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Abstract: Extracting the latent knowledge from Twitter by applying spatial clustering on geotagged
tweets provides the ability to discover events and their locations. DBSCAN (density-based spatial
clustering of applications with noise), which has been widely used to retrieve events from geotagged
tweets, cannot efficiently detect clusters when there is significant spatial heterogeneity in the dataset,
as it is the case for Twitter data where the distribution of users, as well as the intensity of publishing
tweets, varies over the study areas. This study proposes VDCT (Varied Density-based spatial
Clustering for Twitter data) algorithm that extracts clusters from geotagged tweets by considering
spatial heterogeneity. The algorithm employs exponential spline interpolation to determine different
search radiuses for cluster detection. Moreover, in addition to spatial proximity, textual similarities
among tweets are also taken into account by the algorithm. In order to examine the efficiency of
the algorithm, geotagged tweets collected during a hurricane in the United States were used for
event detection. The output clusters of VDCT have been compared to those of DBSCAN. Visual and
quantitative comparison of the results proved the feasibility of the proposed method.
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1. Introduction

The dramatic increase in the popularity of social networks has resulted in the production of
enormous amounts of “user-generated” data on a daily basis. Twitter, as one of the most popular
and fast-growing microblogging services [1], produces over 500 million tweets per day (http://www.
internetlivestats.com/twitter-statistics/) On the other hand, the advent of smart devices equipped with
Global Navigation Systems has made it possible to share location in addition to the content of tweets.
Daily generation of geotagged tweets has enabled scientists to look for advanced techniques to explore
the latent knowledge and spatial patterns in various contexts including rumor diffusion [2], user
activity pattern mining [3], crime type modeling [4], determining the relationship between social media
attitudes and health outcomes [5], and extracting the users’ communities and discussed topics [6],
to name but a few. Among other things, users of Twitter share messages and report information
about events they have witnessed (e.g., flooding, earthquakes, hurricanes, tsunamis, terrorist attacks,
accidents, festivals, etc.). Monitoring and analysis of such stream of user-generated data can provide
invaluable information about events which would have never been possible to gather from traditional
methods and resources [7,8]. Having the dynamic information about events, extracted from tweets,
enables decision-makers to comprehend what is happening on the field and react appropriately.
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Clustering, as a common technique for statistical data analysis [9,10], is an efficient method
for event extraction from Twitter data [8]. The main idea of applying clustering algorithms on
Twitter data is to decompose the dataset into similar groups of tweets that represent events. Using
spatial clustering techniques, the entire dataset can be divided into several homogeneous subsets [11].
In other words, tweets which are related to each other in close locations have to be grouped together in
the same clusters.

However, geotagged tweets are affected by spatial heterogeneity. The non-stationarity of the
underlying spatial processes that result in an uneven distribution of a phenomenon in the study area is
known as spatial heterogeneity [12]. In some areas, due to the population density or the combination of
people living in the neighborhood, the number of active Twitter users and consequently the number of
shared tweets is by far higher than other areas. For example, in areas with higher population density,
we expect to receive more tweets than the areas with lower population density. Additionally, the
age, level of education and economic condition result in a lower or higher number of shared tweets
in various areas [13]. E.g., students prefer to use the internet and social media more than other
groups and retired people are least likely to be internet users. Even the race of people affects the
number of active users (http://www.pewinternet.org/2014/02/25/) of Twitter [14–16]. Therefore,
the distribution of shared tweets is not similar in different locations and hence, heterogeneous over
the study area. Utilizing appropriate clustering methods which consider spatial heterogeneity in
geotagged tweets provides the effective means to detect the events from Twitter datasets. Moreover,
the contents of the tweets are noisy, they usually include informal languages, smileys and location
spoofing. We also do not have prior knowledge about the topic they discussed. Hence, in order to
extract events, we need a clustering method that can simultaneously consider spatial proximities and
textual similarities, is capable of extracting clusters with arbitrary shapes in noisy environments, and
also requires the minimum number of input parameters.

