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Abstract: The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) provides
satellite-based climate data records of essential climate variables of the energy budget and water
cycle. The data records are generally distributed in NetCDF format. To simplify the preparation,
analysis, and visualization of the data, CM SAF provides the so-called CM SAF R Toolbox. This is a
collection of R-based tools, which are optimized for spatial data with longitude, latitude, and time
dimension. For analysis and manipulation of spatial NetCDF-formatted data, the functionality of the
cmsaf R-package is implemented. This R-package provides more than 60 operators. The visualization
of the data, its properties, and corresponding statistics can be done with an interactive plotting tool
with a graphical user interface, which is part of the CM SAF R Toolbox. The handling, functionality,
and visual appearance are demonstrated here based on the analysis of sunshine duration in Europe
for the year 2018. Sunshine duration in Scandinavia and Central Europe was extraordinary in 2018
compared to the long-term average.
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1. Introduction

Satellite-based data have been used for several decades to continuously observe the Earth’s
atmosphere and surface. In addition, the quality of satellite-based data steadily increases due
to improved retrieval algorithms, more sophisticated computational models, and better satellite
instruments. Nowadays, there are satellite-based climate data records available for many essential
climate variables [1], which cover time periods of more than 35 years. For these reasons satellite-based
data records gain more and more importance for climate monitoring purposes.

The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) develops,
generates, archives, and distributes high-quality satellite-derived data records of the energy budget
and water cycle to monitor, understand, and adapt to climate variability and climate change. The
product portfolio of the CM SAF includes regional and global variables for surface radiation, sunshine
duration, cloud fractional coverage, cloud properties, water vapor, evaporation, precipitation, surface
albedo, and land surface temperature. The data records are based on sensors onboard geostationary
and polar-orbiting satellites. The spatial resolutions of CM SAF climate data records range from
0.5 degrees to higher than 0.05 degrees and the temporal resolution ranges from monthly up to 15 min.
These high resolutions in space and time, in combination with long time series (earliest data start in
1982), result in huge data amounts.

Common data formats for geospatial data records are NetCDF (network common data format),
HDF (hierarchical data format) or GRIB (gridded binary). These data formats have the advantage to
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store large amounts of geospatial data in an efficient manner. In addition, there is the possibility to
include meta-data, such as the sensing instrument, the version of the algorithm applied, or uncertainty
measures, which is essential for climate data records. In the climate community NetCDF acts as
quasi standard (e.g., most data from the NOAA Climate Data Record Program [2] are provided in
NetCDF, climate model output is usually in NetCDF format [3], ESA CCI data are provided in NetCDF
format [4]) and CM SAF climate data records are usually provided in NetCDF format.

NetCDF (network common data format) is a set of interfaces for array-oriented data access
including a collection of data access libraries for languages such as C, Fortran, C++, Java, or R. NetCDF
is a machine-independent format for representing scientific data [5]. NetCDF files are self-describing
because the files include meta-data. The file format is portable and can be used on many different
computer systems. NetCDF data are easily scalable as subsets of a dataset can be accessed efficiently [5].
In addition, NetCDF files offer several options for compression and can be archived very efficiently.

Due to huge data amounts, the access management and handling of satellite-based climate data
records can be challenging. For the easy processing of NetCDF formatted files it is essential to have
efficient tools to generate spatial and temporal subsets of climate data records and to process the data.
The analysis of climate data requires tools that can handle the spatial and temporal components of the
data. In addition, the visualization of NetCDF data is important in climate analysis and for presenting
results. These tools have to be as efficient as possible and easily accessible for a wide range of users
across platforms.

Several tools are already available to facilitate the usage of NetCDF data. Command line-based
tools, such as the climate data operators (CDO) [6] or the NetCDF operators (NCO) [7] are commonly
used in the scientific community. CDO offers a collection of about 600 command line operators,
which are designed for manipulation and analysis of NetCDF-formatted climate data and data from
numerical weather prediction models. CDO includes operators, which are specifically implemented
for spatial and temporal analysis of climate data, such as means, variabilities, standard deviations,
or percentiles. Compared to CDO, NCO is a more general tool for manipulating NetCDF files,
including their structure and meta-data. NCO is not specifically designed for climate analysis. Besides
command-line-based solutions there are software tools with a graphical user interface (GUI), such
as GIS-based tools (geographic information system). GIS combines the analysis and visualization of
data within GUI-based software. There are several free and commercial GIS tools, which can handle
NetCDF data, although not specifically designed for this data format. Another group of software tools,
such as Panoply [8] or ncview [9] were purely developed to visualize NetCDF data and its meta-data.
These tools offer several options to display NetCDF data, but no or only very basic operators for
data analysis.

