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Abstract: 3D urban building models, which provide 3D information services for urban planning,
management and operational decision-making, are essential for constructing digital cities.
Unfortunately, the existing reconstruction approaches for LoD3 building models are insufficient
in model details and are associated with a heavy workload, and accordingly they could not satisfy
urgent requirements of realistic applications. In this paper, we propose an accurate LoD3 building
reconstruction method by integrating multi-source laser point clouds and oblique remote sensing
imagery. By combing high-precision plane features extracted from point clouds and accurate
boundary constraint features from oblique images, the building mainframe model, which provides
an accurate reference for further editing, is quickly and automatically constructed. Experimental
results show that the proposed reconstruction method outperforms existing manual and automatic
reconstruction methods using both point clouds and oblique images in terms of reconstruction
efficiency and spatial accuracy.
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1. Introduction

3D urban building models play an important role in the association, convergence and integration
of economic and social urban data and have been widely used in various fields, e.g., smart cities
construction, social comprehensive management, and emergency decision-making. Moreover, the
rapid developments and increasing advancement in emerging industries, e.g., the self-driving industry,
building information modelling (BIM) industry and indoor autonomous navigation, have created the
need for more detailed and more accurate 3D building models. Consequently, the investigation of 3D
building models is a significant issue for both industrial workers and researchers.

According to the international standard CityGML, a building model can be categorized into four
levels of details in the city model: LoD1, LoD2, LoD3 and LoD4 [1]. The LoD1 building model is a
blocks model comprised of prismatic buildings with flat roof structures. A building model in LoD2
has differentiated roof structures and thematically differentiated boundary surfaces. A Building model
in LoD3 means that the model has detailed wall and roof structures potentially including doors and
windows. A LoD4 building model refines the LoD3 by adding interior structures of buildings.

Most current works mainly concentrate on the reconstruction of building models at the LoD2
and LoD3 levels. The generation procedure of LoD2-level building models is relatively mature and
reliable [2–8]. These models can be constructed fully automatically, in situations where data-driven or
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model-driven methods are used to extract roof structures and flat facades from airborne laser scanning
and aerial image data. In contrast, the automatic and accurate reconstruction of LoD3 building models
is difficult and challenging because of the complexity of urban building geometry and topology,
especially when using only a single data source. The development of more remote sensing sensors
and platforms, e.g., LiDAR scanning from terrestrial, mobile and UAV platforms and UAV oblique
photogrammetry, provides a good opportunity to reconstruct more accurate LoD3 building models
more efficiently. Elements such as windows, doors, eaves, balconies in LoD3 building models can be
acquired by integrating the above multi-source remote sensing data.

Almost all contemporary reconstruction works of LoD3 building models using point clouds data
are based on knowledge-based approaches. Wang presented a semantic modelling framework-based
approach for automatic building model reconstruction, which exploits the semantic feature recognition
from airborne point clouds data and XBML code to describe a LoD3 building model [9]. Pu and
Vosselman [10] and Wang et al. [11] reconstructed the detailed building elements using the knowledge
about the area, position, orientation and topology of segmented point clouds clusters. Lin et al. [12]
proposed a complete system to semantically decompose and reconstruct 3D models from point
clouds and built a three-level semantic tree structure to reconstruct the geometric model with basic
decomposed and fitted blocks. Nan et al. [13] developed a smart and efficient interactive method to
model the building facades with the assembled “Smart Box”. The above methods take full advantage
of semantic information derived from high-precision point clouds and benefit the reconstruction
of the LoD3 building topology. Unfortunately, they mainly concentrate on the model integrity and
topological correctness and usually have low accuracy in building elements. The accuracy of building
elements, e.g., the position accuracy of corners and edges of building roofs and windows, is significant
in many actual urban applications such as building illumination analysis. However, the point clouds
are discretely sampled and easily affected by many factors, e.g., occlusion, field of view (FOV) and
noise, their density is not homogeneous, and the data missing always occurs [14]. Accordingly, that
causes considerable difficulty in subsequent semantic recognition and edge extraction, particularly for
buildings with complex local structures.

