtained from a concrete structure in
order to automatically assign each 3D point a semantic label indicating whether it is damaged or
not and, furthermore, to perform an automated damage assessment on a structure of interest. The
following are the objectives of this work that address the aforementioned limitations and problems:

• Selection of an adequate feature to distinguish between undamaged and damaged surfaces.
• Assessment of impact of neighborhood size, point density, damage size and artefacts on

damage detection.
• Systematic definition of thresholds for robust PCA classification of damage.

To meet these objectives, an unsupervised classification algorithm has been implemented to detect
damage locations within a historic structure.

3. Methodologies

The input to the algorithm is the TLS PCs Cartesian coordinates captured from the surface of a
concrete structure. The most defect-sensitive feature(s) and the optimal neighborhood, appropriate for
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damage detection, are empirically selected. Robust PCA, with the user-selected free inlier parameter,
identifies and excludes outlier points in the selected neighborhood in order to derive a robust
computation of the selected feature. The simulated impact of the remaining random measurement
errors on the feature derived is used to establish systematic thresholds for classification. Accordingly,
each 3D point captured from the concrete structure is automatically assigned a semantic label
determining whether it is damage or not.

3.1. Proposed Neighborhood Selection

The local geometry at each query point, arising from the spatial arrangement and distribution of
3D points within its local neighborhood, is used to classify the points. An optimal neighborhood is
defined as the largest set of spatially proximal points that belong to the same object so that points lying
on different surfaces are excluded [47]. Various strategies exist for searching the local neighborhood
around a given point [48]. The search might compute the k-Nearest Neighbors (kNN) or a range search
around a query point.

Range search neighbors are more suitable for points with homogeneous density. On the other
hand, in a kNN search, the area of interest (AOI) is adopted according to the point density by using a
bigger AOI in the areas of lower point density (i.e., higher noise) [49,50]. Since this research aims to
detect fine details of a 3D structure, such as damage in the order of 1 cm, the kNN is not appropriate.
When the dimensions of the object/damage are very small, the kNN may include several distinct
structures and provide erroneous feature descriptors, which in turn adversely affects the damage
classification. Therefore, a search based on spatial range will be used for this research. Rather than
focusing on an optimal range search for each individual point, an optimal range search across all
points is selected. The selection of a single optimal scale allows a generalization between datasets,
since variations in point density will be handled.

On the one hand, neighborhood size should be sufficiently large to average out the effects of
noise and thus allow reliable estimation of geometric features even in presence of noise. On the other
hand, neighborhood size should be sufficiently small to allow detection of fine details of the damaged
structure, because in a large neighborhood, each individual 3D point will contribute less to the surface
variation estimate. Based on the heuristic knowledge gained through the initial experiments performed
on part of the first collected dataset, the local surface variation (normalized smallest eigenvalue),
Cλ, is selected as the most defect-sensitive feature and the fixed range of 2.5 cm is selected as the
optimal neighborhood. These selected values are assumed to be applicable for any other dataset and
this assumption will be validated on PCs collected from a second concrete structure. Accordingly, in
the absence of an optimal kNN search, which minimizes the impact of point density, the threshold
definition will focus on finding an automated procedure for quantifying the impact of density in the
applied fixed range search.

3.2. A Systematic and Data-independent Criterion for Damage Detection

This research aims to investigate the impacts of neighborhood size, damage size, point density,
geometric feature threshold, instrument precision, random errors and outliers (e.g., registration errors
and edge effects) based on a systematic and data-independent criterion for damage detection. First,
robust PCA parameters will be analyzed and tuned based on the sensitivity of the damage detection
algorithm to the outliers. Second, systematic similarity thresholds are defined by assessing the impact
of point density and random errors on damage detection. The defined thresholds based on point
density will be combined with the robust outlier detection strategy (i.e., robust PCA) to achieve more
robust geometric features suitable for classification of damaged PCs.