As all of the above-mentioned tools have their advantages and limitations, it is very common in
the climate science community to develop individual tools, which are based on scientific computing
languages, such as IDL, Python, or R. These languages provide extensions or libraries which allow
importing of NetCDF data. However, analyzing and visualizing climate data records in NetCDF
format in this way requires at least basic programming skills. Furthermore, existing tools and scripts
are usually not easily accessible for a wider number of potential users.

Satellite-based climate data are used in a wide range of applications, such as climate monitoring,
climate model evaluation, for the estimation of the solar energy potential, or for applications in the field
of agriculture, tourism, or health. Therefore, many people from different fields of interest and with
different educational backgrounds are interested in satellite-based climate data. Thus, it is important to
provide tools which allow easy access to satellite-based climate data in NetCDF format. In this paper
we present an R-based toolkit for preparation, analysis, and visualization of satellite-based climate
data records—the CM SAF R Toolbox. The intention, operators and functionalities of the CM SAF R
Toolbox are described in Section 2. Section 3 shows the application of the toolbox based on an example
for CM SAF sunshine duration data. Section 4 gives conclusions and an outlook of possible future
developments and applications.
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2. The CM SAF R Toolbox

Data of in situ observations are generally stored in the form of ascii files instead of NetCDF,
and many numerical weather prediction models deliver output in grib format. However, this is not
feasible for satellite-based climate data, as they cover large geographical areas and; therefore, have
much larger file sizes than in situ data. The handling of satellite-based climate data differs from the
handling of in situ data. As a consequence, there is a huge demand for satellite-based climate data
training for National Meteorological and Hydrological Services, Regional Climate Centers, universities,
and research institutes. The European Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT) provides regular climate training workshops, which are supported by CM SAF. The main
goal of these training workshops is to instruct and support (potential) users in applying satellite-based
climate data. The CM SAF R Toolbox (further referred to as the toolbox) was originally developed in
2015 to support these training activities with an easy-to-use tool, which includes all necessary steps to
get started with satellite-based data in NetCDF format.

Additional requirements for the toolbox are a platform independent and easy installation,
adaptability to individual user needs, and the possibility to expand it to individual tasks. The
first choice to fulfill all these needs was the scientific programming language R [10], which is a
programming language for statistical computation and visualization. The R system includes a language
and a run-time environment for graphics, debugging, access to certain system functions, and the
ability to run programs, which are stored in script files [10]. In addition, it is easily expandable by a
variety of additional packages from a huge community, which cover a large range of applications [11].
Besides functioning as a climate training tool, the main intention of the CM SAF R Toolbox is to be
software which allows every user an easy application of CM SAF NetCDF climate data with free and
open software.

The toolbox can be downloaded for free from the CM SAF webpage [12]. It is provided as a zip
file including a set of R-scripts, example data for testing and documentation. As the toolbox is based
on R, it requires the installation of the R system, which is available for all common platforms and
operating systems [13]. In addition, it is recommended to install the free RStudio [14] software, which
increases the clarity of R code and supports R-shiny (see Section 2.3) applications. However, RStudio
is not necessarily required to run the CM SAF R Toolbox.

The development of the CM SAF R Toolbox started with a set of R-scripts for data analysis and
visualization in combination with the functionality of the cmsaf R-package. Further development
has included the increase and extension of operators of the cmsaf R-package, improved and easier
usage and the integration of all necessary steps to work with CM SAF data. These steps include three
main tasks:

1. Data preparation
2. Analysis of climate data
3. Visualization of data and results.

These tasks are described in more detail in Sections 2.1–2.3. To facilitate these tasks, the toolbox
comes with a pre-defined file structure, which is illustrated in Figure 1.