Photogrammetric sequential imagery data is another important data source for building model
reconstruction. In recent years, thanks to the techniques of dense matching, triangulation and
texture mapping, 3D scene models based on multi-view oblique images can be generated with a
high automation level and excellent performance in feature details [15–18]. However, they are simply
integrated as textured meshes and lack semantic knowledge. Some researchers have tried to use
sequential images to model the building as piecewise planar facades [19–24]. Unfortunately, the
problems of shadow, occlusion and texture lacking exist in the image data, resulting in both geometric
distortion in local area and low accuracy. It is accordingly difficult to satisfy the requirements of refined
3D building model reconstruction.

The integration of point clouds and imagery data for detailed building modelling can help
to solve the above problems [14,25–29]. Researchers have made some trials in the integration of
multi-source data for reconstructing the building models. Kedzierski and Fryskowska [30] discussed
and analysed different methods for the integration methods of terrestrial and airborne laser scanning
data, and evaluated their accuracies for building model reconstruction. Later, Kedzierski et al. [29]
proposed an automated algorithm to integrate the terrestrial point clouds and remote sensing images
in the near-infrared and visible range, which achieves good accuracy results for cultural heritage
documentation. Pu [25] extracted feature lines from single-view close range images to refine the
edges of building models. Huang and Zhang [26] presented a method to reconstruct the building
model, which uses airborne point clouds for roof surface extraction and aerial images for junction
line detection. Wang et al. [31] automatically decomposed the compound buildings with symmetric
roofs into semantic primitives, by exploiting local symmetry contained in the building structure for
LoD2 building model reconstruction. Gruen et al. [27] developed a city modelling workflow, which
adopted the UAV images to reconstruct the roof surfaces and terrestrial mobile mapping point clouds
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for the facades. Yang et al. [28] combined the terrestrial LiDAR data and image data to achieve a better
presentation of building model. These reported methods contribute significantly towards integrated
building model reconstruction, but they all mainly focus on data registration and feature fusion, and
the automation level of building model reconstruction could be improved.

In this paper, we propose an automatic multi-source data integrated method to reconstruct the
LoD3 building model and improve the accuracy and efficiency of building model reconstruction.
The method takes full advantage of the accurate planar surfaces extracted from the multi-source
laser point clouds and uses them as objective constraints in the boundary extraction process from
oblique images, which are then projected onto the planes to improve the reconstruction performance
of building edges. The main contribution of our paper is extracting features from different data and
using them as mutual constraints to reconstruct a detailed and accurate building model frame for
further interactive operation.

The rest of this paper is arranged as follows. Section 2 presents the methodology of the proposed
method. Section 3 describes the experimental data used to verify the performance of our method
and the results are also presented in Section 3. Section 4 discusses our experiments and Section 5
summarizes the conclusions.

2. Methodology

Figure 1 illustrates the main procedure of the proposed method. First, building roofs are extracted
from UAV LiDAR scanning point clouds by normal vector clustering and segmentation. Using the
building roofs as outline constraints, their corresponding facade areas in terrestrial ground point
clouds are efficiently identified to obtain the integrated UAV and terrestrial points clouds belonging
to the same building. Second, building plane primitives are extracted from the integrated point
clouds by the Random Sample Consensus (RANSAC) algorithm [32], which are further used as planar
objective constraints during the feature line extraction from oblique images. Third, feature lines are
employed to improve the reconstruction accuracy of building outlines during the process of topology
construction and boundary optimization. Finally, the approaches of interactive topology editing and
texture mapping are used to achieve the desired refined building models. It should be noted that the
prerequisite is the fine spatial registration of multi-source point clouds and remote sensing images.
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2.1. Building Segmentation from UAV LiDAR Scanning Point Clouds

The building points, that is, point clouds denoting the same building, are achieved by the
segmentation of UAV LiDAR scanning point clouds, which involves the following two steps.

(1) Ground points elimination by CSF. The Cloth Simulation Filtering (CSF) algorithm [33] is
applied to filter out the ground point clouds. It uses a piece of cloth to generate a fitting surface
via operations such as gravity displacement, intersection check, and internal force. The ground
points are then filtered out by the height differences between the initial LiDAR points and the fitted
ground surface. The parameters of CSF are easy to set, so it is accordingly adopted for filtering of our
point clouds.