3.2.1. Robust PCA

PC classification based on the classical estimate of the dispersion matrix is highly affected by
the presence of outliers in the data [51]. Robust statistical methods can be used to reduce the effect
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of outliers in model parameter estimation. For fitting of shape primitives such as planes to the local
structure, the outlier problem may be overcome by the RANdom SAmple Consensus (RANSAC)
algorithm or one of its variants. However, to describe the local structure via eigenvalues and derived
features without assuming a parametric model, a robust version of PCA is preferred to reduce the effect
of noise. Robust PCA is able to detect more outliers compared to RANSAC [52]. The effectiveness of
robust PCA for outlier detection is well-established in planar and linear surface estimation [53], as well
as in improving the cylindrical axis estimation [54].

The robust PCA is defined as computing the eigenvalues and eigenvectors of a robust estimator of
the dispersion (covariance) matrix. There are a number of robust multivariate dispersion estimators in
the literature. In this paper, the deterministic-MCD (Det-MCD) robust dispersion estimator, proposed
by Hubert et al. [51], is applied for non-parametric, multivariate outlier detection due to its efficiency
and practicality over other robust estimators. The Det-MCD algorithm estimates the mean and
covariance matrix of the outlier-free neighborhood points referred to as the robust center (location)
and scatter, respectively. For each neighborhood, the Det-MCD estimator selects a subset of h points
(inliers) out of n points with the smallest covariance determinant. The value of h is computed based
on the inlier percentage, α, selected by the user, where (1- α) measures the fraction of outliers the
algorithm should resist. Robust PCA is expected to improve the classification results by analyzing the
sensitivity of damage detection to noise and thus applying appropriate α or h.

3.2.2. Automatic Definition of Thresholds for Robust PCA Classification

Noisy point coordinates impact the precision of the derived eigenvalues and the respective
features (e.g., normalized smallest eigenvalues). Although robust PCA reduces the influence of outliers
on the eigenvalues derived, the variance of the eigenvalues due to remaining random measurement
errors should be quantified. Therefore, the defined threshold must be large enough to incorporate
the influence of random measurement errors on the derived features. Based on the law of variance
propagation, the precision of the eigenvalues and the respective features can be theoretically derived
from noisy point coordinates. To this end, the functional model is the formula for the 3D structure
tensor from which the eigenvalues are estimated. The stochastic properties are the instrumental
measurement random errors for the TLS instrument used to collect PCs in this study. Some research
has attempted to analytically derive the impact of point errors on the principal components [43].
However, the exact theoretical derivations when point measurement errors have correlations (i.e., their
covariance matrix contain non-zero off-diagonal elements) have not been derived.

In this research, Monte Carlo simulation was performed to simulate variations of the eigenvalues
subject to random point measurement errors. The simulated impact of random point measurement
errors on the eigenvalues can be used to establish systematic thresholds for classification. This in
turn yields an automatic classification procedure. Based on the defined threshold for the adequate
geometric features, the points will be classified as damage and non-damage.

3.3. Statistical Behaviour and Distribution of the Smallest Eigenvalues of Wishart Covariance Matrices

Let X be the ensemble of real rectangular n× p (n ≥ p) matrices containing n observations xi of
a p-dimensional (e.g., p = 3 for 3D PCs) row vector drawn from a Gaussian distribution. It can be
assumed that X has zero empirical mean without loss of generality by constructing new data as,

X = X −X, X ∼ Nn×p(0, Σ) (1)

Let Sn = 1
n X′X εRp×p be a covariance matrix having ordered eigenvaluesλ1 ≥ λ2 ≥ . . . ≥ λp which

are non-negative and are the squares of the singular values of X. By singular value decomposition, we
can factorize Sn with eigenvalues λ j in the diagonal matrix L and

{
u j

}
are the orthogonal eigenvectors

arranged as the columns of U,
Sn = ULU′ = Σλ ju ju j

′ (2)
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The ensemble of p × p random symmetric covariance matrices, M = X′X, are called Wishart
covariance matrices and have a Wishart distribution with scalar matrix Σ and with n degrees of freedom.
This is denoted by M ∼ Wp(n, Σ) or M ∼ W(p, n). The singular value statistics of X are completely
determined by the eigenvalue statistics of the Wishart covariance matrices, M = X′X. In fact, the
ensemble of Wishart matrices, M, fluctuates around the empirical covariance matrix Sn [55,56].