Among existing clustering approaches, density-based algorithms, particularly DBSCAN
(density-based spatial clustering of applications with noise) and its variations, are more efficient
for detecting clusters with arbitrary shapes from noisy datasets where there is no prior knowledge
about the number of clusters [17,18]. Due to its advantages, DBSCAN has been used in several
studies to detect clusters and extract events from Twitter data [19–21]. C.-H. Lee [22] developed
an online density-based algorithm for online spatio-temporal event detection from Twitter data.
Arcaini et al. [23] proposed a method that first filters the tweets based on the users’ queries and then an
extended DBSCAN algorithm, named GT-DBSCAN, is employed to explore the latent spatio-temporal
pattern of tweets and extract events. Capdevila et al. [19] proposed Tweet-SCAN, as an extension to
DBSCAN, which considers four main features of a tweet including content, time, location and user
for tweet clustering. Nakahori and Yamaguchi [21] developed a tour minder system based on
DBSCAN algorithm to mine tour plans in Twitter data. DBSTexC was also developed to extract
spatio-textual cluster from Twitter data [24]. Although the mentioned studies utilized or extended
DBSCAN algorithm to efficiently extract events from geotagged tweets, they did not consider the
spatial heterogeneity in the twitter datasets.

Despite its wide application, DBSCAN is not efficient when there is spatial heterogeneity in the
data and the density of the phenomenon significantly fluctuates over the study area [25–27]. In order to
address this deficiency, Liu, Zhou, and Wu [26] proposed VDBSCAN (varied density-based spatial
clustering of applications with noise) algorithm to account for spatial heterogeneity in the data by
considering different parameters for cluster detection in each area based on the density in that area.
However, the method which is utilized in VDBSCAN to determine local parameters is not appropriate
for a large volume of data as it is the case for event detection from geotagged tweets.

This study proposes an algorithm called VDCT (Varied Density-based spatial Clustering for
Twitter data), as an extension to VDBSCAN, to detect and extract geo-located events from Twitter data
in existence of spatial heterogeneity. In addition to handling noise, extracting clusters of arbitrary
shapes and requiring no prior knowledge about the number of clusters, VDCT is able to find clusters of
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geotagged tweets with varied densities. The algorithm considers both spatial proximity of geotagged
tweets along with their text similarities. The algorithm is efficient to work with large volume of Twitter
data. In order to evaluate the efficiency of the algorithm, a case-study related to event detection from
geotagged tweets collected during a hurricane in the United States was considered. The outputs of
VDCT were quantitatively and visually compared with those of DBSCAN.

2. Materials and Methods

The overall workflow of the proposed approach for event detection from geotagged tweets is
illustrated in Figure 1. The process starts with data collection using Twitter Streaming API where
geotagged tweets (tweets that include latitude and longitude) are collected and saved. In order to
prepare tweets for spatial clustering, text preprocessing is performed to transform tweets’ contents into
words which can be used in the following processes. In the clustering step, the proposed clustering
algorithm is used to extract spatial clusters from geo-located tweets. Finally, the outputs are evaluated
and visualized.
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Figure 1. Processing workflow. 

2.1. Case-Study and Data Collection 

Hurricane Florence is selected as the case study to test how the proposed method can detect 
spatial events from geotagged tweets. As a Category 1 hurricane, Florence was predicted to have 
maximum wind speeds between 74 and 95 kph. Powerful waves and walls of water moved inland 
and led to flooding. North Carolina State was severely affected by the hurricane and was selected as 
the study area in this research. Using Twitter streaming API, shared tweets within North Carolina 
have been collected during hurricane Florence, from 12 September to 19 September. Tweets were 
filtered using bounding box and only tweets which contain latitude and longitude were extracted 
and saved in the database.  