2.1. Data Preparation

CM SAF data can be ordered free of charge via a web user interface (https://wui.cmsaf.eu).
Ordered data are delivered via sftp (secure file transfer protocol) or via https in the form of tar files.
A tar file (tape archiver) or tarball is a file format to archive data on Linux systems (but can also be
read on Windows and Mac systems). Each tar file contains a set of NetCDF data files (one NetCDF file
per time step). The CM SAF R Toolbox supports users to progress from the downloaded tar file to a
ready-to-use NetCDF file. This step includes the extraction of all tar files of each order, an optional
restriction of the time range and spatial extension, and the merging of all time steps into one NetCDF
file. The latter is important to increase the ease of time series analysis.

https://wui.cmsaf.eu
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The data preparation is done by the R-script Prep.Data.R. This is a ready-to-use script, which can
be started in R or RStudio without any changes of the code. The user is guided through the preparation
process and can give optional inputs or use default values. The result of this process is one NetCDF
file that includes all time steps for the chosen time period and region. This file will be written into the
output folder that comes with the CM SAF R Toolbox (see Figure 1).
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2.2. Data Analysis

The most important feature of the CM SAF R Toolbox is the script Apply.Function.R, which is an
interface to the functionality of the cmsaf R-package [15]. This script can be started in R or RStudio
without any code changes and guides the user through the process. Usually this step is the second step
after preparing the downloaded tar file as described in Section 2.1. The user can choose a NetCDF file
by help of a file browser. The main task of the Apply.Function.R script is to get all necessary information
to apply an operator of the cmsaf R-package. This information includes the variable name, the name
and path of the input and output file and the name of the operator. The user can choose from a list of
more than 45 operators. After applying an operator, the result is written into a NetCDF file which will
be placed into the output folder of the CM SAF R Toolbox.

The cmsaf R-Package

R-packages are fundamental units of reproducible R code, which include reusable R functions,
the documentation that describes how to use them, and sample data [16]. The cmsaf R-package is a
collection of R operators for the analysis and manipulation of geospatial NetCDF data with a time
dimension. The package was developed and tested for CM SAF climate data records, but it is applicable
for many other gridded NetCDF data that follow CF conventions [17]. So far, the cmsaf R-package
consists of more than 60 operators (Tables 1 and 2). There is a common syntax for the application of
most of the cmsaf operators. The user has to give the name of the operator, the name of the variable,
an input file, and an output file name. All operators and their usage are described in detail in the
documentation of the cmsaf-package [15]. Most of the cmsaf operators can be easily applied by help of
the script Apply.Function.R. The user simply chooses an operator and the script provides all necessary
inputs. An overview of all operators currently available in the toolbox is provided in the tables below
(Tables 1 and 2).
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Table 1. Operators for data analysis of the cmsaf R-package (version 1.9.5). Operators that are included
in the CM SAF R Toolbox are marked in italics.

Operator Description Operator Description

cmsaf.add Add fields of two files. seasmean Seasonal means.
cmsaf.addc Add constant to data. seassum Seasonal sums.
cmsaf.div Divide fields of two files. timmax All-time maxima.
cmsaf.divc Divide data by constant. timmean Mean of time series.
cmsaf.mul Multiply fields of two files. timmin All-time minima.
cmsaf.mulc Multiply data with constant. timpctl Percentile over all time steps.
cmsaf.sub Subtract fields of two files. timsd All-time standard deviations.
cmsaf.subc Subtract constant from data. timsum Sum of time series.
dayrange Diurnal range. trend Linear trends.
divdpm Divide by days per month. wfldmean Weighted spatial mean.
fldmax Field maximum. ydaymean Multi-year daily means.
fldmean Field mean. year.anomaly Annual anomalies.
fldmin Field minimum. yearmean Annual means

mon.anomaly Monthly anomalies. yearsum Annual sums.
monmax Monthly maxima. ymonmax Multi-year monthly maxima.
monmean Monthly means. ymonmean Multi-year monthly means.
monmin Monthly minima. ymonmin Multi-year monthly minima.
monsd Monthly standard deviation. ymonsd Multi-year monthly standard deviations.

monsum Monthly sums. ymonsum Multi-year monthly sums.
muldpm Multiply by days per month. yseasmax Multi-year seasonal maxima.

multimonmean Multi-monthly means. yseasmean Multi-year seasonal means.
multimonsum Multi-monthly sums. yseasmin Multi-year seasonal minima.
seas.anomaly Seasonal anomalies. yseassd Multi-year seasonal standard deviations.