This research is particularly focused on the marginal density of the normalized smallest eigenvalues
of Wishart covariance matrices constructed from rectangular random matrices of X belonging to
Gaussian ensembles. The smallest eigenvalue of the Wishart covariance matrices, 1

n X′X, or, equivalently,
of X′X, is of considerable interest for statistical analysis in many applications. In PCA, this smallest
eigenvalue determines the best fit plane. This smallest eigenvalue is most sensitive to noise in the data
and it gives the leading contribution for the threshold estimate [57].

The distributions of the extreme eigenvalues of Wishart matrices have been known in terms of
zonal polynomials and in terms of Pfaffians [58,59]. Closed form expressions were not reported in the
literature [60] until Edelman [61] integrated the joint eigenvalue distribution of real Wishart matrices
and obtained a closed form for this integral, which is the exact probability density function (pdf) of
their smallest eigenvalue. Edelman [61] only gave exact expressions for pdf of the smallest eigenvalue
when rectangularity, n − p, equals to 0, 1, 2, and 3. Then, he used the first two of these expressions
as terminal cases in a recursion to compute the distribution in the general case (for other values of
rectangularity). He derived the pdf using recursion formulas that determine the polynomials for either
even or odd rectangularity. Wirtz et al. [62] derived explicit closed form solutions for the smallest
eigenvalue distribution in terms of Pfaffian determinants for both finite and infinite data matrix sizes in
more compact and easier to handle form than the previously known complicated recursive expressions.

Despite the fact that the real ensembles are more versatile than their complex counterparts, real
ensembles are technically challenging, particularly when correlations among the matrix elements are
introduced. This can be proved using the law of variance propagation [63]. Although the spherical
laser scanning measurement errors have an uncorrelated Gaussian distribution, their propagation
into the Cartesian point coordinates are still Gaussian but correlated (i.e., the Wishart covariance
matrices, X′X, contain off-diagonal elements). Wirtz et al. [62] considered the uncorrelated Wishart
model. In numerical simulations they include the correlated Wishart case and argue that for some
kinds of correlated Wishart ensembles the smallest eigenvalue of the correlated model follows the
same universal predictions. The numerical simulations underline that correlations in some kinds
of correlated Wishart ensembles have a very weak effect on the spectral statistics of the smallest
eigenvalues. However, they emphasize that they have not looked at the situation where covariance
matrix develops a spectrum where some eigenvalues lie on the scale 1/p. Nor have they looked at the
situation of doubly correlated Wishart ensembles [62].

In summary, covariance matrices constructed from rectangular random matrices belonging to
Gaussian ensembles, have a Wishart distribution. Closed form solutions for the density of the smallest
eigenvalues of uncorrelated Wishart matrices have been vastly studied in the literature. However,
closed form solutions for density of the smallest eigenvalues of correlated Wishart matrices, applied in
this study, have not been addressed in the literature. Therefore, this study approximates the statistical
distribution that best fits the data set.

3.4. Simulation Description

The simulated uncertainties of the normalized smallest eigenvalue (Cλ), selected as a distinctive
geometric feature for the application of damage detection, can be used to systematically quantify the
similarity thresholds based on point density. Based on the threshold defined for Cλ, the points will be
classified as damage and non-damage.

A large number of random planes with different orientations and different distances from the
origin (2 m to 28 m) are simulated. The Cartesian coordinates of each point locating on these planes are
calculated by projecting rays in vertical and horizontal angular increments according to the angular
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resolution of the TLS instrument used in this study. Each ray is then intersected with each plane to
derive the range of the noise-free observations. The spherical inputs (i.e., vertical and horizontal angles
and range) are contaminated with 100 trials of random instrumental measurement errors. The spherical
random measurement precision obtained from the manufacturer’s specifications, are assumed to be
normally distributed. Next, the features are estimated with the 2.5 cm spherical neighborhood for a
query point located at center of each simulated plane.