2.2. Text Processing 

In order to use the extracted tweets for spatial clustering, a text preprocessing phase is required. 
Initially, URLs, hashtags, special characters, and numbers are removed. Then, the words are 
converted to lowercase and stop words are deleted. Finally, the rest of the words are transformed 
into their stem form through lemmatization. After the text preprocessing, 8992 geotagged tweets 
remained in the study area. The final extracted tweets are presented in Figure 2.  
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2.1. Case-Study and Data Collection

Hurricane Florence is selected as the case study to test how the proposed method can detect
spatial events from geotagged tweets. As a Category 1 hurricane, Florence was predicted to have
maximum wind speeds between 74 and 95 kph. Powerful waves and walls of water moved inland and
led to flooding. North Carolina State was severely affected by the hurricane and was selected as the
study area in this research. Using Twitter streaming API, shared tweets within North Carolina have
been collected during hurricane Florence, from 12 September to 19 September. Tweets were filtered
using bounding box and only tweets which contain latitude and longitude were extracted and saved
in the database.

2.2. Text Processing

In order to use the extracted tweets for spatial clustering, a text preprocessing phase is required.
Initially, URLs, hashtags, special characters, and numbers are removed. Then, the words are converted
to lowercase and stop words are deleted. Finally, the rest of the words are transformed into their stem
form through lemmatization. After the text preprocessing, 8992 geotagged tweets remained in the
study area. The final extracted tweets are presented in Figure 2.
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2.3. VDCT

In order to cluster geo-located tweets and extract events, a varied density-based clustering
algorithm, named VDCT (Varied Density-based spatial Clustering for Twitter data), was developed in
this study. Consider T as a collection of geotagged tweets so that each tweet t ∈ T is represented as a
tuple [x, y, c, l], where x and y are the geographical coordinate of the tweet, c is the textual content of
the tweet and l is the cluster label of the tweet which is undefined at the beginning. VDCT algorithm
receives T as input and return T′, so that every tweet in the result set, t′ ∈ T′, has a defined cluster
label, l′ = cluster label, or its cluster label is set to noise, l′ = noise.

2.3.1. Text Similarity

In order to extract events, similar tweets must be placed in the same clusters. In this regard,
in addition to Euclidean distance between geotagged tweets, the text similarity of tweets should be
considered. Text similarity plays an important role in document clustering and topic modeling [28,29].
As tweets are limited to 140 characters, most of the text similarity techniques are not efficient for
calculating the similarity between them due to the short length of the messages, the informal language
and a large number of spelling and grammatical errors [30,31]. Meanwhile, cosine similarity is a
similarity measure which has proved its ability to calculate the text similarity between tweets [32,33].
Cosine similarity in text mining is a string-based measure which measures the distance between two
strings. Each string represented by a vector. Consider W as the collection of all terms in T. For a tweet
t ∈ T, its textual content can be presented as vector t.c =

[
nw1 , nw2 , nw3 , . . . , nwk

]
, where nwi shows

the number of times the term wi ∈ W occurs in tweet t. Having two tweets t1 = [x1, y1, c1, l1] and
t2 = [x2, y2, c2, l2], their similarity is computed according to cosine formula (Equation (1)) [3].

sim(t1, t2) = cos(θ) =
c1 · c2

‖ c1c2 ‖
=

∑n
i=1 ci

1ci
2√

∑n
i=1 ci

1
2
√

∑n
i=1 ci

2
2

(1)

Cosine similarity measures the cosine of the angle between two non-zero vectors. If two vectors
are perpendicular, they have cosine similarity of 0 and when they are similar and completely the same,
they have cosine similarity of 1.

2.3.2. Clustering

The proposed VDCT solution for extracting clusters from geotagged Twitter data is an extension
to the DBSCAN algorithm. DBSCAN receives two parameters of epsilon and minimum points (minPnts)
as inputs, where epsilon is the radius for neighborhood search and minPnts is the minimum number
of points that must exist around a data point so that those points can be considered as a cluster.
DBSCAN randomly selects a point which at least has minPnts points within the distance of epsilon
around it. The surrounding points are called reachable points afterward. The selected point and its
reachable points are considered as a cluster. The cluster will repeatedly grow by adding other points
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that are in the epsilon distance of the reachable points as new reachable points. The algorithm continues
until all points are either has a cluster label or there is less than minPnts points around them and thus
they are considered as noise [17].

