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Abstract: This paper presents an object-based approach to mapping a set of landforms located in the
fluvio-eolian plain of Rio Dulce and alluvial plain of Rio Salado (Dry Chaco, Argentina), with two
Landsat 8 images collected in summer and winter combined with topographic data. The research
was conducted in two stages. The first stage focused on basic-spectral landform classifications
where both pixel- and object-based image analyses were tested with five classification algorithms:
Mahalanobis Distance (MD), Spectral Angle Mapper (SAM), Maximum Likelihood (ML), Support
Vector Machine (SVM) and Decision Tree (DT). The results obtained indicate that object-based
analyses clearly outperform pixel-based classifications, with an increase in accuracy of up to 35%.
The second stage focused on advanced object-based derived variables with topographic ancillary
data classifications. The combinations of variables were tested in order to obtain the most accurate
map of landforms based on the most successful classifiers identified in the previous stage (ML, SVM
and DT). The results indicate that DT is the most accurate classifier, exhibiting the highest overall
accuracies with values greater than 72% in both the winter and summer images. Future work could
combine both, the most appropriate methodologies and combinations of variables obtained in this
study, with physico-chemical variables sampled to improve the classification of landforms and even
of types of soil.

Keywords: data mining algorithms; DEM-derived variables; geoforms classification; Landsat-8
imagery; OBIA

1. Introduction

The Gran Chaco or Dry Chaco is a flat, semi-arid ecosystem characterized by a mix of woodlands
and grasslands. The Argentine Chaco is undergoing detrimental transformations due to unrestricted
forest clearing and fire because of activities ranging from traditional land use to commercial
agriculture [1]. To mitigate the impacts caused by agricultural expansion, a balanced environmental
performance is required, which involves obtaining accurate information of the factors that affect the
land [2]. Nevertheless, the reduced number of soil studies and the limited trained staff show the
lack of adequate soil data to aid informed planning of land use, which is threatening the sustainable
development of the region.

Conventional soil mapping techniques are quite expensive and time consuming. Soil types are
usually delineated in the field, based on the relationship of soils and their natural surroundings,

ISPRS Int. J. Geo-Inf. 2019, 8, 132; doi:10.3390/ijgi8030132 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0001-7023-0408
https://orcid.org/0000-0002-7558-400X
http://www.mdpi.com/2220-9964/8/3/132?type=check_update&version=1
http://dx.doi.org/10.3390/ijgi8030132
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2019, 8, 132 2 of 20

following tacit mental models [3]. Those models are rarely described with clarity [4], are subject
to personal bias, and are difficult to replicate, especially in quantitative studies [5]. However, the
increasing availability of data combined with the rapid development of new information processing
tools is significantly changing the way in which soil and other geoforms like landscapes, moldings or
landforms are being mapped. The digital soil mapping (DSM) techniques combine field observations,
laboratory measurements, terrain variables and remote sensing data, integrated with quantitative
methods to map spatial patterns of soil properties [6]. This combination of techniques facilitates
mapping inaccessible areas or areas with economical restrictions by reducing the need for extensive
field surveys. As landforms can be suitable predictors of soil types as soil development often occurs in
response to the underlying lithology and water movement in the landscape [7,8], the application of
these techniques for the classification of landforms can be consider as the first stage of a future soil
mapping procedure.

Most of the studies based on DSM techniques combine multispectral satellite data with
topographic data to improve geoform classifications, especially in complex landscapes [9–11], whereas
traditional image analysis techniques use pixel-based classification approaches. However, when
medium spatial resolution imagery is used in large areas, especially in land characterized by
high intra-class spectral variability, analyzing pixels individually can produce misclassifications.
One possible solution is to apply Object-Based Image Analysis (OBIA) to group adjacent pixels into
spectrally and spatially homogeneous objects created through a segmentation process. Although there
are different types of OBIA analyses, the use of the multiresolution segmentation algorithm has
been found the most sensitive to morphological discontinuities in DEMs [12] showing a great
ability of capturing morphological discontinuities in natural spatial entities such as landforms [13].
OBIA techniques have shown a great potential for classifying compared to pixel-based methods in
agriculture [14,15], forestry [16,17] and urban areas [18,19], among other disciplines. For landform
classification, the analysis of satellite and topographic data with object-based approaches offered
promising results in steep [20–22] and deltaic areas [23]. Nevertheless, as far as we know, the use of
this technique in large areas of semi-arid ecosystem have not been evaluated.

Considering that, the main goal of this project was to establish a multidisciplinary OBIA approach
to discriminate and map landforms in the semi-arid Chaco ecosystem in order to automate the
process with spectral and topographic data. For this purpose, different conceptual and mathematical
classification algorithms were tested.

2. Materials and Methods

2.1. Study Area

The study area is approximately 8800 km2 (110 km × 80 km) located in the center of the Santiago
del Estero province, Argentina (between 27◦30′ S–28◦35′ S and 63◦45 W–64◦35′ W, datum WGS84)
(Figure 1). This area is representative of the Chaco ecosystem, characterized by a continental subtropical
climate with dry and mild winters and summers marked by extreme high temperatures. Precipitation is
concentrated during summer. Comprising part of the fluvio-eolic Chaco Plain, Río Dulce and Río
Salado alluvial Plains, the territory slopes gently from west to east and exhibits a set of landforms
resulting from exogenous and endogenous processes.
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Figure 1. Location of the study area in the semiarid Chaco, province of Santiago del Estero, Argentina.
The study area is depicted by the winter 2013 and summer 2014 Landsat multispectral image.

2.2. Satellite Data and Preprocessing

In the winter of 2013 and the summer of 2014, digital imagery data of the study region were
acquired by the Landsat 8 satellite (winter-13 and summer-14 imagery, respectively). Seven of the eight
multispectral Landsat 8 OLI bands (B1: 435–451 nm, B2: 452–512 nm, G: 533–590 nm, R: 636–673 nm,
NIR: 851–879 nm, SWIR1: 1566–1651 nm, SWIR2: 2107–2294 nm) were used in this study. The spatial
resolution was 30 meters and the radiometric resolution was 16 bits. The bands analyzed presented a
preprocessing level L1T, with standard terrain corrections that provides radiometric and geometric
accuracy through the use of digital elevation models and ground control points. Both images were
atmospherically corrected using the Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH)
method, where the images were first calibrated to at-sensor radiance, and then corrected to surface
reflectance. The study area includes the city of Santiago del Estero and surrounding agricultural areas,
where the original land uses have been altered by human intervention. As spectral signatures of altered
surfaces do not contain relevant information for soil and terrain mapping, this area was masked in the
study as Mulder et al., [24] recommends.

