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Abstract: Urban land use information is critical to urban planning, but the increasing complexity of
urban systems makes the accurate classification of land use extremely challenging. Human activity
features extracted from big data have been used for land use classification, and fusing different
features can help improve the classification. In this paper, we propose a framework to integrate
multiple human activity features for land use classification. Features were fused by constructing a
membership matrix reflecting the fuzzy relationship between features and land use types using the
fuzzy c-means (FCM) clustering method. The classification results were obtained by the fuzzy
comprehensive evaluation (FCE) method, which regards the membership matrix as the fuzzy
evaluation matrix. This framework was applied to a case study using taxi trajectory data from
Nanjing, and the outflow, inflow, net flow and net flow ratio features were extracted. A series of
experiments demonstrated that the proposed framework can effectively fuse different features
and increase the accuracy of land use classification. The classification accuracy achieved 0.858
(Kappa = 0.810) when the four features were fused for land use classification.

Keywords: big data; land use classification; human activity features; fuzzy comprehensive evaluation;
fuzzy c-means

1. Introduction

Urban land use information is the foundation of urban planning, and it plays an important role in
government management, policy formulation and resource allocation [1–6]. Although the government
has land use registration information, it is difficult to update and acquire land use information in
a timely manner because urban land use and spatial structure are changing rapidly in developing
countries such as China [7–9]. To solve this problem, a fast and accurate method for urban land use
classification needs to be developed.

Remote sensing techniques classify urban land use with spectral and texture information, and
they have a good ability to reveal the physical characteristics of the earth’s surface, such as water and
buildings [10–13]. However, it is hard to distinguish land use types in more detail relying solely on
remote sensing images [14–16], such as identifying residential and commercial land from buildings,
whereas detailed urban land use is usually associated with social functions [17–19]. Human activities
interact with social functions of distinct regions [20]. Many scholars have studied the impact of
urban land use on human activities, such as traffic demand forecasting and commuting patterns
research [21–25]. Conversely, it is also feasible to identify social functions and infer urban land use

ISPRS Int. J. Geo-Inf. 2019, 8, 90; doi:10.3390/ijgi8020090 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0001-8536-8645
http://dx.doi.org/10.3390/ijgi8020090
http://www.mdpi.com/journal/ijgi
http://www.mdpi.com/2220-9964/8/2/90?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2019, 8, 90 2 of 16

based on human activities [26–32]. The traditional sources of human activity information rely on travel
surveys [33,34]. The survey data record the activities of subjects during the observation period and
play a major role in classical urban studies, but data acquisition is time-consuming, which has limited
the development of related studies [35–37].

With the rapid development of information and communication technologies (ICT), massive
amounts of crowdsourced data (e.g., mobile phone record data, taxi trajectory data and social media
check-in data) are well captured. These data are plentiful and accessible, and they contain a wealth of
information about human activities and socioeconomics, providing strong support for understanding
urban land use [38–40]. Reades et al. [41] analyzed the relationship between mobile phone data and
business land and identified different mobile phone usage patterns between business and residential
land. Calabrese et al. [42] successfully classified the campus environment based on the Wi-Fi network.
Qi et al. [43] qualitatively analyzed the relationship between taxi trajectory data and the social
functions of a city. These studies demonstrate that the time series representing human activity
variations are very useful for land use classification. After that, Soto and Frias-Martinez [44,45] built a
time series of hourly calling volume feature on weekdays and weekends and introduced clustering
methods to classify urban land use. Liu et al. [26] constructed a time series of the differences between
the volumes of pick-up and drop-off points and classified land use in Shanghai using the k-means
clustering method. Time series of human activity features have been widely applied to land use
classification [46–49].