(2) Extraction of building roofs and facades. Building roofs and facades are mainly vertical
or horizontal planes. Accordingly, using normal vector estimation of point clouds and the angles
between normal vectors and their vertical directions, the horizontal points and vertical points from
non-ground points can be identified using a simple normal angle thresholding scheme. The k-means
clustering algorithm with Euclidean distance is adopted to group the labelled horizontal points and
vertical points. Owing to the irregular distribution of normal vectors, the number of points and area
of vegetation regions are limited to a relatively small range. Setting an appropriate threshold to the
number of points in each cluster, the points of vegetation region can also be filtered out. The remaining
points in other clusters are identified as building roofs and facades.

2.2. Plane Primitives and Feature Lines Extraction

Most building surface models could be divided into two parts: the multi-scale planes and their
edges. For an accurate building reconstruction with high automation, two main steps are adopted
to simultaneously improve the accuracy of surface position and edge integrity. The multi-source
point clouds are used to ensure the surface accuracy, while oblique images are used for good edge
performance. The details are explained as follows.

(1) The extraction of building plane primitives from multi-source point clouds. The plane primitives
are main features of a building frame structure, and hence the robust planar surface extraction is a
significant step for the building model reconstruction. The primitive extraction is implemented in three
steps. First, an approximate building bounding box is calculated from the building roof and facade
points extracted from UAV LiDAR scanning point clouds, where building points within the bounding
box are selected from the terrestrial scanning point clouds. Later, the RANSAC algorithm is used to
extract plane primitives from the integrated point clouds belonging to the same building. The points
are clustered according to the normal vectors at first place. To promote iterative convergence, the mean
value of normal directions and their centroid are used as the initial plane parameter. Finally, the Alpha
Shape [34] method is used to extract the boundary of segmented planes because of its flexibility.

(2) Feature line extraction from oblique images. The surface accuracy of building plane primitives
extracted from the point clouds is high. However, owing to factors such as discretization, noise, and
occlusion, the plane boundaries are jagged or even partially missing (e.g., E1 and E2 in Figure 2),
especially for windows and doors. In contrast, the resolution of oblique images is much higher
and uniform, and hence it can provide much more detailed and accurate edge information with
greyscale variations in the images. Accordingly, we combine the image edge information with the
plane primitives to make a complete surface model.

The procedure of image feature line extraction includes two steps: image selection and line
matching. The image selection is to choose the most appropriate stereo image pair for the feature lines
matching. Since the projection position of extracted planar surfaces is arbitrary, the closer the image is
to its orthographic direction, the better its edge feature performance. To select the stereo image with
the best imaging angle, each plane primitive is projected to the images. The top two images with the
biggest projection polygon area are selected for the stereo lines matching. For example, the P1, P2

and P3 in Figure 2 represent the projections of the segmented plane PL1 to the image S1, S2 and S3,
where N1 is the normal vector of PL1. Since the comparison relationship of area between P1, P2 and
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P3 is AreaP2 > AreaP3 > AreaP1(AreaP indicates the area of projection plane), the image S2 and S3 are
selected for the feature line extraction.
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Figure 2. Illustrations of the extracted edge from point clouds and image selection. P1, P2 and P3

indicate the projection area of segmented plane PL1. The images S2 and S3 have the biggest projection
polygon area, and they accordingly are chosen for feature line extraction.

During the process of feature line extraction, the widely used Edge Drawing Line (EDLine) [35]
method is used to extract feature lines, and the Line Band Descriptor (LBD) [35] is imported for
the description of lines. It should be noted that the initial matching method is used to construct an
adjacency matrix, and matching lines are then acquired from the consistency iteration computation.
For the matching of building area in oblique images, because of the repeating textures and similarity
of local greyscale distribution, it is difficult to obtain the correct matching lines. For example, the
white lines in Figure 3 represent the lines that failed to be matched, whereas the lines on the left and
right image connected by a line with the same colour show the matching result. The yellow ellipses in
boldface denote the incorrect matching pairs, and only a few lines are correctly matched.
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Figure 3. Illustration of missing and incorrect matching lines in the building facade areas. The white
lines represent lines that failed to be matched. The lines in left and right image connected by a line
with the same colour represent the matched result. The yellow ellipses in boldface denote the incorrect
match pairs.