2.3. Ground-Truth Landform Distribution

To substantiate and validate the classification procedures, ground-truth landforms samples were
defined from the geopedologic map at a scale of 1:500,000 carried out by Angueira [25]. This map was
developed based on recognition-intensive sampling where physical and chemical data obtained from
soil profiles were analyzed and related with topographic and other ancillary information. This process
was developed based on the knowledge of the technical staff and took several years to complete.

In the study area, different features can be distinguished: a fan with its apex in the west and a
divergent gently sloping area to north-east and south-east, a main and secondary fault, two north-south
parallel valleys at the foot of the main fault, and a shallow sag pond at the foot of the secondary fault.
As a result, the study area comprises of three landscapes types, which were divided into nine moldings
and fourteen homogeneous and mutually contrasting landform units (Table 1).
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The Fluvio-Eolian Chaco Plain is a slightly convex landscape with 0.5–1% slope of the Sali-Dulce
River system. This landform includes three moldings: (a) the proximal megafan, a gently sloping
terrain covered by a loess mantle including an gently sloping loess cover unit (1P) dissected by blowout
depressions (2P) which are wide and elongated shallow areas occasionally acting as runoff paths;
(b) the distal megafan, a cone-shaped deposit of sand and finer materials formed in the area where the
river slows down and spreads into a flatter plain at the exit of the Huymampa N-S fault, including a
flat or gently sloped interfluvial plain (3P) and an irregular flat with elongated or curvilinear shallow
depressions infilled channel (4P) backfilled with sediment and located within the interfluvial plain;
(c) the old alluvial overland flow area, with a relatively flat overflowed depression (5P), a nearly closed
fan-shaped accumulation of deposit of sand-sized and finer sediments formed where the currents slow
and dissipate, crossed by many channel and levees, elongated parallel areas oriented NW-SE crossing
the slightly lower flood plain, named Alluvial overfluvial levee (6P).

The Valley (Dulce River) landscape is characterized with terraces and watercourses and includes
two moldings: (a) the middle terraces, the higher ground area formed by the river on its right side with
levee and former watercourse (7D), (b) a low terrace identified at the left side of the river, showing
flat surfaces that border lie above the flood plain formed from the deposition of alluvium adjacent to
the river that periodically overflows (8D); and (c) an active floodplain landscape formed by the main
course of the Dulce River and lower order courses generally dry, leading floodwaters spilling out of
the riverbed (9D).

The Alluvial migratory plain (Salado River) is an flat area composed by three moldings: (a) an
active fluvial valley formed by an extensive, depressed area between natural levees and terraces
(10S) and elongated high areas, almost parallels in north-south direction distributed throughout the
alluvial overflow plain (11S); (b) an active floodplain including streams and a low, saturated ground,
intermittently covered with water and vegetated by shrubs and trees that drains excess system marshes
and lagoons (12S); and (c) a fluvioeolic terrace remnant formed by a large gently sloping area, nearly
level, erosional remnant of an alluvial plain without drainage network (13S), and a concave shallow
microrelief through which runoff is drained in periods of high water (14S).

Landform, a basic geoform type characterized by a unique combination of geometry, dynamics
and history, was chosen to be classified due to its close relationship with soils. Of the fourteen
landforms, only thirteen were considered in the classification process due to the 4P landform was
insignificant in the unmasked study area.

Table 1. Ground-truth information obtained from a geopedologic survey [19].

Landscape Molding Facies Landform Code

Fluvio-eolian Chaco
plain (Sali-Dulce River)

Proximal megafan Eolian
Loess cover 1P
Blowout depression 2P

Distal megafan Alluvial
Interfluvial plain 3P
Infilled channel 4P

Old alluvial overland flow Alluvial
Overflowed depression 5P
Alluvial overflow levee 6P

Valley (Dulce River)
Middle terrace (mt)

Alluvial
Levee and overflows (mt) 7D

Low terrace (lt) Levee and overflows (lt) 8D

Active floodplain River 9D

Alluvial migratory
plain (Salado River)

Active fluvial valley Alluvial
Alluvial overflow plain 10S
Levee 11S

Active floodplain Alluvial Alluvial overflow swamp 12S

Fluvio-eolian terrace remnant Eolian over alluvial
Alluvial flat 13S
Alluvial channel 14S

Two systematic samples with approximately 4858 ha distributed over the different soils were
performed over the entire surface to collect ground-truth information (Figure 2a). A total of 4969 points
separated by 930 m each were used to collect the spectral signature in the algorithmic training process
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(Figure 2b). The remaining 49,011 points separated by 300 m were used to assess the accuracy of the
classifications (Figure 2c). This procedure sampled pixels within each class proportionally to the extent
of the soil units.
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3. Methods

To evaluate the accuracy of the delimitation among the different landform units, two stages of
classification were performed. The methodology flowchart is shown in Figure 3.
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Figure 3. Processing scheme for the classification of landforms combining object-based image analysis
with topographic data.

3.1. Stage 1: Basic-Spectral Variable Classifications

The goal of the basic-level study was to compare the accuracy of pixel- and object-based
classifications of Landsat 8 bands using different classifiers in order to determine whether the
segmentation of the image would improve the accuracy of landform maps.
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3.1.1. Segmentation

The seven multispectral bands were partitioned into homogeneous objects using the Fractal
Net Evolution Approach (FNEA) segmentation algorithm. This algorithm allows for multiresolution
segmentation which groups pixels and creates highly homogeneous image objects while minimizing
the average heterogeneity at an arbitrary resolution. The objects created can be used as the base of
classification and other processing procedures [26].