Integrating human activity features can capture different aspects of human activities and provide
more information for land use classification. Toole et al. [50] constructed a new time series by adding
the total calling volume feature to the time series of hourly calling volume feature. Pei et al. [51]
extended the new time series by introducing more information on the hourly calling volume feature
and proved that the classification accuracy based on the new time series is better than the hourly
calling volume feature and total calling volume feature used alone. These studies demonstrate the
feasibility and advantages of fusing human activity characteristics in land use classification, but the
feature combination is limited to two features. Therefore, it is meaningful to explore the performance of
integrating more features in land use classification. Feature combination is often implemented by
connecting the time series of each feature. Pan et al. [52] fused the outflow and inflow features of
the taxi trajectory data by splicing the outflow time series and inflow time series. Liu et al. [53] also
spliced the time series of the outflow and inflow features in the land use classification of Shanghai.
However, a high-dimensional time series will be formed when more features are fused. In many cases,
the similarity between time series is closely related to classification results. When the time series is of
high dimensions, the traditional distance functions (e.g., Euclidean distance) are invalid, which will
affect the classification accuracy [54–56]. Therefore, it is necessary to find a new method of combining
multiple features for land use classification.

In this study, we propose an integrated framework to fuse features for land use classification,
and it was inspired by the fuzzy comprehensive evaluation (FCE) method. Time series were built for
each feature and clustered by the fuzzy c-means (FCM) clustering method. A membership matrix
was constructed to fuse features based on the clustering results, and the FCE method was utilized to
determine the land use type based on this matrix. The proposed framework can combine multiple
human activity features without generating a high-dimensional time series, and it has been applied in
the land use classification of Nanjing.

The remainder of this paper is organized as follows. Section 2 introduces the framework that
combines multiple human activity features for land use classification. Section 3 introduces a case study
using taxi trajectory data from Nanjing. The framework is discussed in Section 4. Section 5 summarizes
our study and discusses future work.
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2. Method

A flowchart of the framework is shown in Figure 1, and it includes the following three steps and
a training process. First, human activity features were extracted from the taxi trajectory data, and
then the time series of each feature were built. Next, the FCM method was utilized to cluster the time
series of each feature. The centers of land use types were calculated to match cluster centers with land
use types, and membership degree was used to construct the membership matrix, which is regarded
as the fuzzy evaluation matrix in the FCE method. Finally, the classification results were obtained
based on the FCE method. A training process was performed to determine the weight set in the FCE
method. The specific implementation was as follows.
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2.1. Extracting Features and Constructing Time Series

Different human activity features can be extracted from the same data source. We regard a
journey of passengers as a flow from the pick-up point to the drop-off point; then, the pick-up point
and drop-off point can represent the outflow and inflow of the region, respectively. The outflow, inflow,
net flow (inflow− outflow) and net flow ratio ( inflow−outflow

inflow+outflow ) features can be extracted from the taxi
trajectory data [43,57]. The construction of the time series is flexible. We can not only aggregate the
data into a week or a day [41,42] but also divide a week to obtain greater detail, such as distinguishing
human activity patterns on weekdays and weekends [58] and distinguishing human activity patterns
on normal workdays, Fridays, Saturdays and Sundays [51]. In addition, the interval of time series can
be set as needed, such as 10 minutes or one hour [59,60].

The study area should be divided into various unclassified areas, but the division method can be
flexibly selected, such as dividing based on grids or traffic analysis zones (TAZs). For each unclassified
region, if F human activity features are extracted, the time series of each feature can be built as
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]
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where z0
i is the unnormalized time series of feature i (i = 1, 2, . . . , F). Nt

i is the value of feature i
over the period t. H is the dimension. Normalization of the time series is key to ensuring that the
classification results correspond well to the land use types [53]. Thus, z0

i is normalized using Z-score.

zi =
z0

i − µi

σi
(i = 1, 2, . . . , F), (2)

where µi and σi are the mean and standard deviation of the time series of feature i, respectively.

2.2. Constructing the Membership Matrix

The time series of each feature are clustered by the FCM algorithm after the construction of time
series. The FCM algorithm is chosen because it introduces fuzzy partitioning and membership degree
theory in clustering, which allows the unclassified area to simultaneously belong to different land
use types [61]. At the same time, the FCM algorithm has a solid theoretical foundation and broad
applications [62–64].