As shown in Figure 1, density varies inherently with changes of range and incidence angle in
the simulated planes—as range and incidence angle increase, density decreases. Accordingly, the
number of points, n, encapsulated in the applied fixed range search of 2.5 cm across the entire PCs, is
an indicator of density variation among diversely oriented planes. Therefore, each simulated plane
corresponds to an n value indicating a specific density.
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Figure 1. The query point at center of simulated plane 1 with smaller range and smaller incidence
angle has larger n in the fixed neighborhood of 2.5 cm (i.e., higher density) while simulated plane 2
corresponds to a smaller n.

The error-free normalized smallest eigenvalue, Cλ, should be zero for non-damaged planar
points. Figure 2 illustrates the deviations of Cλ from zero when the non-damaged planar points are
contaminated with random errors across diversely oriented planes simulating various density values,
n. Many candidate distributions were tested to find a statistical distribution that best fits to the Cλ
deviations at each cross section (e.g., the cross section shown in Figure 2) corresponding to a density
value, n.
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Figure 2. Deviations of Cλ across diversely oriented planes for different trials.

The MATLAB probability distribution app was tested on several histograms corresponding to
various density values. The Burr distribution was selected since it had the best fit in terms of minimum
sum of squares of residuals. Figure 3 shows the Burr statistical distribution fitted to the data from a
randomly selected plane shown in Figure 2.
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The Burr Type XII distribution, or simply the Burr distribution is a continuous parametric
probability distribution for a non-negative random variable. The Burr probability density function
(pdf) is

f (x|a, c, k) =
kc
a

(
x
a

)c−1

(
1 +

(
x
a

)c)k+1
x > 0, a > 0, c > 0, k > 0 (3)

where c and k are the first and second shape parameters and α is the scale parameter. Maximum
likelihood estimation is used to determine the distribution parameters from the empirical sample data.
The density of the Burr type XII distribution is L-shaped if c ≤ 1 and unimodal otherwise. For the Burr
distribution fitted to the smallest eigenvalues, the shape parameter, c, is always larger than 1, for any
density value, n. Thus, the distribution increases at first, rising to a single clear peak or most frequent
value, after which it decreases.

The Burr statistical distribution best fit to the data set generated by the deviations of Cλ from zero
across 100 random error trials describe the dataset at each density value, n. Given the distribution of
Cλ for each density value, the 95th percentile value of the Cλ distribution is defined as the simulated
threshold value. Therefore, the defined threshold value is a function of density value, n. If the derived
value of Cλ is larger than the 95th percentile value (the critical value at the 5% significance level), the
point is classified as damage with the probability of 95 percent.

Figure 4 shows Burr pdfs fit to the deviations of Cλ over different trials for each plane orientation
simulating various densities. According to Edelman [60,61], the distribution of the smallest eigenvalues
gets wider as n gets smaller, which agrees with Figure 4. This is rational, since the smaller number of
points in the fixed range search, n, indicates lower density which is less tolerant to the noise resulting
in higher uncertainty of Cλ. In other words, the defined threshold value automatically quantifies the
impact of point density variations in the applied fixed range search.
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Figure 4. Burr distributions of Cλ over different trials at diversely oriented planes having various density.

A large number of planes at different orientations producing various density values were simulated.
For each density value, the 95th percentile value of Cλ distribution (i.e., where 95.45% of the Cλ deviated
values lie within two standard deviations of the mean value of Cλ), was plotted as the simulated
threshold value on Figure 5. A curve fitted to the simulated threshold values quantified the systematic
threshold as a function of density value. An exponential function of the form

Systematic Threshold = f(n) = nb + d, (4)

was fitted at 0.95 confidence level.
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4. Applications and Analysis

4.1. Experiment Environment

The feasibility of the proposed damage assessment algorithm has been evaluated on data collected
from a cultural heritage structure, an aqueduct site in Brooks, Alberta, Canada. The Brooks aqueduct
(Figure 6), commissioned in 1914, is located in a shallow valley 5 km southeast of Brooks. The aqueduct
is an impressive reinforced concrete structure over 3.1 km in length featuring a large catenary-shaped
flume mounted on 20 m high columns [64].
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Figure 6. Brooks aqueduct.