During the segmentation process, the weighting of input data and parameters such as scale, color
and shape must be controlled. The scale parameter determines the maximum allowed heterogeneity
for the resulting image objects. The color and the shape (smoothness and compactness) parameters
define the percentage that the spectral values and the shape of objects, respectively, will contribute
to the homogeneity criterion. To obtain the segmentation parameters with the greatest precision for
each study, their ability to accurately delineate landforms units in various scenarios must be evaluated.
In this study, several parameters were tested. The most satisfactory combination for scale, color, shape,
smoothness and compactness values in the winter-13 image were 650, 0.9, 0.1, 0.5 and 0.5 and in the
summer-14 image were 450, 0.9, 0.1, 0.5 and 0.5, respectively (Figure 4).
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3.1.2. Basic-Spectral Landform Classification and Accuracy Assessments

For both pixel- and object-based analysis, different supervised classification algorithms were used
to classify the Landsat 8 images collected in 2013 and 2014. Five classification methods were chosen
due to their strong conceptual and mathematical differences: Mahalanobis Distance (MD), Spectral
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Angle Mapper (SAM), Maximum Likelihood (ML), Support Vector Machine (SVM) and Decision Tree
(DT). The MD and SAM classifiers assign a class to a pixel when the minimum spectral distance or
the minimum spectral angle from that pixel to the spectral distance or spectral angle average of the
distinct classes are found, respectively. ML is a probability classifier that selects the set of values from
the model parameters that maximizes the likelihood function and allocates each pixel to the class with
which it has the highest posterior probability of membership. Finally, the SVM and the DT methods
analyze data and recognize patterns via data mining. For the SVM classification, the radial basis
function (RBF) kernel was chosen, as recommended by Hsu et al. [27]. The RBF kernel is a Gaussian
non-linear function, which constructs a set of hyperplanes in a high- or infinite-dimensional work
space. The DT classification performed in the study was carried out by the C4.5 algorithm [28], which
is a top-down inductor of decision trees that expands nodes in depth-first order for each step using the
divide-and-conquer strategy. The accuracy of the methods was analyzed by quantifying coincidences
between the estimated map and ground-truth with a confusion matrix analysis and a Kappa test.
The confusion matrix provides the overall accuracy (OA) of the classification, which indicates the
percentage of correctly classified pixels. On the other hand, the Kappa test (K) determines whether the
results presented in the confusion matrix are significantly better than random or chance classification,
indicating a more conservative estimation than simple percent agreement value. The Equations used
to calculate the OA (1) and K (2) are given as follows:

OA =
∑r

i=1 xii

n
(1)

K =
n ∑r

i=1 xii −∑r
i=1 xi+x+i

n2 −∑r
i=1 xi+x+i

(2)

where r is the number of rows in the matrix, xii is the number of observations in row i and column
i, xi+ and x+i are the marginal totals of row i and column i, respectively, and n is the total number
of observations.

In order to be compared without any subjective estimation, the data classified in pixel- and
object-based analyses must be similar. While the seven original multispectral bands were analyzed
in the pixel-based classifications, in object-based analyses the bands classified were the mean of the
intensity values of the objects obtained in the segmentation of the multispectral bands.

3.2. Stage 2: Advanced Object-Derived + Topographic Variable Classifications

In this analysis, the main goal was to obtain accurate maps of landforms with OBIA approaches
using the most accurate classification algorithms identified in the previous stage. Different object-based
classifications were carried out to test combinations of advanced spectral, textural and geometrical
object-derived variables. Topographic ancillary data were also included in this level to provide useful
information to improve the classification process.

3.2.1. Object-Derived Variables

Segmentation can generate a large quantity of object metrics for a given image. In this study
three types of object metrics were used: spectral, textural and geometrical (Table 2). Five spectral
features were evaluated to describe image objects with the information derived from their spectral
properties. The mean feature, being the first variable tested in all classifications, was used as the main
parameter for the classification. Additionally, 4 textural and 14 geometrical more features obtained
from the segmented objects were added to the spectral information. The textural parameters, calculated
based on Haralick’s co-occurrence matrix, were used to detect the local differences between objects
by analyzing how often different combinations of pixel gray levels occur throughout the images.
The geometrical information measures the characteristics of the shape of the segmented object and
was calculated from the pixels that form each object.
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Table 2. Advanced object-based variables derived from segmentation of Landsat 8 images.

Type Variable Name Brief Description

Spectrality

Mean Mean Mean of the intensity values of all pixels forming an image object

Standard deviation St_Dev Standard Deviation of the intensity values of all pixels forming an image object

Skewness Skew Asymmetry of the distribution of all pixels forming an image object

Brightness Bright Sum of brightness weight in all layers of an image object multiply by the mean intensity of the same object

Max difference Max_Diff Ration between the maximum difference of mean intensity of an image object in the different layers and the brightness of the same image object

Texture

Correlation GLCM_C Linear dependency of gray levels of neighboring pixels on the gray level co-occurrence matrix (GLCM)

Entropy GLCM_E Distribution of the pixel values on the gray level co-occurrence matrix (GLCM)

Homogeneity GLCM_H Amount of local variation in the image based on the gray level co-occurrence matrix (GLCM)

Mean GLCM_M Average expressed by the frequency of occurrence of a pixel combination with a certain neighbor pixel value

Geometry

Area Area Number of pixels forming an image object

Length Length Multiplication between the number of pixels and the length-to-width ratio of an image object

Width Width Ration between the number of pixels and the length-to-width ratio of an image object

Asymmetry Asymm Relative length of an image object compared to a regular ellipse polygon

Border index Border_I Ratio between the border lengths of the image object and the smallest enclosing rectangle

Compactness Compact Ratio between the length x width of the object and its area

Density Density Ratio between the area of an image object and its approximated radius

Elliptic fit Ellip_Fit Comparison between the area of an imagen and an ellipse with the same area as the selected image object

Main direction Main_Dir Direction of the eigenvector belonging to the larger of the two eigenvalues

Radius of largest enclosed ellipse R_Largest Ratio of the radius of the largest enclosed ellipse to the radius of the original ellipse

Radius of smallest enclosing ellipse R_Smallest Ratio of the radius of the smallest enclosing ellipse to the radius of the original ellipse