In order to address the shortcoming of DBSCAN in dealing with spatial heterogeneity, VDBSCAN
(varied density-based spatial clustering of applications with noise) algorithm was proposed by Liu,
Zhou, and Wu [26]. VDBSCAN chooses different values for epsilon using k-dist plot. For all data
points in the dataset, the average distances to the k neighbors of each point are computed, sorted in
ascending order and plotted in a graph where x-axis shows the distance (epsilon) and y-axis depicts the
points sorted by the distance. The sharp changes in the plot correspond to the suitable epsilon values.
In this method, when the density varies significantly in different regions, various values of epsilon are
determined [26].

Although VDBSCAN can effectively deal with spatial heterogeneity, it still encounters two main
challenges for event extraction from Twitter data. The first challenge is that VDBSCAN only considers
one dimension for cluster detection. However, in order to develop an effective event detection
algorithm for Twitter data, the algorithm must consider the similarity between the content of tweets
in addition to closeness in space. As illustrated in Figure 3, tweets at the center of the image are
geographically close, but they refer to different contents and therefore cannot be grouped in the same
cluster. The second challenge is that VDBSCAN, in order to deal with spatial heterogeneity, utilizes
k-dist plot to determine the epsilon parameter for various densities. However, k-dist plot is efficient for
small data and does not perform well when we are dealing with large datasets [34] such as Twitter
data. Particularly, it is hard to detect the sharp changes in the plot when there exists a large number of
data points.
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In order to address the mentioned shortcomings, VDCT considers both location and text similarity
for cluster detection by including two neighborhood search parameters of εe and εt for spatial proximity
and text similarity, respectively. Additionally, the proposed algorithm borrows the idea of calculating
various values for neighborhood search from VDBSCAN, but uses exponential spline interpolation,
instead of k-dist plot to find the different levels of densities. Figure 4 represents the pseudo code of
VDCT algorithm.
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As it is described in Figure 4, the algorithm receives geotagged tweets (T) and text similarity
search radius (εt) as input. Each tweet in T contains both geographical coordinates and textual content,
but the cluster labels of the tweets are undefined. The algorithm starts by calculating minPnts (Figure 4,
line 3), which is the minimum number of tweets that must exist in the neighborhood of a tweet so that
those tweets can be considered as a cluster. A heuristic approach for choosing a proper minPnts is
through calculating ln(n), where n is the total number of input tweets [35,36].

In order to calculate εe (Figure 4, line 3 and lines 22 to 29), as the varied radiuses for neighborhood
search, k-nearest neighbor distances are calculated using kd-tree data structure. Employing kd-tree
leads the computation of k-nearest neighbors (k-NN) to be more efficient which is crucial for handling
large datasets [37,38]. The value of k is set to minPnts value [39]. The average distances to k nearest
neighbors are calculated afterwards and sorted in an ascending order. Based on the recommendation of
Louhichi, Gzara, and Ben-Abdallah [34], exponential splines interpolation [40] is used then to extract
different levels of densities. In this approach, an exponential spline curve is fitted to the sorted average
distances of k nearest neighbors. Having the exponential spline curve, inflection points, the points at
which the direction of curvature changes, are extracted and considered as the candidates of different
density levels and therefore εe values. Bronshtein et al. [41] has thoroughly described the procedure of
extracting inflection points from exponential splines.