Table 2. Operators for data manipulation of the cmsaf R-package (version 1.9.5). Operators that are
included in the CM SAF R Toolbox are marked in italics.

Operator Description Operator Description

box_mergetime Combine files and simultaneously cut a region. remapbil Bilinear grid interpolation.

change_att Change attributes of variable. sellonlatbox Select region by
longitude/latitude.

extract.level Extract levels from four-dimensional variables. selmon Extract list of months.
extract.period Remove time period. selperiod Extract list of dates.

get_time Convert time steps to POSIXct. selpoint Extract data at given point.
levbox_mergetime Combine files and simultaneously cut a region and level. selpoint.multi Extract data at multiple points.

ncinfo Get information about file content. seltime Extract specific time step.
read_ncvar Read variable. selyear Extract list of years.

2.3. Data Visualization

The CM SAF R Toolbox can be used to visualize NetCDF data. This is done by the R script
CMSAF_Visualizer.R which uses a R-shiny based application. R-shiny is an R package that makes
it easy to build interactive web applications without knowledge of HTML or JavaScript [18]. The
CMSAF_Visualizer.R can be used to create interactive plots of 2D spatial maps or 1D time series. There
are multiple options to adapt the plot to the user’s need (Figure 2). This includes the adaption of, for
example, color bars, the scale range, the scale color number, the line style, the color for 1D time series
plots, or the text for axis captions and the title. In addition, there are options to change the projection,
to add the name of specific locations, or to plot station and satellite data simultaneously. Besides
the ability of plotting the data, the CMSAF_Visualizer.R provides information about the data in the
form of statistics, histograms, and lists of meta-data. The output can be saved as a png file (portable
network graphics).
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2.4. CM SAF R Toolbox Interface

For convenience, the data preparation, analysis, and visualization can be controlled by one single
R-shiny based application, which gives the look and feel of a graphical user interface (GUI). After
starting the script CMSAF-R-TOOLBOX.R, a window pops up where the user can choose between
the three main functionalities (Figure 3). This application provides a brief description of the toolbox
functionalities and a brief manual for each of the three steps.
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3. Example Application for Sunshine Duration

In this section the capabilities of the CM SAF R Toolbox will be demonstrated for the analysis
of sunshine duration for Europe in 2018. The year 2018 was a year with extraordinary occurrences
of extreme weather events, such as drought and heat, in many parts of the world [19]. To investigate
the situation for sunshine duration in Europe, the satellite-based sunshine duration for 2018 and the
corresponding climate data record are analyzed and discussed below.

3.1. CM SAF Sunshine Duration Data

The CM SAF provides the SARAH-2.1 (Surface Solar Radiation Data Set–Heliosat, version 2.1)
climate data record for solar surface radiation. SARAH-2.1 includes the parameters: Effective cloud
albedo (CAL), surface incoming shortwave radiation (SIS), surface direct irradiance (SDI), spectrally
resolved irradiance (SRI), and sunshine duration (SDU) [20]. The SDI includes two direct radiation
components, the surface incoming direct radiation (SID) and the direct normalized irradiance (DNI).
The basis for the retrieval of satellite-based SDU are the SARAH-2.1 30 min instantaneous DNI data
and the World Meteorological Organization (WMO) threshold for bright sunshine, which is defined
by DNI ≥ 120 W/m2. Daily SDU is derived using the ratio of instantaneous SARAH-2.1 DNI (slots)
exceeding the DNI threshold, and hence are considered as sunny slots, to all slots during daylight.
In addition, the sunshine duration for each pixel is weighted depending on the number of surrounding
cloudy and sunny grid points for two successive time steps [21]. Details on the retrieval and evaluation
of SARAH-2.1 SDU can be found in Kothe et al. [21], the SARAH-2.1 Algorithm Theoretical Baseline
Document and the SARAH-2.1 validation report [20].