Rectangular fit Rect_Fit Comparison between the area of the image object outside a rectangle with the same area as the image object, and the area inside the rectangle

Roundness Round Difference of the enclosing ellipse and the enclosed ellipse

Shape index Shape_I Comparison between the border length feature of the image object and four times the square root of its area
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3.2.2. Topographic variables

The basic morphometric identifying parameters are derived from digital elevation model
(DEM) [24]. The Shuttle Radar Topographic Mission (SRTM) terrain data, a 30 m elevation model,
provided the elevation values for the study and the basis for the calculation of the derived topographic
variables. The 11 DEM-derived variables were divided in two groups (Table 3). Five DEM-derived
attributes were direct descriptors of the landforms representing the morphological attributes of the
terrain. This group included the terrain elevation and the first and second derivative. The second
group of DEM-derived variables characterized specific hydrological processes that were identified to
be important soil-forming discriminators. This group included terrain indices that combine two or
more terrain attributes (compound derivatives).

Table 3. DEM-derived variables from The Shuttle Radar Topographic Mission (SRTM) terrain data.

Type Variable Name Brief Description

Topography

Elevation Elev Terrain altitude on a reference system

Slope Slope Steepness of the terrain relative to the horizontal plane

Aspect Aspect Compass the direction that a terrain slope faces

Plan Curvature Plan_Cuv Curvature of the hypothetical contour line that passes through a
specific cell

Profile Curvature Prof_Curv Curvature of the surface in the direction of the steepest slope

Hydrology

Altitude about channel network Alt_Ch Vertical distance to a channel network base level

Catchment area Catch_Area Area of land draining into a stream or a water course

Channel network base level Ch_Net Base level of a channel network

Convergence index Conv_I Structure of the relief as a set of convergent areas (channels) and
divergent areas (ridges)

LS Factor LS_Factor Combination of slope length factor (L) and slope steepness factor (S)
to compute the effect of slope length and slope steepness on erosion.

Wetness index Wet_I Value in a flow accumulation raster for the corresponding DEM

3.2.3. Advanced Landform Classification and Accuracy Assessments

The object-based and topographic variables were classified using those classification methods
that yielded more accurate results in the previous stage of study: the ML, SVM and DT classification
algorithms. In order to obtain an accurate combination of variables to distinguish landforms, the
variables were added to the procedure in an ordered manner. In each test, if the new variable did
not offer enough information to the study, that variable was eliminated from the analysis. First, only
spectral variables were tested. Then, the topographic variables were combined jointly with the most
efficient spectral combination (S) to obtain a more accurate combination of spectral + topographic
variables (S + To). That combination was evaluated with the textural variables. The most accurate
combination of spectral + topographical + textural variables (S + To + Tx) was then analyzed with
geometrical variables, resulting in the spectral + topographical + textural + geometrical combination
(S + To + Tx + G) with the greatest precision. Additionally, alongside the OA and the K values used to
show the accuracy of the classifications, the producer’s accuracy (PA), which indicates the probability
that a classified pixel actually represents that category in reality, was also evaluated. The Equation
used to calculate the PA (3) is given as follows:

PA =
xii
xi+

(3)

where xii is the number of observations in row i and column i and xi+ is the marginal total of row i.

3.2.4. Evaluation of the Importance of the Variables in the Prediction

The 34 variables used to predict landform units showed different levels of contribution in
obtaining the most accurate classification for each classifier and for both images. While some of
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these variables were not ultimately used for the classification, it was necessary to test each variable
comparatively. A first analysis was carried out to detect which variables were to be used in obtaining
the most accurate classifications and the weight of each group of variables in each classification.
The level of utility was quantified by analyzing the number of times each variable was used in the
most accurate classifications obtained with the three different algorithms applied in two different
images. A second analysis was performed only with the most accurate DT classification of each
image. Whereas the ML and SVM algorithms give equal weight to all the variables involved in the
classification process, each variable in the DT algorithm intervenes with a different utility in the
prediction model. This contribution was assessed through the quantification of the number of nodes of
the tree where each variable is used.

For Stage 1 and Stage 2 studies, the software eCognition Developer 8 (Definiens AG, 2009) was
used to obtain the segmented bands and the object-based derived variables. ArcGIS 10.5 (ESRI, 2017)
and SAGA GIS (SAGA GIS, 2017) extracted all the DEM-derivate variables (topographical variables).
With Weka 3.8 software (University of Waikato, Hamilton, New Zealand, 2017), the decision tree
sequences were obtained. The ENVI 5.1 software (ITT Virtual Information Solutions, 2013) was used
to perform the atmospheric FLAASH correction, all the pixel- and object-based classifications and
accuracy analyses.

4. Results

4.1. Stage 1: Basic-Spectral Variable Classifications

Accuracy assessments of the discrimination of the thirteen landforms in pixel- and object-based
classifications are shown in Table 4. Of the 20 classifications evaluated, all the object-based analyses
yielded better results than the pixel-based analyses. Table 4 reveals consistent differences among the
classification algorithms. All pixel-based classifications showed low accuracies with OA values ranging
from 23% to 42.6% in the winter-13 image, and from 19.4% to 36.8% in the summer-14 image. The least
accurate classification method was SAM and most accurate was SVM. In the object-based analyses
accuracy increased significantly, over 12%, for most of the classifiers evaluated. While the SAM
algorithm continued having the lowest accuracies with OA values at 28.8% and 22.5% in the winter-13
and summer-14 images, respectively, the DT classifier surpassed the SVM algorithm, obtaining the
highest accuracies of all the object-based classifications. DT yielded values of OA at 67.2% in winter-13
image and 71.5% in summer-14 image. Nevertheless, the highest OA value of the SVM object-based
analysis was 55.1% for the winter-13 image. MD and ML showed moderate accuracies in both analyses,
although ML generated more precise object-based classifications than MD. The highest performance
values for OA and K for most of the classifiers occurred in the winter-13 image except for the DT
object-based classification, which achieved the maximum OA and K with the summer-14 image.

Table 4. Classification accuracies of landforms in winter and summer images using different
classification algorithms.