Given the time series of feature i, the FCM algorithm returns a list of cluster centers vi,j and
membership degree ui,j. vi,j is the cluster center j (j = 1, . . . , L), and ui,j is the membership degree of
the unclassified area to cluster center j. L is the number of clusters, which is set to the number of land
use types that can be obtained from the land use data of the study area. For each unclassified area, ui,j
satisfies the conditions in Equation (3).

∑L
j=1 ui,j = 1

(
ui,j ∈ [0, 1]; i = 1, 2, . . . , F

)
(3)

To construct the membership matrix for each unclassified region, cluster centers need to be
matched with land use types. In this case, ui,j can represent the membership degree of the unclassified
region to land use type j when the feature i is utilized for land use classification, and the membership
matrix U can be constructed using the membership degree in the clustering results of each feature.

U =


u11 u1j
ui1 uij

· · · u1L
· · · uiL

...
...

uF1 uFj

. . .
...

· · · uFL

 (4)

The following steps are achieved to match the cluster centers to land use types. First, the land
use data of the study area are divided into a training set and a test set at a ratio of 3:1. The same land
use type occupies the same proportion in the two sets. If there are S unclassified areas in the training

set, and the number of unclassified areas belonging to land use type j is Mj, then S =
L
∑

j=1
Mj. Next,

the center of land use type j is calculated according to Equation (5).

ci,j =
1

Mj
∑

Mj
k=1 zi,j,k(i = 1, 2, . . . , F; j = 1, . . . , L), (5)

where zi,j,k is the time series of feature i extracted from the unclassified region k belonging to land
use type j. Finally, the land use type of each cluster center is determined by locating the minimum
distance between ci,j and vi,j when the feature i is applied to land use classification.
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2.3. Determining land use types

In this step, F features are considered evaluation indices, and L land use types are considered
remarks. The evaluation of the unclassified area based on each index constitutes the fuzzy evaluation
matrix in the FCE method, and the membership matrix U built in Section 2.2 is used as the fuzzy
evaluation matrix to determine the land use type of the unclassified area. The FCE method uses
membership degree theory and can comprehensively evaluate objects affected by multiple factors [65],
and it has been applied to address classification uncertainty in mineral prospectivity mapping, quality
analysis and other fields [66–68]. The model of the FCE method can be expressed as

E = W◦U =
(
e1, ej, . . . , eL

)
, (6)

where E is the evaluation result, and W is the weight set. W = (w1, wi, . . . , wF) and satisfies
∑F

i=1 wi = 1. wi is the weight of feature i. F is the number of features. ◦ is an operator.
The operators often employed in the FCE method include M(

∨
,
∧
), M(

∨
, ·), M(

⊕
,
∧
) and

M(+, ·). We calculated Equation (6) with M(+, ·) because it can make full use of all evaluation
information, and it is a relatively ideal operator [69]. Thus, the evaluation result can be acquired
according to Equation (7).

ej = ∑F
i=1 wiui,j(j = 1, . . . , L), (7)

where ej is the membership degree of the unclassified region to land use type j. The land use type
is determined according to the principle of maximum membership [70], so the land use type of the
unclassified region is set to the land use type corresponding to the largest ej.

The weight set W = (w1, wi, . . . , wF) is determined by a training process, and the training
set has been divided in Section 2.2. If Zn is the nth unclassified area in the training set, G

′
n is the

classification result of Zn, and Gn is the real land use type, the weight set can be acquired by minimizing
the objective function of Equation (8).

f (W) = ∑S
n=1 I(Zn), and (8)

I(Zn) =

{
1, G

′
n 6= Gn

0, G
′
n = Gn

(n = 1, . . . , S) , (9)

where S is the number of Zn. I(Zn) is an indicator function, and I(Zn) = 0 when Zn is correctly
classified. Otherwise, I(Zn) = 1.

3. Case Study Using Taxi Trajectory Data from Nanjing

The proposed framework was applied to classify land use in Nanjing. The outflow, inflow,
net flow and net flow ratio features were extracted from the taxi trajectory data. In studies based on
taxi trajectory data, the outflow and inflow features have been integrated for land use classification,
but they are rarely combined with other features. In this study, we not only integrated the outflow
and inflow features but also fused the net flow and net flow ratio features, respectively, with them.
At the same time, the four features were also fused for the land use classification. In the results section,
the classification results of the framework based on different feature combinations were compared.
A comparative experiment was also conducted to compare the classification results of the framework
with other methods.