The SARAH-2.1 SDU Thematic Climate Data Record (TCDR) [20] is available as daily or monthly
sums for the time period 1983 to 2017. In addition, the CM SAF provides an Interim Climate Data
Record (ICDR) [22] based on the SARAH-2.1 algorithm [23]. For the CM SAF, an ICDR denotes a
regularly updated TCDR in shorter time latency, with an algorithm and processing system as consistent
as possible to the generation of the reference TCDR. This definition follows the definition of a TCDR as
outlined in Dowell et al. [24]. Here, this ICDR is provided with a delay of a few days after the satellite
measurement and starts in January 2018.

3.2. SDU Data Preparation

This study applied daily and monthly sums of the SDU TCDR for the time period 1983 to 2017
and the SDU ICDR for 2018. Both cover the full Meteosat prime disk (Figure 4a). In total this would
be about 225 GB (daily) or 7.6 GB (monthly) in NetCDF4 format. To reduce the amount of data, the
spatial domain was restricted to Europe during the ordering process (see Figure 4b). For the chosen
region, the final amount of SDU data was about 30 GB (daily) or 800 MB (monthly). After ordering the
data (https://wui.cmsaf.eu), the user gets a confirmation mail and finally a mail including download
links via sftp or https. The data are provided as tar files with a maximum size of 4 GB. As the data
amount of this order exceeded this maximum size, the order was divided into several tar files.

After downloading the data, the first step was to prepare the data for the analysis. This step
required: (a) source the R-script CMSAF-R-TOOLBOX.R, (b) to choose one of the tar files, (c) to start
the prepare step, and (d) to follow the given instructions. The script extracts the information for
the included time range, spatial dimensions, and names of variables from all tar files with matching
order number, which optionally can be chosen by the user. The preparation of the data includes the
extraction of the tar files, the optional restriction of time and space, and the merging of all time steps
into one NetCDF file. For the SARAH-2.1 SDU TCDR data, the tar files included one NetCDF file for
each time step (in total 12,784 daily files), which were merged into one file. For the SDU ICDR the final
NetCDF file included 365 time steps for the entire year 2018.

https://wui.cmsaf.eu
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3.3. Sunshine Duration Analysis for Europe 2018

To get a first impression of SDU in 2018 in Europe, spatial plots of the annual sum for 2018 and
the mean annual sum for the time period 1983 to 2017 were created (see Figure 5). The annual sum for
2018 was derived by applying the timsum operator to the SDU daily means of 2018. The mean annual
sum for the SDU TCDR from 1983 to 2017 was derived by applying (1) the yearsum operator to the
SDU monthly sums for this period and (2) the timmean operator. The results were visualized using the
CMSAF_Visualizer.R.
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Figure 5. Sunshine duration mean annual sum for the time period 1983 to 2017 (a) and for the year
2018 (b). The cities of Berlin and Toulouse are highlighted.

SDU in Europe is usually highest in the Mediterranean and the Iberian Peninsula, decreasing to
the north and especially to the northwest, with lowest values on the British Islands and Scandinavian
mountains. This pattern is mainly due to the day length and the cloud coverage. The color bar in both
plots of Figure 5 was the same, making it easy to compare them. Figure 5 shows that the annual SDU
for 2018 south of 45◦N looked very similar to the long-term mean sum (Figure 5a). The most obvious
differences were in Central Europe, the Baltic Sea and Scandinavia, where the values were much higher
than the mean. These differences could be further investigated by looking at spatial anomalies of SDU.