The most unusual aspect of the aqueduct is the shape of the flume cross section, called a “hydrostatic
catenary” by Muckleston and Gibb, and chosen because of its similarity to the hydraulically efficient
semicircular cross section [64]. The flume part of the aqueduct is very elongated, which made it
possible to analyze a complete range of scan distances, from 1 m to 100 m, and scan beam incidence
angles, from almost perpendicular to almost horizontal.
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The Brooks aqueduct was one of major water management facilities within the Eastern Section of
southern Alberta. In 1979, the Brooks Aqueduct was abandoned with the completion of its earth fill
replacement [64]. The aqueduct is a high maintenance structure [65]. Some instances of damage to
the aqueduct concrete surface are visible to human eyes, and have been documented as digital photo
images, thus, damage assessment of the structure is vital for preservation.

Data Preparation

The site was scanned by Leica Geosystems High-Definition Surveying (HDS) 6100 laser scanner
with scanning settings summarized in Table 1. The HDS 6100 has a rotating mirror system that covers a
360◦ × 310◦ field of view. In addition to the spatial location of the reflecting surface point, the intensity
of the received echo is recorded.

Table 1. Leica High-Definition Surveying (HDS) 6100 scanning settings and manufacturer specifications 1.

Resolution Level Ultra High

Angle increments horizontal 0.009◦

Angle increments vertical 0.009◦

Recommended target distance at angle of incident approx. 90◦ 1–25 m
Maximum target distance 30 m

System Performance

Distance
Up to 25 m Up to 50 m

≤2 mm @ 90% albedo ≤3 mm @ 90% albedo
≤3 mm @ 18% albedo ≤5 mm @ 18% albedo

Angle Accuracy
Horizontal 125 µrad

Vertical 125 µrad
1 According to Leica HDS 6100 User Manual.

The dataset features a large variety of structures of various sizes as well as sparse vegetation
on the ground. The point density slightly varies with the orientation of the surfaces with respect
to the scanner position. The aqueduct 3D structure could not be completely captured from a single
scan due its large dimensions, self-occlusions and occlusions by other objects. Thus, multiple scans
were acquired from several positions with significant overlap to provide complete site coverage. The
western part of the aqueduct was scanned from 12 scanner locations and the eastern part was scanned
from 10 locations. For both western and eastern parts Leica black and white planar targets were
distributed on and around the aqueduct columns to register the scans. The targets were fixed and not
re-setup. The registration, performed in Cyclone Leica Geosystems in unlevelled and target-based
mode, resulted in 1–6 mm error between targets, while the root mean square (RMS) error was 1–2 mm
between common points in overlapping sections between scans. After removing the vegetation in the
scene, iterative closest point (ICP) [66] was performed in Cloud Compare (CC), open source software
(http://www.danielgm.net/cc, 2018), to further refine the registration.

4.2. Initial Experiment

An initial experiment was designed using part of the data set collected around visibly damaged
areas to gain some heuristic knowledge specific to the dataset. The first column and the flume of the
south facing side of the western part of the aqueduct were used as a test set (Figure 7). The test was
performed on the top, middle, and bottom of the column, as well as its connected flume. The test
objective was to examine the relation between density, damage size, neighborhood size, and geometric
feature threshold. As a result, the optimal combination of the variables mentioned that yields the most
accurate discrimination between different classes, (i.e., being able to detect damage), while improving
computational efficiency in terms of both time and memory consumption, could be found.

http://www.danielgm.net/cc
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Figure 7. The first column and flume, south facing of the western part of the aqueduct.