After calculating the values of εe, they are sorted in ascending order. Then, by iterating through
the lowest value to the highest value of εe, the algorithm tries to find clusters with different densities
and assign cluster labels to tweets while considering both εe and εt (Figure 4, lines 6 to 17). In each
iteration, a tweet that hasn’t given a cluster label before (a tweet with the label of undefined or noise) is
selected and its neighbors are listed. If the number of selected neighbors is less than minPnts, then the
tweet is considered as a noise. Otherwise, the tweet and its neighbors are considered as a new cluster;
they receive a new label; and the algorithm tries to expand this cluster and find other tweets around
these tweets that are included in this cluster (Figure 4, lines 16 and 17) by searching for the neighbors of
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the tweets in the neighbor list and merging the results into the neighbor list. The expansion continuous
until all the tweets in the current cluster are found and labeled. Then, the algorithm continues with the
next value of εe.

In order to the select the neighbor of a tweet (Figure 4, lines 19 to 23), both Euclidean distance
between tweets and text similarity are considered. Two tweets are considered as neighbors if the
Euclidean distance between them is less than εe and their text similarity, calculated based on cosine
formula (Equation (1)), is greater than εt.

2.4. Quality Measures

Selection of proper measures for the evaluation of clustering algorithms depends on the available
information and utilized methods [42,43]. Two types of evaluation measures have been used in the
literature: internal indices and external indices. While external indices compare the results with
the existing ground truth, internal measures compare the results of different algorithms to show
which algorithm performs better. Using internal evaluation criteria, the output clusters with high
intra-similarity and low inter-similarity get higher scores. Due to the fact that it is very hard to collect
ground truth data for events that are already happening in the real world, three internal measures of
Davies–Bouldin index [44], Dunn index [45] and Silhouette coefficient [46] have been used in this
study to compare the results of the proposed clustering algorithms with the results of DBSCAN as the
base algorithm. Davies–Bouldin index is calculated using Equation (2).

DB =
1
n

n

∑
i=1

max

(
σi + σj

d
(
ci, cj

)) (2)

In Equation (2), n is the number of clusters, cx is the centroid of cluster x, σx is the average
distance of all objects of cluster x to the centroid of cluster and d(ci, ci) depicts the distance between
centroids of clusters i and j. According to this criteria, the algorithm which produces the lowest
Davies–Bouldin index is considered to perform better.

Dunn index calculates the ratio between the minimum inter-cluster distances to the maximum
intra-cluster distance [45]. This index is calculated using Equation (3).

D =
mind(i, j)
maxd′(k)

(3)

In Equation (3), d(i, j) is the inter-cluster distance between clusters i and j and d′(k) is the distance
between objects in cluster k. The distance between clusters i and j can be calculated using various
methods such as measuring the distance between centroids of the clusters. The algorithm which
achieves higher Dunn index is more efficient.

The silhouette coefficient contrasts the average distance to objects in the same cluster with the
average distance to the objects in other clusters [46]. The coefficient ranges between −1 and 1 where
1 represents the best value. Negative values show that samples are wrongly assigned to a cluster.
Overlapping clusters result in values near 0. The following equation calculates the silhouette coefficient.

S(i) =
b(i)− a(i)

max(b(i), a(i))v
(4)

In Equation (4), b(i) is the distance between an object and the nearest cluster that the object does
not belong to and a(i) is the mean intra-cluster distance of an object.
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3. Results and Discussion

In addition to geotagged tweets, εt is the only input parameter of the proposed algorithm.
The algorithm received 8992 geotagged tweets, related to Hurricane Florence (Section 2.1), while the
value of εt was set to 0.5. The algorithm was able to assign cluster labels to the input tweets. In order to
provide a reference for comparison, we also ran a DBSCAN algorithm on the dataset with minPnts = 10
and epsilon = 0.1.

3.1. Parameter Sselection

In order to obtain the best value of εt that maximizes the performance of the proposed solution,
the model was run with different values of εt, from 0.3 to 1, and the silhouette scores was calculated for
the output results. As it can be seen in Figure 5, the value of 0.5 for εt results in the highest silhouette
score. For the εt value of 0.7, VDCT only extracted one cluster and hence the silhouette score was
equal to zero. For the values higher than 0.7, no cluster was detected, and no silhouette score was
calculated. Therefore, the value of 0.5 has been chosen for text similarity threshold which is also in line
with the best text similarity threshold that was used in the literature [47–50].
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3.2. Quality Measures’ Results

The output results of VDCT and DBSCAN algorithms are presented in Table 1. According to the
results, the value of Dunn index and silhouette coefficient of VDCT are higher than those of DBSCAN.
Also, VDCT achieved lower Davies–Bouldin index than DBSCAN. The output results prove that VDCT
provides more satisfactory results in comparison with DBSCAN.