The CM SAF R Toolbox and the included cmsaf R-package provide operators to create annual,
seasonal, and monthly anomalies. The operators year.anomaly, seas.anomaly, and mon.anomaly were
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applied to annual, seasonal, and monthly sums of SDU for the time period 1983 to 2018, which were
derived by applying the yearsum, seassum, and monsum operators, respectively. The resulting files
were visualized by the CMSAF_Visualizer.R (see Figure 6). To highlight positive and negative anomaly
values, a blue–whitered color bar was chosen and the values were symmetrically centered around zero.
Figure 6 shows absolute values of the SDU anomalies, which is why the values decreased from annual
to seasonal and monthly. To have the highest contrast, different ranges of the color bar were chosen
for these figures. For the mean of May 1983 to 2017, Figure 6d presents the mean monthly SDU sum,
which was derived by applying first the monsum operator and then the ymonmean operator to SDU
daily sums from 1983 to 2017.
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The annual SDU anomaly shows the deviation of the annual mean SDU sum from the long-term
annual SDU sum. Figure 6a reveals a strong gradient in the 2018 SDU anomaly from Northern to
Southern Europe. There is a strong positive SDU anomaly in regions north of about 45◦N and no, or
even slightly, negative anomaly values in the Mediterranean and Northern Africa. The highest positive
values were in Germany and Scandinavia, with up to 600 h above the long-term mean.

The seasonal SDU anomaly shows the deviation of the seasonal mean SDU sum from the long-term
seasonal SDU sum. There was a very strong positive seasonal anomaly in summer 2018 in Central
Europe, Scandinavia, and the British Islands, which reached values of up to 200 h above average
(Figure 6b). Negative seasonal anomalies could be found in Portugal, Southern Italy, and the Balkans.

The monthly SDU anomaly shows the deviation of the monthly SDU sum from the long-term
monthly SDU sum. In Figure 6c it can be seen that in May 2018 SDU was extraordinarily high in
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many parts of Europe. The long-term mean monthly SDU sum for the Scandinavian mountains was
about 170 h (Figure 6d). The monthly SDU sum in May 2018 in this region was about 230% above the
long-term value.

To have a more detailed look into the special features of SDU, the SDU time series for Berlin and
Toulouse were compared (Figures 7 and 8). Berlin was situated in a region with high positive SDU
anomalies in 2018 (Figure 7). Toulouse had a similar long-term mean annual SDU sum as the mean
SDU sum for 2018 in Berlin. Both cities are marked in Figure 5. The basis for the plots in Figure 7 was
the monthly sums of SDU for the time period 1983 to 2018. To extract the grid points of Berlin (52.5◦N;
13.4◦E) and Toulouse (43.6◦N; 1.45◦E) the selpoint operator was used. Figures 7 and 8 are standard
plots, which were created with the analyze timeseries option in the CMSAF_Visualize.R. The time series
of monthly sums are shown including a linear trend line (a); the annual cycle including maximum,
minimum, and mean (b); the monthly anomalies including the linear trend (c); a box plot of the annual
cycle (d); the annual monthly means including the overall mean (e); and the SDU histogram (f).
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Figure 7. Analysis plots for the SDU time series for Berlin (52.5◦N; 13.4◦E) from 1983 to 2018. Shown are
the time series of monthly sums including a linear trend line (a); the annual cycle including maximum,
minimum, and mean (b); the monthly anomalies including the linear trend (c); a box plot of the annual
cycle (d); the annual monthly means including the overall mean (e); and the SDU histogram (f).
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Figure 8. Analysis plots for the SDU time series for Toulouse (43.6◦N; 1.45◦E) from 1983 to 2018.
Shown are the time series of monthly sums including a linear trend line (a); the annual cycle including
maximum, minimum, and mean (b); the monthly anomalies including the linear trend (c); a box
plot of the annual cycle (d); the annual monthly means including the overall mean (e); and the SDU
histogram (f).

The 2018 SDU monthly means for Berlin (Figure 7a) were very high, with values up to 350.8 h
in May 2018. Although this was the highest May value of the whole time series, there were higher
monthly sums in July 2006 (358.4 h) and July 1994 (366.7 h). The annual cycle (Figure 7b) for Berlin
was quite symmetrical, with strong variability from April to August, while the annual cycle of
Toulouse (Figure 8b) showed less variability and a maximum that was shifted to July and August. The
extraordinary high SDU in Berlin in 2018 was also confirmed by the time series of monthly anomalies
in Figure 7c, while the SDU monthly anomalies in Toulouse (Figure 8c) in 2018 were close to zero. The
annual mean for 2018 in Berlin (Figure 7e) was by far the highest in this time series. However, this
record sunshine duration sum was almost the mean annual SDU for Toulouse (Figure 8e).