For now, instead of focusing on an optimal 3D neighborhood for each individual point, a global
optimal neighborhood size was found. To this end, a fixed range search was varied and a specific geometric
feature was calculated at each scale. In this regard, the abovementioned variables were examined:

• Geometric feature: based on the priori knowledge that the aqueduct’s 3D structure can be locally
modelled as a planar feature while damage can be detected based on the smoothness of surface,
normalized smallest eigenvalue, Cλ, was selected as an adequate and distinctive geometric feature.
Since the eigenvector corresponding to the λmin points in the direction normal to the plane, planar
points exhibit a small Cλ, whereas damaged surfaces exhibit a large Cλ.

• Neighborhood size: the test started with a small range search that was successively increased.
The interval between rangemin = 1 cm and rangemax = 5 cm was sampled in scales, 1 cm, 1.5 cm,
2 cm, 2.5 cm, 3 cm, and 5 cm (Figure 8). Cλ was examined over a range of thresholds including
0.2, 0.1, 0.05, 0.04, 0.03, 0.02, and 0.01. A critical neighborhood size corresponds to a significant
increase of Cλ, so that, planar points are erroneously detected as damage.

• Density: data were tested at the original, 1 mm, and down sampled to 5 mm scanning resolution
of PCs to ensure the minimum density required for detecting damage. The collected point cloud
was down sampled by reducing the minimum spacing between points from original state to 5 mm.

• Damage size/different objects: the test set contains a large variety of structures and damage of
various sizes.
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Figure 8. (a) Range scales sampling damage shown on top of the column, south facing of the western
part of the aqueduct; (b) is the corresponding digital image; (c) is different perspective view of the
rectangle area in (b).
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As the outcome of testing the above variables, heuristic knowledge of the optimal combination of
the variables mentioned, which yields the most accurate discrimination between different classes, was
found for the test data that is described in the next section. It is assumed that this heuristic knowledge
could be applicable to any other dataset. This assumption will be validated on PCs collected from a
second concrete structure.

5. Results and Discussions

5.1. Initial Experiment results

Areas of damage were manually delineated on the imagery in red for validating the relative
position of the corresponding defective areas identified from the scans (shown in Figure 8, Figures
10–12, 18, 19, 21, 22). The PC results are visualized in CC as follows: linear points in green; planar
points in red; and the non-smooth points in blue. Therefore, damage is expected to be shown in blue.
Linear points represent points at edges and points at the boundary of a cropped area of the structure.
The classical PCA test results show that at 5 mm resolution, 2 cm or 2.5 cm neighborhood size and Cλ
thresholds of 0.04, 0.03, or 0.02, the most accurate discrimination between damage and non-damage
classes is provided. Figures 9–12 illustrate classical PCA test results at 2.5 cm neighborhood size and
Cλ thresholds of 0.02.
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Figure 11. Middle of the column. 5 mm point spacing, Cλ < 0.02, neighbourhood size 2.5 cm. (a) classical
PCA; (b) robust PCA at α = 0.90; (c) robust PCA at α = 0.75; (d) is the corresponding digital image.
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The results show that 5 mm scanning resolution allows damage detection. Therefore, for the sake
of computational efficiency, the down sampled scanning resolution is preferred to the original, more
dense data. Since the size of the smallest damage which can be detected is 1 cm, small damage cannot
be detected in PCs with point spacing greater than 5 mm. Comparing damage sizes with neighborhood
sizes implies that a 5 cm neighborhood is not small enough to detect fine details of the 3D structure
such as small damage of 1 cm. The reason is that in a large neighborhood each individual 3D point
will contribute less to the surface variation estimate. Thus, the spherical neighborhood size should be
chosen based on the dimensions of the smallest damage of the structure that must be extracted.

The tests were repeated with robust PCA. Query points removed as outliers are shown in yellow.
The data quality from TLS is generally very high, so there are few outliers expected. Moreover, the
environment is not dynamic like a construction site, so the percentage of outliers is not expected
to be large. Therefore, at first, α is set to 0.75. The results of the robust PCA tests revealed that
5 mm resolution, 2.5 cm neighborhood size and Cλ threshold of 0.02 provided the most accurate
discrimination between damage and non-damage as shown in Figures 9–12. Moreover, it enhances
separation of damaged from undamaged conditions compared to the classical tests by discarding some
sort of noise and outliers from the data, and thus masking changes caused by data artefacts from
changes caused by damage.