MD 1 SAM ML SVM DT

OA 2 K OA K OA K OA K OA K

Winter-13 Image
PBIA 3 31.7 0.25 23.0 0.16 32.1 0.25 42.6 0.33 38.3 0.30
OBIA 43.7 0.37 28.8 0.22 49.2 0.43 55.1 0.48 67.2 0.63

Summer-14 Image
PBIA 28.7 0.22 19.4 0.13 29.5 0.23 36.8 0.25 36.5 0.28
OBIA 40.7 0.34 22.5 0.16 46.1 0.40 46.2 0.37 71.5 0.68

1 Methods of classification. MD: Minimum Distance; SAM: Spectral Angle Mapper; ML: Maximum Likelihood;
SVM: Support Vector Machine; DT: Decision Tree (J48 algorithm). 2 Accuracy values. OA: overall accuracy (%),
K: Kappa coefficient. Type of analysis. PBIA: Pixel-based image analysis; OBIA: Object-based image analysis.
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4.2. Stage 2: Advanced Object-Derived + Topographic Variable Classifications

Table 5 summarizes the most accurate classification results, OA and K, obtained from the
three classification algorithms tested with spectral, topographical, textural and geometrical variables.
The classifiers analyzed yielded medium classification accuracies, although slightly lower OA and
K values were obtained in the winter-13 image than in summer-14 image. Only the SVM algorithm
showed better results with the S and S + To combination of variables in the winter-13 analyses. The table
reveals consistent differences, around 13.5%, in OA when comparing the most and the least accurate
classifier with the most efficient combination of variables in both images. Thus, in the winter-13 image
the greatest OA was 58.7% for ML (Figure 5a), 64.5% for SVM (Figure 5b) and 72.0% for DT (Figure 5c).
Greater OA values were obtained for the summer-14 image with values of 60.8%, 64.8% and 74.7% for
MP (Figure 5a’), SVM (Figure 5b’) and DT (Figure 5c’), respectively.

Table 5. Best classification accuracies obtained with combination of advanced object-based and
topographical variables in winter and summer images using Maximum Likelihood, Support Vector
Machine and Decision Tree algorithms.

Variables
Winter-13 Image Summer-14 Image

ML 1 SVM DT ML SVM DT

OA 2 K OA K OA K OA K OA K OA K

S 3 52.9 0.47 59.0 0.53 67.5 0.63 57.2 0.52 52.9 0.46 72.1 0.68
S + To 56.3 0.51 62.8 0.57 71.5 0.68 59.6 0.55 59.7 0.54 74.2 0.71

S + To + Tx - - 63.6 0.58 - - 59.9 0.55 63.8 0.59 74.7 0.71
S + To + Tx + G 58.7 0.54 64.5 0.59 72.0 0.68 60.8 0.56 64.8 0.60 74.7 0.71

All 13.7 0.11 64.4 0.59 67.8 0.64 24.1 0.20 65.4 0.61 70.7 0.67
1 Method of classification: ML: Maximum Likelihood; SVM: Support Vector Machine; DT: Decision Tree. 2 Accuracy
values: OA: overall accuracy (%), K: Kappa coefficient. 3 Best combination of each group of thematic variables: S:
spectral; S + To: spectral + topographical; S + To + Tx: spectral + topographical + textural; S + To + Tx + G: spectral +
topographical + textural + geometrical; All: all variables.

The DT classifications yielded more accurate results than the ML or SVM approaches in all
analyses performed. Independently of the different seasons studied or the most suitable combination
of variables of each group, the DT classifier offered a 10–13% range of higher OA values than the
other classification algorithms. Specifically, in the winter-13 image and considering the most efficient
S + To + Tx combination, the OA difference between ML and DT exceeded 20% due to the poor
performance of the textural variables in the ML classification. The use of textural information with
different classifiers resulted in pronounced variations of accuracies (data not shown). The OA observed
when all textural variables were included in the ML classification process was 35.9%. Accuracy
improved when some textural variables were introduced separately, showing OA values of 49.1%
for entropy and 50.8% for both correlation and mean. Nevertheless, the inclusion of homogeneity in
the analysis resulted in an OA value of 11.8%. This behavior was the opposite of the obtained with
the DT classifier, which reached the highest accuracy, 71.1%, combining only the homogeneity of all
textural variables.

Table 6 summarizes the PA for every individual landform for the different images and classification
methods considered. PA varied considerably according to the class classified. A general examination of
the individual landform classification shows that 10 of the 13 landforms reached PA values higher than
75% in at least in one classification. Nevertheless, most classes showed high differences in PA values
among classification methods and between images. Considering the average of all classifications, the
13S landform was the most accurately distinguished having a minimum PA of 79.5% with the ML
algorithm in the summer-14 image, a maximum PA of 90.1% with the SVM classifier in the winter-13
image and mean value of 84.9%. Slightly higher differences in PA values were found in the 12S and 5P
landforms, with mean values of 70% and 78.3% and a difference between maximum and minimum PA
of 20.9% and 29.0%, respectively. The other landforms presented very prominent variations between
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classifiers and/or images. For example, discrimination of the 2P landform was very successful when
applying the ML method in the summer-14 image with a PA of 95.5%, but was also the landform
that obtained the less accurate PA overall, with a value of only 0.2% with the SVM algorithm in the
winter-13 image.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 11 of 20 

 

Variables 

Winter-13 Image Summer-14 Image 

ML 1 SVM DT ML SVM DT 

OA 2 K OA K OA K OA K OA K OA K 

S 3 52.9 0.47 59.0 0.53 67.5 0.63 57.2 0.52 52.9 0.46 72.1 0.68 

S + To 56.3 0.51 62.8 0.57 71.5 0.68 59.6 0.55 59.7 0.54 74.2 0.71 

S + To + Tx - - 63.6 0.58 - - 59.9 0.55 63.8 0.59 74.7 0.71 

S + To + Tx + G 58.7 0.54 64.5 0.59 72.0 0.68 60.8 0.56 64.8 0.60 74.7 0.71 

All 13.7 0.11 64.4 0.59 67.8 0.64 24.1 0.20 65.4 0.61 70.7 0.67 

1 Method of classification: ML: Maximum Likelihood; SVM: Support Vector Machine; DT: Decision 

Tree.  
2 Accuracy values: OA: overall accuracy (%), K: Kappa coefficient.  
3 Best combination of each group of thematic variables: S: spectral; S + To: spectral + topographical; S 

+ To + Tx: spectral + topographical + textural; S + To + Tx + G: spectral + topographical + textural + 

geometrical; All: all variables. 