3.1. Study Area and Data Preparation

Nanjing, a megacity in the Yangtze River Delta, covers an area of 6,587 km2 and governs 11 districts
(Figure 2a). In 2016, the resident population was approximately 8.27 million, and the urbanization rate
reached 82%. In this study, nine districts (Gulou, Jianye, Qinhuai, Xuanwu, Jiangning, Luhe, Pukou,
Qixia and Yuhuatai) were selected as the study area.
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Figure 2. Study area. (a) Geographical location of Nanjing; (b) Study area divided into 500 m× 500 m cells.

The taxi trajectory data (5 December to 25 December 2016) come from the Nanjing Information
Center (http://www.njinfo.gov.cn/). Each data entry includes the plate number, record time, longitude
and latitude of the taxi location, status (whether carrying passengers) and speed. The record interval
is approximately 10–30 s. We extracted pick-up and drop-off points based on the change of status
and divided the study area into 500 m × 500 m cells. The resolution was determined through
comparative experiments at different resolutions. To ensure that the features in the cells were stable
and had statistical significance, cell filtering was necessary. In this study, the total number of pick-up
and drop-off points in the reserved cells exceeded 50, and 2114 cells were obtained in Figure 2b.
We aggregated the taxi trajectory data to one week and distinguished between weekdays and weekends
because human dynamics differ greatly between weekdays and weekends [44,45]. The 1-hour interval,
which has been widely used in many studies, was chosen [26,37]. Time series of each feature were
also built.

The land use data for 2016 was obtained from the Geographical Information Monitoring Cloud
Platform (http://www.dsac.cn/), and it was divided into five land use types: commercial land,
residential land, industrial land, open space and others. To facilitate the comparison of the land use
data and classification results, the land use data was mapped to cells (Figure 3). The proportion and
number of cells per land use type are shown in Table 1. Note that open space includes parks, scenic
spots, and occupies a large area, but taxis are not allowed to enter it in most cases. Consequently, the
cells located in the open space were deleted because the total number of pick-up points and drop-off
points in these cells was too small, meaning that only a small number of open space cells can be
used. The land use data was divided into a training set and a test set at a ratio of 3:1, and 528 cells
belonging to the test set were used to evaluate the classification results.

http://www.njinfo.gov.cn/
http://www.dsac.cn/
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Figure 3. Land use in Nanjing.

Table 1. Proportion and number of cells per land use type.

Commercial land Residential land Industrial land Open space Others

Number 226 878 421 261 328
Proportion 0.107 0.415 0.199 0.124 0.155

3.2. Results

Table 2 shows the classification accuracy of each feature combination. The combination of the
outflow and inflow features had an overall accuracy of 0.742, and the kappa coefficient was 0.659.
When the net flow and net flow ratio features were added separately, the overall accuracy was
enhanced by 0.061 and 0.042, and the kappa coefficient was increased by 0.079 and 0.053, respectively.
The classification accuracy achieved 0.858 (Kappa = 0.810) when four features were fused. The
classification results were significantly improved. These results demonstrate that the proposed
framework can effectively fuse features, and combining the four features can significantly enhance the
overall accuracy of land use classification.

Table 2. Classification accuracy of feature combinations.