The problem with robust PCA is that, in some areas of the structure, such as Figure 11 at α = 0.75,
some damaged points are erroneously flagged as outliers (i.e., detected in yellow). This problem can
be dealt with by testing higher percentage of inliers, for example α = 0.80, 0.85, and 0.90. As shown in
Figure 11, at α = 0.90 the discrimination between damage and outlier classes is improved.
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In Figure 12a, the lines at the connection of the overlapping scans (Figure 13) are classified as
non-smooth points (i.e., blue points). Since these erroneous points only appear in the lines at the
boundaries of overlapping scans and the other overlapped regions are smooth, this suggests that the
problem is not related to registration accuracy, but it is due to the edge effects. The robust PCA can
distinguish between data artefacts such as edge effects with damage points and thus removing more of
the edge effects as outlier as shown in Figure 12b,c. However, the robust PCA parameters must further
be tuned in order to prevent removing of the damaged points erroneously as outliers by applying
appropriate percentage of inliers, α.
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In the next section, numerical simulations will be applied to investigate the relation between
the variables in the experiment based on a systematic and data-independent criterion for shallow
damage detection.

5.2. Systematic Thresholds for Robust PCA Classification

Different values of robust PCA inlier percentage, α, ranging from 65% to 95% were tested on
different parts of the aqueduct to compute robust Cλ values at each point. Afterwards, the systematic
similarity thresholds derived from Equation (4) were applied to classify the inlier points as damage or
non-damage. Figures 14 and 15 show the tests comparing systematic and subjective thresholds while
tuning robust PCA inlier percentage for several parts of the aqueduct. Visual inspection of digital
imagery of the aqueduct suggests that the classification results defined based on point density the at
0.95 confidence level better identify the damage than the subjective threshold of 0.02 obtained from the
initial experiment.



ISPRS Int. J. Geo-Inf. 2019, 8, 585 18 of 29

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 18 of 29 

 

𝑪𝝀 < 0.02 Digital Image of Damage 𝑪𝝀 < 95th Percentile Value 
C

la
ss

ic
al

 P
C

A
 

 

   

 

 

 𝑪𝝀 < 0.02 Digital Image of Damage 𝑪𝝀 < 95th Percentile Value 

R
ob

us
t P

C
A

: α
 =

 9
5 

    

R
ob

us
t P

C
A

: α
 =

 8
5 
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Figure 14. The top of first column and flume. 5 mm point spacing, neighborhood size 2.5 cm, systematic
(right) versus subjective (left) thresholds: classification of damage (blue) and non-damage (red) points
after removing outlier points (yellow) at various α.
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The tests were repeated on a second data set captured of a concrete pedestrian overpass on the 
University of Calgary campus. The digital imagery in Figures 16 and 17 show the location of the 
superficial damage. The corresponding classification tests illustrated in Figures 18 through 20 agree 
with the aqueduct data set that the simulated thresholds at 0.95 confidence level enhance the damage 
detection compared to the subjective threshold.  

Figure 15. Continuation of Figure 14.

The tests were repeated on a second data set captured of a concrete pedestrian overpass on the
University of Calgary campus. The digital imagery in Figures 16 and 17 show the location of the
superficial damage. The corresponding classification tests illustrated in Figures 18–20 agree with the
aqueduct data set that the simulated thresholds at 0.95 confidence level enhance the damage detection
compared to the subjective threshold.
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Figure 16. South side of the on-campus pedestrian overpass with visible damage at rectangle area A
and its larger zoom.
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Figure 17. (a) North side of the on-campus pedestrian overpass with visible damage at rectangle areas
B and C; (b) correspond to larger zoom of C in (a); (c) correspond to larger zoom of B in (a).
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outlier points (yellow) at various α.
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Figure 20. Continuation of Figure 19. Robust PCA classification of damage (blue) and non-damage
(red) points after removing outlier points (yellow) at various α.