Table 1. The output results of internal evaluation criteria.

Index

Clustering Algorithm Davies–Bouldin Dunn Silhouette

VDCT 212.893 0.721 0.643
DBSCAN 242.674 0.653 0.426

3.3. Visual Comparison and Discussion

The distribution of geotagged tweets from 12 September to 19 September is illustrated in Figure 2.
The figure shows that the distribution of geotagged tweets varies over the study area and therefore,
there may be clusters with varied densities. The extracted clusters using VDCT and DBSCAN clustering
algorithms are demonstrated in Figures 6 and 7, respectively, where 11 clusters have been extracted
by VDCT and 8 clusters have been determined by DBSCAN. The location of the extracted clusters
by both algorithms are almost the same. However, VDCT extracted clusters with more details and
higher accuracy in comparison with DBSCAN. In addition, the sizes of clusters detected by VDCT are
different from those of DBSCAN.
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Comparing the size and content of the extracted clusters by the algorithms clarifies that in the
areas with less density variation, VDCT and DBSCAN extracted clusters which are almost the same.
While in the areas with higher variation in densities, the algorithms perform differently. In these
areas, VDCT extracted more clusters with different densities. A part of the study area with higher
variation in density is depicted in Figure 8. As it is shown in Figure 8a, by considering different
values for εe, VDCT was able to extract 3 distinct clusters (C2, C3 and C4, Figure 6) while DBSCAN
clustered all data of this area into only one group (C2, Figure 7). The Word Cloud of cluster C2 of
DBSCAN and clusters C2, C3 and C4 of VDCT are illustrated in Figures 9 and 10a–c, respectively.
Word Cloud is a visualization method which displays the frequency and importance of each word in a
document by its size. The Word Cloud of VDCT clusters indicates that the proposed algorithm was
able to appropriately separate clusters related to the hurricane and other topics. The most frequent
words are “forecast”, “tstorm” and “today” in cluster C4, “charlotte”, “Florence” and “hurricane” in
cluster C3 and “charlotte”, “opening”, “work” and “hiring” in cluster C2. While all these tweets are
clustered together by DBSCAN algorithm. The other clear distinctions between the output clusters
are cluster C5 of DBSCAN and C7 and C8 of VDCT. As depicted in Figures 11 and 12, two distinct
clusters extracted by VDCT are grouped as a unique cluster by DBSCAN. VDCT separated clusters
related to “Raleigh” event and its “Opening”. While DBSCAN clustered all tweets related to “Raleigh”
to one group.



ISPRS Int. J. Geo-Inf. 2019, 8, 82 10 of 18
ISPRS Int. J. Geo-Inf. 2019, 8, 82 10 of 18 

 

 
(a) 

  

(b) (c) 

Figure 8. (a) A part of the study area with more variation in density; (b) Extracted clusters by VDCT 

and (c) Extracted clusters by DBSCAN. 

 
 

Figure 9. Word Cloud generated for Cluster number 2 (C2) of DBSCAN. 

Figure 8. (a) A part of the study area with more variation in density; (b) Extracted clusters by VDCT
and (c) Extracted clusters by DBSCAN.

ISPRS Int. J. Geo-Inf. 2019, 8, 82 10 of 18 

 

 
(a) 

  

(b) (c) 

Figure 8. (a) A part of the study area with more variation in density; (b) Extracted clusters by VDCT 

and (c) Extracted clusters by DBSCAN. 