Exp. Outflow Inflow Net flow Net flow ratio OA Kappa

A
√ √

0.742 0.659
B

√ √ √
0.803 0.738

C
√ √ √

0.784 0.712
D

√ √ √ √
0.858 0.810

1 OA is overall accuracy
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The classification results of the feature combinations are displayed in Figure 4. Differences can
be seen in the three highlighted typical areas. The confusion matrices are shown in Figure 5. Region
#1 belongs to industrial land, but it was misidentified by the combination of the outflow and inflow
features (Figure 4a) and the combination of the outflow, inflow and net flow features (Figure 4b). When
the net flow ratio feature was combined with the two feature combinations separately, region #1 was
correctly classified in Figure 4c,d. Region #2 is a typical open space, and region #3 belongs to others,
but both regions were misidentified in Figure 4a,c when applying the outflow and inflow features and
applying the outflow, inflow and net flow ratio features. The mixing of open space with others was
also obvious in Figure 5a,c. However, this situation was improved in Figure 5b,d when the net flow
feature was fused with the two feature combinations separately. Region #2 and region #3 were also
correctly identified in Figure 4b,d. As shown in Figure 4d, the classification results based on the four
features accurately classified the three typical areas, and the confusion matrix shown in Figure 5d was
significantly better than those of the other feature combinations. Thus, it is reasonable to fuse distinct
human activity features for land use classification, and fusing the four features based on the proposed
framework can improve land use classification.
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Table 3 shows the classification accuracies of land use types. Producer’s accuracy indicates the
probability that the real land use types in land use data are correctly identified, and user’s accuracy is
the probability that the land use types in the classification results are correctly classified. Regarding
all the land use types, both the producer’s and user’s accuracies were enhanced when the net flow
feature and the net flow ratio feature were combined with the outflow and inflow features, respectively.
The highest producer’s and user’s accuracies for each land use type were obtained when applying all
the features to the land use classification. The producer’s accuracies of all land use types were higher
than 0.735, and the user’s accuracies were above 0.700. The residential and industrial land had higher
accuracies than those for commercial land, open space and others, and both the producer’s and user’s
accuracies for residential and industrial land exceeded 0.870. The reasons for the differences among
the accuracies of the land use types will be discussed in the next section.

Table 3. Classification accuracies of land use types based on different feature combinations.

Land use types Feature combinations

A B C D

Commercial land
PA 0.839 0.857 0.893 0.929
UA 0.534 0.632 0.625 0.703

Residential land
PA 0.805 0.855 0.859 0.886
UA 0.952 0.969 0.955 0.980

Industrial land
PA 0.848 0.867 0.867 0.905
UA 0.824 0.858 0.827 0.872

Open space PA 0.523 0.646 0.538 0.738
UA 0.466 0.568 0.574 0.750

Others
PA 0.549 0.671 0.598 0.768
UA 0.616 0.705 0.620 0.768

1 PA represents the producer’s accuracy; UA represents the user’s accuracy.
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The above results prove that the proposed framework can effectively fuse different features
and obtain an overall accuracy of 0.858 (Kappa = 0.810). However, the advantages of the
framework in land use classification remain to be verified. Thus, we conducted the next experiment.
The expectation-maximization (EM) algorithm and a time series spliced by the outflow time series and
inflow time series were used to classify land use in Nanjing, referring to the aggregated IS method in
the study of Liu et al. [53]. This method was named OI_EM in this study, and it obtained an overall
accuracy of 0.720 (Kappa = 0.632), which was lower than the classification accuracy of the proposed
framework. Figure 6 shows the classification results based on the OI_EM method and the framework.
Differences can be seen in the three highlighted typical areas. The confusion matrix of the OI_EM
method is displayed in Figure 7. Table 4 shows the accuracies of the land use types.
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As shown in Figure 6, region #1 and region #2 are typical residential land, and region #3 belongs to
open space. They were correctly identified by the proposed framework in Figure 6b. Figure 7 shows
that residential land was easily confused with commercial land and others when applying the OI_EM
method, similar to region #1 and region #2, which were both misidentified in Figure 6a. Many cells
were also misclassified as commercial land by the OI_EM method, such as region #3, which belongs to
open space. Compared with Figure 7, the mixing of land use types in the confusion matrix of the
framework (Figure 5d) was significantly weaker than that of the OI_EM method. For all the land use
types, the framework (Experiment D in Table 3) also had higher accuracy than the OI_EM method
(Table 4). These comparisons demonstrate the advantages of the framework in land use classification.