The DT classifications yielded more accurate results than the ML or SVM approaches in all 

analyses performed. Independently of the different seasons studied or the most suitable combination 

of variables of each group, the DT classifier offered a 10–13% range of higher OA values than the 

other classification algorithms. Specifically, in the winter-13 image and considering the most efficient 

S + To + Tx combination, the OA difference between ML and DT exceeded 20% due to the poor 

performance of the textural variables in the ML classification. The use of textural information with 

different classifiers resulted in pronounced variations of accuracies (data not shown). The OA 

observed when all textural variables were included in the ML classification process was 35.9%. 

Accuracy improved when some textural variables were introduced separately, showing OA values 

of 49.1% for entropy and 50.8% for both correlation and mean. Nevertheless, the inclusion of 

homogeneity in the analysis resulted in an OA value of 11.8%. This behavior was the opposite of the 

obtained with the DT classifier, which reached the highest accuracy, 71.1%, combining only the 

homogeneity of all textural variables.  

 

  

 

(a) (b) (c) 

   

(a’) (b’) (c’) 

Figure 5. Result of the most accurate landform classifications obtained with the winter-13 image (a–d)
and the summer-14 image (a’–d’): (a) Maximum Likelihood (ML), (b) Support Vector Machine (SVM),
(c) Decision Tree (DT).

Table 6. Producer’s accuracy (%) of the three classifications methods obtained with the best combination
of object-based and topographical variables in winter and summer images using Maximum Likelihood,
Support Vector Machine and Decision Tree algorithms.

Method 1 Imagery Individual Landform Uses Statistics 2

1P 2P 3P 5P 6P 7D 8D 9D 10S 11S 12S 13S 14S x σ

ML Winter-13 59.8 86.1 75.0 59.3 66.8 69.9 73.3 22.6 31.9 97.9 57.5 82.2 23.6 62.0 23.5
Summer-14 32.1 95.5 65.7 71.1 54.1 82.2 77.1 31.2 39.8 92.7 74.1 79.5 32.6 63.7 23.2

SVM Winter-13 96.0 0.2 45.6 83.6 27.2 52.2 30.2 68.1 90.7 14.8 64.7 90.1 2.4 51.2 34.1
Summer-14 89.5 10.5 53.4 83.4 31.1 33.7 30.5 68.3 88.1 29.9 68.4 84.8 17.5 53.0 28.8

DT Winter-13 75.5 91.2 72.5 88.3 33.8 62.7 66.0 64.6 78.8 61.1 78.4 84.1 48.4 69.6 16.1
Summer-14 90.4 54.6 70.3 84.3 51.4 63.6 62.1 64.1 92.4 29.7 77.0 88.7 49.0 67.5 18.8

Statistics
x 73.9 56.4 63.8 78.3 44.1 60.7 56.5 53.2 70.3 54.4 70.0 84.9 28.9
σ 24.3 42.2 11.7 11.0 15.7 16.5 21.0 20.6 27.2 35.2 8.0 4.0 18.2

1 Method of classification: ML: Maximum Likelihood; SVM: Support Vector Machine; DT: Decision Tree. 2 Basic
statistical parameters: x: mean; σ: standard deviation.

When comparing the performance of the three classification algorithms, the average PA values
of all landforms considered jointly showed that DT method reached the highest values with 69.6%
and 67.5% for the winter-13 and summer-14 images, respectively. Close PA values were observed



ISPRS Int. J. Geo-Inf. 2019, 8, 132 13 of 20

with the ML classifier, having a PA of 63.7% and 62.0% for the summer-14 and winter-13 images,
respectively. Although the SVM classifications obtained better overall accuracies than the ML
classifications, SVM showed the lowest average PA results, with 53.0% and 51.2% PA for summer-14
and winter-13, respectively.

4.3. Evaluation of the Importance of the Variables in the Prediction

Results obtained from the first analysis to determine which variables were to be used to obtain
the most accurate classifications and their weight in each classification are shown in Table 7. From the
34 variables used to predict landform units, it was observed that only half of the pre-selected metrics
were determined to be useful in at least one of the more accurate classifications tested, showing
slight differences among their use depending on the different season images and the classifiers.
The spectral variables Mean and Standard Deviation and the topographical variables Elevation and
Altitude about Channel Network showed 100% average utility due to being selected in all the more
accurate combinations, while and Channel Network Base Level offered 83.4%. Contrary to these
variables, 12 of the 34 variables, particularly topographical and geometrical variables, were not used in
any the classifications analyzed.

The spectral variable group showed more use of its own variables in the classifications, with the
higher utility values ranging from 40% to 100%. Due to the fact that some of their variables were
never chosen for the more accurate combinations, the topographical and geometrical variable groups
presented lower utility values. The utility of the topographical variable group resulting in values
from 27.3% to 54.5%, while the geometrical variable group exhibits utility values from 7.1% to 42.9%.
The textural variable group exhibited the most erratic behavior, with a zero percent utility in two of
the classifications and a utility of 100% in the remaining analysis.

From the point of view of the classifier, the number of variables used varied considerably.
While the DT algorithm needed the lowest number of variables, 8, to reach its highest accuracy, the SVM
classifier needed approximately double the variables, 15 and 17 for 2013 and 2014 imagery, respectively.