 
 

Figure 9. Word Cloud generated for Cluster number 2 (C2) of DBSCAN. 
Figure 9. Word Cloud generated for Cluster number 2 (C2) of DBSCAN.



ISPRS Int. J. Geo-Inf. 2019, 8, 82 11 of 18ISPRS Int. J. Geo-Inf. 2019, 8, 82 11 of 18 

 

 

(a) 

 

 

 

(d) 

 

 

 

 
(b) 

 
(c) 

Figure 10. Word Cloud generated for Clusters (a) 2, (b) 3 and (c) 4 extracted by VDCT and (d) their 
positions on map. 

 

 

Figure 11. Word Cloud generated for Cluster 5 of DBSCAN. 

Figure 10. Word Cloud generated for Clusters (a) 2, (b) 3 and (c) 4 extracted by VDCT and (d) their
positions on map.

ISPRS Int. J. Geo-Inf. 2019, 8, 82 11 of 18 

 

 

(a) 

 

 

 

(d) 

 

 

 

 
(b) 

 
(c) 

Figure 10. Word Cloud generated for Clusters (a) 2, (b) 3 and (c) 4 extracted by VDCT and (d) their 
positions on map. 

 

 

Figure 11. Word Cloud generated for Cluster 5 of DBSCAN. 
Figure 11. Word Cloud generated for Cluster 5 of DBSCAN.



ISPRS Int. J. Geo-Inf. 2019, 8, 82 12 of 18ISPRS Int. J. Geo-Inf. 2019, 8, 82 12 of 18 

 

 

(a) 

 

(c) 

 
  

(b) 

Figure 12. Word Cloud generated for Clusters (a) 7 and (b) 8 extracted by VDCT and (c) their 
positions on map. 

The other crucial issue that should be noticed is the different sizes of output clusters. Figure 13 
demonstrates the extracted clusters of algorithms which are located at the same places but with 
diverse sizes. As clusters are located at the same location, they are indicating the same events. But 
the extracted clusters by VDCT are smaller than those of DBSCAN. Smaller and more compact 
clusters seem to be more useful since they provide us with the ability to monitor specific incidents 
rather than large clusters which may present both the event and the surrounding area. An example 
is Figure 11, in which VDCT separated tweets relating to “Raleigh” and its “opening” while DBSCAN 
considered all these tweets as one cluster. Another example is cluster C8 of DBSCAN and C11 of 
VDCT which their Word Clouds are illustrated in Figure 14a,b, respectively. The extracted Word 
Clouds and frequent words indicate that both clusters point to the same event which is “hurricane” 
in “Wilmington”. Having more tweets with irrelevant words to the hurricane, the frequency and 
importance of words related to hurricane such as “warning”, “flood”, “tornado” are affected by the 
existence of other words and therefore their sizes are diminished in the Word Cloud of the DBSCAN 
cluster. However, in VDCT extracted cluster, words such as “warning”, “hurricane”, “flood” and 
“storm” can be clearly distinguished. It is the same for clusters C7 of DBSCAN and C10 of VDCT 
which their Word Cloud are illustrated in Figure 15a,b, respectively. The frequent words, 
“thunderstorm”, “tstorm”, “severe”, “warning” and “forecast” can be quickly recognized in VDCT 
cluster, while these words cannot be easily identified in DBSCAN cluster as they are affected by other 
words. The other clusters (C1, C5, C6 and C9 of VDCT and C1, C3, C4 and C6 of DBSCAN) are almost 
the same for both algorithms as the density of tweets does not significantly vary in these places and 
their Word Clouds depict the same frequent words in related clusters. The generated Word Clouds 
of these clusters are illustrated in Figure 16. 

Figure 12. Word Cloud generated for Clusters (a) 7 and (b) 8 extracted by VDCT and (c) their positions
on map.