Figure 21, however, shows that neither the systematic nor the subjective thresholds properly
detected damage on part C of the second data set. This is evidence that the fixed 2.5 cm range search
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neighborhood size is not small enough to identify damaged points where the damaged area (e.g.,
part C) represents surface roughness of less than 1 cm. To detect this damage, smaller neighborhood
sizes of 2 cm, 1.5 cm, and 1 cm were tested on part C. Moreover, the density higher than 5 mm point
spacing—original (i.e., not-down sampled) 1 mm scanning resolution—was applied. The reason is that
the neighborhood size must be adopted according to the point density by using a larger neighborhood
in the areas of lower point density (i.e., higher noise) and a smaller neighborhood in the areas of higher
point density (i.e., lower noise).
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Figure 21. On Campus area C. 5 mm point spacing, neighborhood size 2.5 cm, systematic versus
subjective thresholds: classification of damage (blue) and non-damage (red) points after removing
outlier points (yellow) at various α.
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As shown in Figure 22, at 1 mm point spacing and neighborhood size 1 cm, both the systematic
threshold and the subjective threshold are able to detect the superficial damaged areas. However, the
problem is that some damaged points are erroneously flagged as outliers even at the very large inlier
percentage of α = 99. This can be justified that the very small neighborhood of 1 cm is not sufficiently
large to average out effects of noise and thus robust PCA becomes highly sensitive to noise.
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6. Summary, Conclusions and Future Work

An unsupervised classification algorithm was developed to automatically identify surface damage
in TLS point clouds of concrete structures. Based on the experiments, this algorithm requires a minimum
density of 5 mm point spacing and a fixed range search of 2.5 cm for detecting small damage of 1 cm.
When the damaged surface is slightly rough—roughness is smaller than 1 cm—smaller neighborhood
size of 1 cm and density higher than 5 mm point spacing is required for more accurate detection.

The input to the algorithm is the TLS PC Cartesian coordinates of the surface of the structure.
Local surface variation, Cλ, at a fixed range search defined according to the size of smallest damage
was selected as a distinguishing and defect-sensitive feature. Robust PCA was used to compute a
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robust estimate of Cλ. The numerical simulations led to the definition of a function to compute a
systematic threshold as a function of the number of points encapsulated in the applied fixed range
search neighborhood. Accordingly, each 3D point was assigned a semantic label determining whether
it is damage or not and visualized in an output scan map. Classification results were validated by
comparing manually-delineated damage areas on different perspectives of the available imagery of
concrete surface with the relative position of the corresponding defective areas shown on the output
map. To validate this method, a synergistic application of different NDT techniques is needed in order
to verify the deeper location of damaged parts of the concrete.

The proposed point-wise damage classifier automatically and precisely diagnoses the location
of damage of any type, which means roughness as small as 1 cm or larger occurring on a concrete
surface of any geometric shape is captured at any orientation towards the scanner. The algorithm is
automated by the systematic threshold definition which quantifies the impact of random errors and
density variations within a given fixed range search. This compensates for the optimum neighborhood
definition in a more computationally efficient way. The simulated thresholds defined based on point
density enhance the damage detection compared to the subjective threshold values, while providing
an automatic classification procedure that is not scene dependent. The automated threshold definition
based on point density was combined with the robust PCA for outlier detection to achieve more
robust geometric features suitable for PC classification of surface damage. However, a consistent and
non-subjective value for the most sensitive inlier percentage appropriate for damage detection cannot
be suggested for various damage sizes. This is a challenge for robust PCA to suppress noise in TLS
PCs while maintaining information about surface flatness.

In the proposed framework, only spatial 3D coordinates, and consequently only geometric features,
were required as inputs. Thus, the assumption is that this framework should be general enough to be
extendable to other structures which are captured by other types of PCs obtained via dense matching
of unmanned aerial vehicle (UAV) imagery, close range imagery or mobile laser scanning, which can
provide close range point cloud data with an adequate point density while improving coverage. This
assumption will be validated in the future.
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