Therefore, the extracted planes from point clouds are again used as objective constraints to
improve the matching results. During the line matching process, the modification and improvement
of the original algorithm is that the corresponding objective plane is employed to calculate the
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approximately reliable initial matching positions of feature lines on the reference image. As illustrated
in Figure 4, IL1 and IL2 represent the edge lines extracted from the projection area of objective plane
PL1 in the images S1 and S2 respectively. OL1 denotes the forward intersection of IL1 and PL1, and
IL′1 is the back projection of OL1 onto the image S2, representing the initial matching positions of IL1.
If IL2 is the matching line of IL1, IL2 should be close to IL′1, and their LBD vector should be consistent
with each other, which could make the matching result more reliable.
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Moreover, Figure 5 shows the main steps of the improved feature line matching algorithm. The
extracted planes are first employed to select the image stereo with the best angle. After that, the
EDLine method is used to extract the matching feature lines from the projection area. To obtain a
better matching result, the planar surfaces obtained from the first step are again used as constraints to
provide the initial positions for potential matchings.
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2.3. Topology Graph Construction and Boundary Optimization

Through the abovementioned steps, the accurate planar surfaces and edges are acquired
automatically. However, the boundaries of surfaces and extracted feature edges still need to be fused
and optimized for a consistent boundary expression. To generate the initial building model frame with
full automation, three steps including feature line projection, topology graph creation and boundary
optimization are further employed in this section. They are explained in the following paragraphs.

(1) Image feature line projection. The feature line extracted from images mainly includes the outline
of walls, windows, and balconies. Because of the accuracy inconsistency between the stereo matching
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lines and the extracted planar surface, it is necessary to project the image feature edge line to the
objective planes to establish the boundary constraints. As shown in Figure 6, during the projection of
feature line to corresponding segmented plane,a1b1 represents stereo forward intersection of matching
lines, and a′1b′1 represents the result of projecting a1b1 along the plane’s normal vector N1 to the plane.
The parameter Dprj of the minimum projected distance (shown as a1a′1 and b1b′1 in Figure 6) is used in
order to eliminate the possible incorrect matching, as well as a threshold Angprj to determine whether
the direction of the line is approximately perpendicular to the normal vector of the projected plane.
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Figure 6. Projection of image feature line to the segmented plane. a1b1 represents stereo forward
intersection of matching lines. a′1b′1 represents the result of projecting a1b1 to the plane. N1 is the
normal vector of the plane.

(2) Topology graph creation using RAG. Using the plane segmentation in Figure 7a, the topology
graph RAG (Region Adjacent Graph) is constructed according to the adjacency relationship of plane
primitives. Two steps are involved in the construction of RAG. The first step is to compute the
adjacency matrix in Figure 7b, which is a symmetric matrix with diagonal elements as zero. All the
non-zero elements in the matrix are then extracted and transformed into an undirected graph, as
shown in Figure 7c. The boundaries indicate that two planes are adjacent and have intersections. The
procedure of building the adjacency relationship is as follows. The angles between the normal vector
of the planes is calculated. If the angle is smaller than the threshold (normally set to be 15 degrees), it
means that the two planes are nearly parallel and not adjacent. After that the boundary of segmented
plane primitives is traversed with short connected lines. The short boundary lines in the plane a are
traversed to calculate the project distances d1 and d2 from the pairwise line endpoints to the plane b, as
well as the line length dL. If d1 and d2 are both smaller than the distance threshold d, and the projected
point along the normal vector of plane b is within the range of plane b, the short line is adjacent to
plane b and is added into the set of adjacent boundary lines. Finally, all the short edge lines in the
plane a are computed and the sum length L of lines in S is calculated. If L ≥ TL (TL is the threshold of
length), the planes a and b are adjacent.
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(3) Intersection and boundary optimization. The intersection of the two planes is calculated using the
constructed RAG graph. Two cases when two planes intersect with each other are considered in the
intersection processing, as shown in Figure 8a. In Figure 8a, PL1 and PL2 represent two adjacent planes.
The endpoint of the intersection in each plane is determined by the distance from the original boundary
point to the intersection line (Figure 8b). The boundaries of each plane are divided into three categories:
intersecting boundaries, non-intersecting outer boundaries and non-intersecting inner boundaries.
For example, in Figure 8c, b1, b2 and b3 represent non-intersecting outer boundaries, b4 represents
the intersection boundary, and c1, c2, c3 and c4 represent the non-intersecting inner boundaries. The
optimization of intersecting boundaries is conducted when more than two planes intersect with each
other. The endpoint of an intersected boundary is used to search for adjacent endpoints of intersecting
boundaries in other planes. If the adjacent boundaries belong to planes within the minimum closed
loop of the RAG graph, the boundaries are supposed to intersect at the same point. The intersection
point is further calculated using the least squares method (shown in Figure 8d).
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Non-intersecting outer boundaries optimization is used to integrate the original boundaries from
point clouds with the projected image feature lines. If the original boundary lines are close enough to
the image feature lines, they are replaced by the projected feature line as the new boundary line section.
This process is also applied to the non-intersecting inner boundaries such as a window. The boundaries
are further regularized to ensure that the result is consistent with the actual shape of buildings, where
the main direction adjustment method proposed by Dai et al. [36] is used. It should be noted that the
optimized intersecting boundaries should be kept unchanged, and only the non-intersecting outer and
inner boundaries are processed.