The other crucial issue that should be noticed is the different sizes of output clusters. Figure 13
demonstrates the extracted clusters of algorithms which are located at the same places but with diverse
sizes. As clusters are located at the same location, they are indicating the same events. But the extracted
clusters by VDCT are smaller than those of DBSCAN. Smaller and more compact clusters seem to be
more useful since they provide us with the ability to monitor specific incidents rather than large clusters
which may present both the event and the surrounding area. An example is Figure 11, in which VDCT
separated tweets relating to “Raleigh” and its “opening” while DBSCAN considered all these tweets as
one cluster. Another example is cluster C8 of DBSCAN and C11 of VDCT which their Word Clouds are
illustrated in Figure 14a,b, respectively. The extracted Word Clouds and frequent words indicate that
both clusters point to the same event which is “hurricane” in “Wilmington”. Having more tweets with
irrelevant words to the hurricane, the frequency and importance of words related to hurricane such as
“warning”, “flood”, “tornado” are affected by the existence of other words and therefore their sizes are
diminished in the Word Cloud of the DBSCAN cluster. However, in VDCT extracted cluster, words
such as “warning”, “hurricane”, “flood” and “storm” can be clearly distinguished. It is the same for
clusters C7 of DBSCAN and C10 of VDCT which their Word Cloud are illustrated in Figure 15a,b,
respectively. The frequent words, “thunderstorm”, “tstorm”, “severe”, “warning” and “forecast” can
be quickly recognized in VDCT cluster, while these words cannot be easily identified in DBSCAN
cluster as they are affected by other words. The other clusters (C1, C5, C6 and C9 of VDCT and C1,
C3, C4 and C6 of DBSCAN) are almost the same for both algorithms as the density of tweets does not
significantly vary in these places and their Word Clouds depict the same frequent words in related
clusters. The generated Word Clouds of these clusters are illustrated in Figure 16.
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An important issue about the presented Word Clouds of the clusters (Figures 8–16) is the
existence of the names of the places near the main event in the Word Clouds. Although these place
names can be considered redundant words from one aspect, they still convey valuable information
that can be helpful in determining the location of the events. If we consider an event which has
happened in a special place, the users from other areas may share some tweets related to that event.
These tweets may create a cluster. However, the words in the Word Cloud of the cluster do not match
with its surrounding location names. By considering the name of the surrounding locations and the
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Word Cloud of the cluster, the events which happened in other places can be identified and single out.
There are some studies in this regard that have tried to localize the extracted clusters based on the
location names in each area [51–54].

4. Conclusions and Future Works

This study proposed a solution for event extraction from geotagged tweets. In order to overcome
the shortcomings of DBSCAN in dealing with density variation in the Twitter dataset, VDBSCAN
algorithm has been extended to extract clusters from geotagged tweets. The proposed algorithm,
VDCT, employs exponential spline interpolation to determine different search radiuses for cluster
detection. It also utilizes cosine similarity to group tweets with similar content in addition to spatial
closeness. For evaluation, the output clusters of VDCT have been compared to those of DBSCAN. The
results prove the ability of VDCT in extracting clusters with varied densities from geotagged tweets.
In areas where density fluctuated, VDCT was able to extract more precise clusters with different
densities and more details, while DBSCAN merged denser clusters into one in areas with significant
variation in density. Also, the comparison of the content of the output clusters showed that VDCT
was able to efficiently group tweets with more related contents, while DBSCAN clusters sometimes
included some tweets with less similarity in context.

As depicted in output maps, the number of geotagged tweets considerably varies over different
areas. Some areas consist of a considerable number of users who share a large number of tweets during
weekdays while the others have only a few active users. So, in order to form a cluster, the number of
minimum points can be set differently for different areas due to the number of active users in each area.
In this regard, the future work will focus on determining different values for the minimum number of
points for VDCT algorithm based on the number of active users in each area. Additionally, improving
the proposed solution so that it can localize the extracted events by considering the names of the
surrounding locations will be a field of future investigation. The other issue is that cosine similarity
does not consider the semantics of the words. Utilizing semantic similarity measures to improve the
result of spatial clustering is also considered as a future work of this study.
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