By application of the ydaymean and the timsum operator, it could be investigated as to when
the accumulated SDU for a year reached the long-term annual mean. For Berlin this was the case at
28 August 2018, where the accumulated daily SDU for 2018 (1775.1 h) exceeded the climatological
annual mean sum (1771.7 h). This means that even if in the months of September to December 2018
there would have been no sunshine, the annual sum would still correspond to the long-term mean
annual sum.
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The results for Berlin were representative of Central Europe, which was affected by a strong
positive SDU anomaly in 2018. By application of the sellonlatbox operator to the monthly sums of
SDU (see Figure 9), a large part of Central Europe was extracted from the data and; subsequently,
spatially averaged with the fldmean operator. The resulting time series was visualized with the
CMSAF_Visualizer.R (Figure 10).
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Figure 10 shows a similar temporal evolution of SDU as Berlin, with a slightly increasing trend
and a similar mean of about 150 h. Although there were several years with higher monthly peaks, the
annual mean monthly SDU sum for Central Europe was highest in 2018 (not shown) with 175.2 h. This
value was slightly higher than for the year 2003 (174.9 h), during which Europe also experienced an
extremely hot, sunny, and dry summer [25].

3.4. Summary of SDU Analysis

The analysis of satellite-based CM SAF SDU climate data records for the time period 1983 to 2018,
in Section 3.3, revealed that in 2018 SDU was extraordinarily high in Central and Northern Europe. It
was shown that, based on the 35 years of CM SAF SARAH-2.1 data, 2018 had the highest recorded
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annual SDU in these regions. The month with the highest positive anomaly was May, which was, in
many regions, even the month with the highest absolute SDU in 2018. The highest recorded monthly
sums in Berlin were from July 1994 and 2006 (366.7 h and 358.4 h), while July 2018 had 332.1 h. Thus,
the high annual mean was mainly due to a long period with constant high SDU and not just due to a
few extreme monthly SDU sums. The spatial pattern of the anomalies and the long period of high SDU
values might indicate long and stable high-pressure situations, which were centered over Scandinavia
and Central Europe. High pressure systems in the summer half year, especially, are characterized by a
low cloud fractional coverage and a high solar insolation.

4. Conclusions and Outlook

In this study we presented the CM SAF R Toolbox and its intention, functionality, and application.
Based on the CM SAF satellite-based climate data records for SDU, it was demonstrated how the
toolbox can be used to analyze large amounts of NetCDF data without any programming skills. The
toolbox was used to analyze and visualize the extreme SDU in 2018 with regard to the long-term
climate data record. In addition, it was demonstrated that the CM SAF SDU climate data records
are well-suited for analyzing the extremes, variabilities, and changes of this important essential
climate variable.

The heart of the CM SAF R Toolbox is the cmsaf R-package, which provides a wide functionality
for the work with NetCDF data. A worldwide download number of over 23,500 (February 2019) and
feedback from users demonstrate that the cmsaf R-package is not only useful for CM SAF data, but
also for other geospatial NetCDF data.

One of the largest advantages of the CM SAF R Toolbox is that it is completely based on the
scientific programming language R. R is one of the standard languages for statistical analysis of
scientific data records and there is a large and steadily growing community. As with most R code, the
CM SAF R Toolbox and the cmsaf R-package are free and open source. This opens the possibility for
users to contribute to this software or to adapt it to their own specific needs. The CM SAF R Toolbox is
designed for easy usage and its intention is to help users to get started with CM SAF NetCDF data.
Although the CM SAF R Toolbox has many interactive GUI based features, users can easily access
the underlying R code and adopt it for individual purposes, hence allowing advanced analyses and
special solutions, which cannot be represented by the toolbox.

The CM SAF R Toolbox will be steadily developed to increase its functionality, to improve the
usability and to adapt it to a wider range of NetCDF data. For instance, it is conceivable to expand its
R-shiny functionalities to use the CM SAF R Toolbox for web-based processing. The implementations
of more complex operators are also possible, such as the merging of satellite- and station-based data or
the calculation of the solar energy potential. In addition, it is planned to implement the possibility of a
selection of single countries for more user specific applications. Through this, the CM SAF R Toolbox
is a useful tool for geospatial analysis and mapping for an even wider range of applications.
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