2.4. Interactive Model Editing

The main building body including the roofs, main facades, and window boundaries could be
extracted and reconstructed with the preceding pipeline. However, there are still some small problems
such as topological errors or integrity deficiency because of local data missing or topology complexity.
Accordingly, the interactive manual editing., e.g., further topological inspection and geometrical detail
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adjustment, is still indispensable for reconstructing a refined building model. In this study, we use the
software 3D Max for further interactive model editing and obtain the final detailed building model.

3. Results and Analysis

3.1. Datasets

To verify the performance of proposed algorithm, the UAV LiDAR scanning point clouds,
terrestrial LiDAR scanning point clouds and oblique images of a certain urban area in Wuhan City,
China were collected. The UAV LiDAR scanning point clouds data was obtained using a UAV-mounted
mobile laser scanning system that integrates a RIEGL VUX laser scanner and a Position and Orientation
System (POS) with an Inertial Measurement Unit (IMU) of 200 HZ data acquisition rate and drift
smaller than 0.01◦h−1. According to the technical specifications, the angle measurement resolution
of the laser scanner is 0.001◦, and the orientation and attitude accuracy of the POS are 0.005◦. The
flight height is about 80 m and the angular step width is selected to be 0.006◦, which makes the spatial
resolution of point clouds to be 10 cm. The oblique images were captured by an oblique imaging
system with five SONY ILCE-5100 cameras, with one mounted in the vertical direction (focal length
35 mm) and four in 45◦ tilted direction (focal length 25 mm). The pixel size of each camera is 3.9 µm,
and the image resolution is 6000 × 4000. The flight height is about 150 m in data acquisition, providing
the oblique images with ground spatial distance (GSD) of 2 cm. Both systems were provided by CHC
Navigation Technology Co. Ltd. (Shanghai, China). The terrestrial point clouds were collected using
an RIEGL VZ-400 laser scanner with a field of view of 360◦ in the horizontal direction and 100◦ in
the vertical direction. The resolution of the terrestrial data is approximately 2 cm. Figure 9 shows an
overview of the hardware system and the experimental multi-source data. A building with 4 floors is
contained in the point clouds, which is mainly constituted of planar surfaces such as walls, windows
and roofs. The UAV LiDAR scanning point clouds include approximately 8 million points. A total of 6
scan stations are included in the terrestrial point clouds, and the number of points in each scan station
is approximately 10 million. A total of 533 × 5 oblique multi-view images were used.
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Moreover, in order to register the multi-source data and verify the reconstruction accuracy, 21
ground control points (GCPs) were acquired using real time kinematic (RTK) GPS and total station.
These GCPs are located at the building outline corners, window corners and ground artificial structure
corners (e.g., flower-bed and floor tile). The corners of the building outline and ground artificial
structures were acquired using RTK under reliable observation conditions, and the window corner
measurements were acquired using total station. Since the accuracy of RTK is trustworthy to be around
2 cm, the GCPS are reliable to be used as reference and verification data.