The second analysis was focused on analyzing the importance of each variable in the classification
using only the DT information, where each variable intervenes with a different utility in the prediction
model. The percentage of use for each variable can be observed in Figure 6. Clearly, in the DT
classifications, three topographic variables were the most useful variables, with a high rate of
appearance in the nodes of the trees. Channel Network Base Level and Altitude about Channel Network
showed the highest percentages, with values of 25.7% and 18.8% for the winter-13 image, and
slightly lower values of 19.7% and 12.7%, for the summer-14 image, respectively. Elevation, the
other topographic variable used, presented more homogeneous values of about 12% in both images.
Other variables observed in both trees but with lower importance in the process were the spectral
variables Mean and Standard Deviation. Both of these variables, as with Skewness and all the textural
variables, are calculated for every band, resulting in 7 bands for each variable. As seen in Figure 6,
the percentage of both variables in all bands were considerably lower than the three topographical
variables, with a maximum of 2.7% in bands 5 and 7 for the Standard Deviations variable for the
winter-13 image and a maximum of 4.3% in band 5 for the Mean variable for the summer-14 image.
Likewise, for Skewness and Entropy for the summer-14 tree, the highest Mean and Standard Deviation
values were observed mainly in band numbers 5, 6 and 7, corresponding to near infrared and shortwave
infrared bands. Other distinguished variables were Rectangular Fit and Asymmetry, both geometrical
variables. Rectangular Fit was used in the 16.1% of the prediction model nodes for the winter-13 image,
whereas Asymmetry was observed in 11.3% of the summer-14 tree nodes.

The results obtained in both analyses indicate the complexity of the predictions when considering
the variation of the resulting spectral information from the satellite imagery collected in the different
seasons and the behavior of the classification algorithms tested.
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Table 7. Importance of the variables depending on their degree of use with the most accurate
combination of object-based and topographical variables in winter and summer images using Maximum
Likelihood, Support Vector Machine and Decision Tree algorithms.

Type Variable
Winter-13 Image Summer-14 Image Average

ML SVM DT Utility (%) ML SVM DT Utility (%) Utility (%)

Spectral

Mean *1 * * 100 * * * 100 100
St_Dev * * * 100 * * * 100 100
Skew * 33.3 * * * 100 66.7
Bright 0 * 33.3 16.7
Max_Diff * * 66.7 * * 66.7 66.7

Utility (%) 60.0 80.0 40.0 100 80.0 60.0

Topographical

Elev * * * 100 * * * 100 100
Slope * 33.3 * 33.3 33.3
Aspect * 33.3 * 33.3 33.3
Plan_Cur 0 0 0
Prof_Cur 0 0 0
Alt_Ch * * * 100 * * * 100 100
Catch_Area 0 0 0
Ch_Net * * * 100 * * 66.7 83.4
Conv_I * 33.3 * * 66.7 50.0
LS_Factor 0 0 0
Wet_I 0 0 0

Utility (%) 54.5 27.3 27.3 36.4 45.5 27.3

Textural

GLCM_C 0 * 33.3 16,7
GLCM_E 0 * * 66.6 33.3
GLCM_H * 33.3 * * 66.6 50.0
GLCM_M * 33.3 * 33.3 33.3

Utility (%) 0.0 50.0 0.0 25.0 100 25.0

Geometrical

Area 0 0 0
Length * * 66.7 * * 66.7 66.7
Width 0 * 33.3 16.7
Asymm * * 66.7 * * 66.7 66.7
Border_I * 33.3 0 16.7
Compact 0 0 0
Density 0 0 0
Ellip_Fit 0 0 0
Main_Dir 0 0 0
R_Largest * * * 100 * 33.3 66.7
R_Smallest 0 0 0
Rect_Fit * * * 100 * 33.3 66.7
Round 0 0 0
Shape_I * * 66.7 0 33.3

Utility (%) 36.4 42.9 21.4 14.3 28.6 7.1

No. of variables used 13 15 8 12 17 8

Asterix (*) indicates the variable was included in the most accurate classification process.

5. Discussion

5.1. Stage 1: Basic-Spectral Variable Classifications

An overview of the five classification methods applied to basic-spectral variables derived from
the Landsat 8 imagery for landform classification showed that object-based analysis (OBIA) clearly
outperformed pixel-based analysis, with increases of overall accuracy reaching up to 37% with the
DT classifier. The results of the classification algorithms varied considerably, especially in OBIA
analyses, where the DT algorithm yielded the most accurate results, followed by SVM and ML.
Although Ballantine et al. [7] and Iwahashi and Pike [29] concluded that spectral data improves
classification because of the increased distinction between topographically similar landforms, our
study suggests that only using the spectral reflectance of the multispectral Landsat 8 bands did not
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offer enough information to obtain adequate overall accuracies for landform classifications, even when
using advanced techniques like OBIA and complex data algorithms. The use of hyperspectral data in
this type of study could increase the accuracy of landform classifications, since hyperspectral data can
be sensitive to spectral differences due to the spatial gradient of moisture and mineralogical size and
composition of each landform [30].
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Figure 6. Relative contribution of advanced object-based and topographic variables for DT
classifications performed with winter 2013 and summer 2014 Landsat 8 images. Variables described in
Tables 2 and 3.

5.2. Stage 2: Advanced Object-Derived + Topographic Variable Classifications

In order to improve the classification results obtained previously, combinations of 5 spectral,
4 textural and 14 geometrical object-based derived variables together with 11 topographical derived
variables were tested. From the results, it is clear that DT, a data mining technique, outperformed the
other classifiers. Although DT yielded the highest classification accuracies out of all the classifiers



ISPRS Int. J. Geo-Inf. 2019, 8, 132 16 of 20

evaluated, it was also the most efficient, needing only 8 variables to reach the highest accuracy for
both images. This optimization of the use of variables can be explained through its construction of
knowledge modelling. DT approaches employ hierarchical recursive portioning of the data, resulting
in decision rules that relate values or thresholds to the predictor variables with pixel classes [31,32].
When a large volume of predicted variables is introduced in a model, DT tends to be very efficient and
robust, generally performing fast and being insensitive to noise in input data [31]. Because of this, it is
one of the most commonly used algorithms in the machine learning and data mining communities
and has become a de facto community standard against which every new algorithm is evaluated [33].