4. Discussion

Combining human activity features can help increase the accuracy of urban land use
classification [71]. However, feature combination in many studies is limited to two features, and few
studies have effectively combined multiple human activity features [50,51]. The framework proposed
in this paper can provide more information for land use classification by combining multiple human
activity features based on the FCM algorithm and the fuzzy comprehensive evaluation (FCE) method,
which can obtain better accuracy than the method fusing two features. The classification results in
Nanjing indicated that the framework can effectively integrate the outflow, inflow, net flow and net flow
ratio features of taxi trajectory data and achieve an accuracy of 0.858 (Kappa = 0.810). At the same time,
the framework had higher accuracy than the OI_EM method (OA = 0.720, Kappa = 0.632) that integrated
the outflow and inflow features. Therefore, the proposed framework can effectively integrate multiple
human activity features and improve land use classification.

In the framework, features participated in the classification process with different weights.
The weight sets of feature combinations (Table 5) show that the weights for the inflow feature were
larger than those of the outflow feature in all the experiments. In Experiments B and D, using the
net flow feature, the weights of the net flow feature exceeded 0.300. To determine the reasons for
the different feature weights, we input the four features into the proposed framework, respectively.
The classification accuracies of the features in Table 6 show that each feature can be used to identify
urban land use types. This finding agrees with previous studies that we can inform the social function of
urban areas by using passengers’ pick-up/set-down dynamics [26,52]. The four features had different
land use classification accuracies. The net flow feature had the highest accuracy, which was followed
by those of the inflow and net flow ratio features, whereas the outflow feature exhibited the poorest
accuracy. Therefore, features with high accuracies, such as the inflow and net flow features, almost
had large weights in the feature combinations.

By comparing the classification accuracies of features (Table 6) and feature combinations (Table 2
in Section 3.2), the feature combinations were found to have higher accuracies than each feature fused
in the combinations, such as Experiment D, which fused the four features (OA = 0.858, Kappa = 0.810)
and had a higher accuracy than the outflow (OA = 0.563, Kappa = 0.440), inflow (OA = 0.691,
Kappa = 0.593), net flow (OA = 0.741, Kappa = 0.655) and net flow ratio features (OA = 0.636,
Kappa = 0.517). This indicates that fusing features based on the proposed framework can increase land
use classification accuracy.

Table 5. Weight sets of feature combinations.

Exp.
Feature combinations Weight sets

Outflow Inflow Net flow Net flow ratio wout win wnet wnr

A
√ √

0.350 0.650
B

√ √ √
0.230 0.400 0.370

C
√ √ √

0.240 0.380 0.380
D

√ √ √ √
0.210 0.320 0.310 0.160
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Table 6. Classification accuracies of features.

Outflow Inflow Net flow Net flow ratio

OA 0.563 0.691 0.741 0.636
Kappa 0.440 0.593 0.655 0.517

1 OA is overall accuracy.

The accuracies of land use types (Table 3 in Section 3.2) show that the framework produced higher
classification accuracies for residential and industrial land than for commercial land, open space and
others. To determine the reasons, we drew the centers of the land use types and the cluster centers of
each feature in Figure 8. Regarding residential and industrial land, the cluster centers are similar to
the centers of land use types, and peaks of these curves are obvious. Regarding commercial land,
open space and others, the cluster centers are different from the centers of land use types, and the
characteristics of these curves are not prominent. At the same time, the curves of open space and
others have small differences. Thus, it is difficult to correctly identify commercial land, open space
and others.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 12 of 16 

 

 
Figure 8. Centers of land use types and clusters centers. (a)–(d) Centers of land use types; (e)–(h) 
cluster centers. 

In addition, some factors affecting the classification accuracy of the framework need to be 
discussed. First, the FCM algorithm was utilized to cluster the time series of each feature, and its 
classification accuracy has an important impact on the framework. At present, many studies have 
improved the FCM algorithm [72,73] and using the improved FCM method, therefore, can help 
increase the classification accuracy of the framework. Second, the study area was divided into 500 m 
× 500 m cells in this study, but this division method cannot guarantee the continuity of land use types 
in cells. The land use types in the cells at the junction of different land use types are highly mixed, 
which makes it difficult to identify the land use types of these cells. At the same time, we mapped 
the land use data to cells by calculating the proportion of land use types in the cell and assigning the 
land use type with the largest proportion to the cell. Highly mixed cells also affect the determination 
of real land types. The framework supports different division methods, so choosing a better division 
method can help increase the classification accuracy of the framework.  