The terrestrial point clouds data from different scan stations were first registered using signalized
target points, and then aligned with the UAV LiDAR scanning point clouds using Riscan Pro
software from Riegl (http://www.riegl.com/products/software-packages/riscan-pro/) through
8 GCPs selected from the 21 GCPs. The registration is optimized by ICP (Iterative Closest Points)
algorithm implemented in PCL (Point Cloud Library, http://pointclouds.org/) to obtain the optimized
alignment result. The accuracy of the registered point clouds is verified through extracting the
corresponding corners by fitting local planes or lines to get the intersection points and comparing
them to the remaining 13 GCPs. The root mean square error (RMSE) of 13 intersection points is 3.7 cm,
which indicates a good registration result. The aerial triangulation of oblique images is conducted
using 11 GCPs from the same control point set using Context Capture software (version 4.4.8 win64)
(https://www.bentley.com/zh/products/brands/contextcapture). The RMSE of reprojection error
is 0.56 pixels. Moreover, 10 corresponding points were acquired manually from the oblique stereo
images through forward intersection, and then they are compared to the remaining 10 check points.
The obtained RMSE is 4.4 cm, which indicates that the oblique images are positioned and oriented
with high accuracy.

3.2. Experimental Results

3.2.1. Parameters Setting

The CSF algorithm was used to filter out the ground points. Parameters CSFGrid and CSFDist are
the grid resolution and the distance between ground and non-ground points, respectively. They are set
as recommended in the paper by Zhang et al. [33]. The CSFGrid was set to 0.5 m in this study, which is
five times of average point span. Given the flatness of the test area, CSFDist was set to a fixed value of
0.5 m. To maintain a balance between efficiency and accuracy, during the clustering process of roof and
facade point clouds, the distance parameter CluDist and parameter CluNum of cluster points number
were set to 1 m and 200 respectively, according to the point density and the minimum area of the main
roof planar surface. The parameters used in the RANSAC for planar surface extraction were set as
recommended by Schnabel R. et al. [37].

The line matching parameters were specified as recommended by Zhang et al. [35]. The distance
parameter PDist used to judge whether a point is near a plane or not during the feature line projection
and topology graph reconstruction presented in Section 2.3 was set to 0.2 m, which is two times of
average point span. The parameter TL was set to 1m to determine whether a plane is adjacent to
another or not. Moreover, through trial and error, the minimum projected distance Dprj and angle
threshold Angprj were set to 0.5 m and 75 degrees to eliminate possibly incorrect matchings.

http://www.riegl.com/products/software-packages/riscan-pro/
http://pointclouds.org/
https://www.bentley.com/zh/products/brands/contextcapture
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3.2.2. Building Segmentation and Planar Surface Extraction

Figure 10a illustrates the segmentation result of UAV LiDAR scanning point clouds, in which the
red areas indicate the artificial building regions. During the experiment, the segmented main building
area is taken as the selected object to be reconstructed, as shown in the yellow rectangular region in
Figure 10a. The corresponding terrestrial point clouds of the same building were extracted along the
vertical direction of the object in Figure 10a. Figure 10b shows the integration result of point clouds
from different platforms.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 11 of 17 
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The line matching results of the roof and a facade using the corresponding planar surface as 
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Figure 10. Building segmentation results from LiDAR scanning point clouds and integrated
point clouds.

The plane segmentation and surface reconstruction results are shown in Figure 11a,b. Figure 11c
is the enlarged view of the red rectangle area in the left side of Figure 11b. From Figure 11c, it can
be found that the plane edges are sharply jagged owing to the un-uniform distribution, noise and
occlusion of point clouds.
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3.2.3. Image Feature Lines Extraction and Building Reconstruction