The other data mining classifier that performed well, although with less accuracy than DT, as the
number of variables was very high (34 variables), was SVM. The fact that SVM yielded similar or even
higher accuracies when all variables were introduced to the model with an optimum combination
of variables shows that this algorithm was very robust in high dimensionality [34,35]. In this study,
SVM needed more variables, 15 for winter-13 and 17 for summer-14, to generate the most precise
combination. Similar accuracies were observed when all variables (34) where introduced in the model,
compared to a reduction of variables. The optimal selection in this study showed that the larger the
number of input variables for selecting samples are, the more the classifier is able to develop accurate
hyperplanes [36], and that reducing the number of variables can have a negative effect on the sample set,
which can lead to diminished classification results [37,38]. DT and SVM, both nonparametric classifiers,
outperformed the ML classification because their ability to cope with non-normal distributions of
input data and to accept a wide variety of input data in the form of both continuous and/or categorical
variables [39].

ML was recognized as a stable and robust classification method and is currently one of the most
widely used methods in classifying remotely sensed data [40]. For the ML algorithm, the use of
prior probabilities for training data is considered important in environments where some classes are
dominant spatially [41], but this is a disadvantage when having limited information beforehand.

Some of the predicting variables were very useful in distinguishing landforms from each other in
the study area. Although each classification algorithm performed better with different combination of
variables, clearly the spectral and topographical group of variables were the most valuable in most
of the analyses. The textural and the geometrical group of variables were secondary, providing only
minor further enhancements, but important in reducing uncertainties in classifications. Topographical
data were important to derive morphographic and morphometric attributes, which are used in
soil-landscape characterization at regional scales [9], and had been observed to be useful in hilly terrain.
The elevation data, with an average utility of 100% in all classifications and a relative contribution
around 12% in both DT classifications, could offer valuable information in the two faults observed in
the study area, a main fault in the west and a secondary fault in the east. To that last point, however, in
flat areas the Elevation variable alone do not facilitate interpretation of soil variations [42]. Hydrological
variables such as Altitude about Channel Network and Channel Network Base Level were very useful in
a territory that shows great influence of two rivers, where water bodies, main rivers, streams and
meanders define the landscape. The different relative contribution of that hydrological variables in both
images can be explained because the season in which the images are collected and, therefore, how the
vegetation phenology could influence the other groups of variables directly or indirectly [43]. For the
winter-13 image, collected during the dry season, characterized by the scarcity of vegetation and a
greater visibility of surface terrain, the need for spectral variables was slightly lower than summer-13
and the use of textural variables were practically non-existent. With the DT analyses, where each
variable intervenes with a different utility in the prediction model, the effect of the season is clearer.
The high importance of topographic variables in the winter-13 DT classification, having more than 56%
of the weight of the total variables, may be due to the increased topographical differences when the
vegetation and water levels are reduced as well as the contour of the surface highlights. The spectral
information was important in this study, particularly the infrared bands. The DT analyses showed
the near infrared and the short-wave infrared bands were the most useful. The near infrared band is
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very sensitive to vegetation changes, which are closely related to the type of landform. Regarding the
bands of the shortwave infrared, these bands are related to water content characterization [30]. Both,
native vegetation and moisture are very valuable information in a semi-arid ecosystem as the low
elevation areas are more susceptible to moisture stress than the high elevation areas due to higher
temperatures and less precipitation at low elevations [44]. Finally, although the geometrical variables
were secondary in this study, the DT classifications showed a significant contribution of some of them,
especially the rectangular fit variable, very useful for classification of man-made features. That can be
explain due to the undergoing transformations from traditional land use to commercial agriculture,
as this transformation is planned before the change. The area design to be altered but with native
vegetation was included in the analysis and presented man-made divisions that forced to create
regular objects in the segmentation process that not present the same contour (shape and size) than
natural landforms.

In OBIA, the optimization of segmentation parameters may improve the accuracy of the final map.
As these parameters, especially the scale parameter, define the size of the objects, Anders et al. [45]
argued that segmentation and classification of all feature types at once may not give satisfying
results when used for mapping entire areas of particular (complex) landscapes. For that reason,
Anders et al. [45] performed stratified approaches depending on the characteristics of the landscapes,
which yielded an average accuracy of 71%. This study, without the stratified OBIA classification but
with more complexity in the use of variables (advanced object-derived and topographic variables) and
with a data mining classification algorithm (DT), obtained similar accuracies, with OA of 72% and
74.7% for classifications of the winter-13 and summer-14 images, respectively.

6. Conclusions

The analysis performed provides new insights into the way combinations of advanced
object-derived and topographic data with complex classification algorithms could be useful for
mapping large and complex geomorphic areas with a variety of landscapes. The development of an
accurate landform distribution map is feasible when an optimal combination of variables is classified
with DT algorithms. The results presented here show that the choice of the type of classification,
pixel- or object-based classification, and the choice of the classification algorithm are very important
in order to obtain higher accuracies, especially when a large volume of variables is included in the
analysis. In this study, object-based image analysis (OBIA) clearly outperformed pixel-based analysis,
with increases of overall accuracy of up to 37% with the DT classifier. The data mining algorithms
tested, SVM and DT, outperformed the other classifiers in all scenarios analyzed. For example,
while in advanced object-based classifications increases of overall accuracy around 13.5% could be
observed between DT and ML algorithms, in basic spectral object-based classifications, accuracies
increased up to 49% between the SAM and DT algorithms. Regarding variables, not all offered
valuable information in the classifications. Although some variables did not perform well with
all classifiers, clearly, some topographical variables together with some spectral variables derived
from the segmentation of the original Landsat imagery offered the most valuable information to the
classifications. The topographical variables Elevation, Altitude about Channel Network and Channel
Network Base Level and the spectral object-based derived variables Mean and Standard Deviation can be
considered essential in this type of study. The implementation of these techniques together with the
knowledge of contextual information of landscapes and soil forming factors could contribute to soil
mapping at appropriate scales in areas of agricultural expansion for land evaluation and planning.
As Taramelli [46] suggested, the morphometric analysis does not accurately map the landforms, but can
be used as a first highlight of them. Therefore, to carry out an OBIA classification with the DT algorithm
and including the five variables previously mentioned can automate the landform classification process
in order to delineate the preliminary landform units. Although more accurate maps can be obtained
combining other physical or chemical variables from the soil profiles, the reduction of work needed to
develop this type of maps is considerable, especially in large areas.
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