5. Conclusions 

Big data records human activities in urban areas and enables us to infer land use types by 
considering collective activity features. Fusing different human activity features can provide more 
information on land use classification. In this study, we proposed an integrated framework to 
combine multiple features for land use classification. By clustering the time series of each feature with 
the fuzzy c-means (FCM) clustering method, a membership matrix reflecting the fuzzy relationship 
between features and land use types was built for each unclassified area. The fuzzy comprehensive 
evaluation (FCE) method was used to determine the land use type of each unclassified area based on 
the membership matrix. The results of the case study in Nanjing indicated that the proposed 
framework can effectively fuse different features and increase the accuracy of land use classification. 
When applying the outflow, inflow, net flow and net flow ratio features to land use classification, the 
classification results achieved an overall accuracy of 0.858 (Kappa = 0.810). For all the land use types, 
the producer’s accuracies were higher than 0.735, and the user's accuracies exceeded 0.700. Both the 
producer’s and user’s accuracies for residential and industrial land were higher than 0.870. 

The human activity features fused in the framework can come from different data sources, and 
we can build a membership matrix for each unclassified area based on multisource big data. Some 
studies have applied multisource data to land use classification and building function identification 
[74–76], so integrating multisource data contributes to land use classification. In the future, we will 
explore the performance of the framework in fusing multisource data for land use classification.  

Author Contributions: Conceptualization, Panpan Ge; Data curation, Panpan Ge and Liwei Zhang; Formal 
analysis, Panpan Ge, Shuhua Zhang and Liwei Zhang; Funding acquisition, Jiangfeng She; Methodology, 

Commented [m1]: Please check if the individual 

contribution of each co-author has been stated. 

Figure 8. Centers of land use types and clusters centers. (a)–(d) Centers of land use types; (e)–(h)
cluster centers.

In addition, some factors affecting the classification accuracy of the framework need to be
discussed. First, the FCM algorithm was utilized to cluster the time series of each feature, and
its classification accuracy has an important impact on the framework. At present, many studies have
improved the FCM algorithm [72,73] and using the improved FCM method, therefore, can help increase
the classification accuracy of the framework. Second, the study area was divided into 500 m × 500 m
cells in this study, but this division method cannot guarantee the continuity of land use types in cells.
The land use types in the cells at the junction of different land use types are highly mixed, which
makes it difficult to identify the land use types of these cells. At the same time, we mapped the land
use data to cells by calculating the proportion of land use types in the cell and assigning the land use
type with the largest proportion to the cell. Highly mixed cells also affect the determination of real
land types. The framework supports different division methods, so choosing a better division method
can help increase the classification accuracy of the framework.

5. Conclusions

Big data records human activities in urban areas and enables us to infer land use types by
considering collective activity features. Fusing different human activity features can provide more
information on land use classification. In this study, we proposed an integrated framework to combine
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multiple features for land use classification. By clustering the time series of each feature with the
fuzzy c-means (FCM) clustering method, a membership matrix reflecting the fuzzy relationship
between features and land use types was built for each unclassified area. The fuzzy comprehensive
evaluation (FCE) method was used to determine the land use type of each unclassified area based on
the membership matrix. The results of the case study in Nanjing indicated that the proposed
framework can effectively fuse different features and increase the accuracy of land use classification.
When applying the outflow, inflow, net flow and net flow ratio features to land use classification,
the classification results achieved an overall accuracy of 0.858 (Kappa = 0.810). For all the land use
types, the producer’s accuracies were higher than 0.735, and the user’s accuracies exceeded 0.700.
Both the producer’s and user’s accuracies for residential and industrial land were higher than 0.870.

The human activity features fused in the framework can come from different data sources, and we
can build a membership matrix for each unclassified area based on multisource big data. Some studies
have applied multisource data to land use classification and building function identification [74–76],
so integrating multisource data contributes to land use classification. In the future, we will explore the
performance of the framework in fusing multisource data for land use classification.
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