The line matching results of the roof and a facade using the corresponding planar surface as
objective constraints are shown in Figure 12a,b. It can be seen from Figure 12a,b that almost all lines
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are matched successfully. The results of projecting the forward intersected lines to the corresponding
segmented planes are shown in Figure 12c,d.
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The building reconstruction results before and after interactive model editing are shown in
Figure 13. Figure 13a shows the reconstruction result before interactive model editing and Figure 13b
shows the zoomed details. Comparing Figure 13a with Figure 11b, after intersecting boundaries
optimization, non-intersecting outer and inner boundaries optimization using forward intersected
lines and regularization, it can be seen that jagged boundaries are significantly improved and the small
building elements such as windows missed in Figure 11b are supplemented by lines extracted from
oblique images.
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However, there are still some minor problems such as topological errors or integrity deficiency
because of local data missing or topology complexity in the reconstruction result of Figure 13a. Actions
should be taken to correct the topological errors and fill the missing parts to refine the model. Three
manual interactive editing steps are implemented to refine the model: (1) The first step is to rectify
the local topology reconstruction errors (as shown in yellow ellipse areas of Figure 13c) by extending
plane primitives to the right adjacent plane to obtain the correct intersection line or point; (2) The
second step is to complete missing edges of windows (as shown in blue ellipse areas of Figure 13d),
assuming that the edges are either parallel or perpendicular; and (3) The third step is to add some
small key structures, such as the the canopy and shadowed window (as shown in red ellipse areas of
Figure 13c), based on manually extracted planar primitives and edge lines from the point clouds. The
final reconstruction building model of our method is shown in Figure 13d.

3.3. Performance Evaluation

The algorithms of point clouds segmentation and image feature line extraction are implemented
in C++ on a Win7 64-bit system platform. The main hardware configuration is Intel Core I7 and
16 G RAM, and the graphics card is Nvidia GeForce GTX 1080 Ti. Two state-of-the-art methods
were used to compare with the modelling efficiency and accuracy of the proposed method, i.e.,
the complete manual reconstruction using the fusion point clouds based on 3DMAX (version is
2011 win64 bit) (https://www.autodesk.com/products/3ds-max/overview), and the multi-view
oblique image for building model reconstruction using Context Capture (version 4.4.8 win64) (https:
//www.bentley.com/zh/products/brands/contextcapture). Moreover, 8 GCPs located at the windows
and outline corners of the selected building were used to estimate the horizontal and elevation precision
using the RMSE as the accuracy. The comparison of all reconstruction results from different methods
is shown in Figure 14. In addition, Table 1 lists the results of time consumption and accuracy of the
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Table 1. Statistics of relevant measures from different reconstruction methods.

Methods Level of Automation Time Consuming
Accuracy (cm)

Horizontal Precision Elevation Precision

Our method almost automatic 27 min 4.5 5.1
Manual reconstruction Manual 2 h 18 min 8.1 9.7

Reconstruction using Context Capture Automatic 4 h 42 min 7.3 9.5

4. Discussions

3D building reconstruction using multi-view oblique images can achieve fine scene restoration,
but some obvious geometric deformation exists in certain local details, especially in the texture-less
areas. The LiDAR sensors sample the building points discretely and the data of building edges cannot
always be obtained, the precision of a building model reconstructed from point clouds manually is
also limited. Compared with the reconstruction results from multi-view oblique images and only point
clouds, the horizontal and elevation precisions of the building models from the proposed method are
significantly improved. These improvements mainly benefit from the boundary-feature constraint of
non-intersecting outer and inner boundaries, especially for the walls and windows.

In regard to efficiency, the reconstruction method using multi-view oblique images is
time-consuming because of its dense matching and mesh reconstruction process. The manual 3D Max
reconstruction method needs to collect boundary feature lines from complex point clouds interactively,
which is labour-intensive, especially when occlusions and ambiguities occur with big probability. The
presented method integrating multi-source data takes full advantage of the feature lines extracted from
the combination of point clouds and images, and reconstruct the building main frame automatically
and accurately, providing a more reliable reference for the later interactive editing. Thanks to the
automatically reconstructed building main frame, the reconstruction efficiency of the proposed method
is considerably promoted.

The proposed method provides an alternative way for the automatic and rapid reconstruction
work of the building’s main outline, but the results still need interactive editing. Accordingly, more
efforts are required to develop advanced methods to achieve a fully automatic reconstruction method
of LoD3 building models in the future. Besides, we, in the future work, will propose multi-scale
segmentation schemes of smooth surface primitives and enrich the existing primitive topology
processing rules in the method to further improve the generalization and automation for complicated
building structures.

5. Conclusions

This paper presents a method that implements multi-source remote sensing data to accurately and
efficiently reconstruct the LoD3 building model in urban scenes. First, building roof planes extracted
from UAV LiDAR point clouds are used to help determine the building facades in the terrestrial LiDAR
point clouds. The integrated UAV and terrestrial points of the same building are then obtained to
extract the building plane primitives. After that, the building models are reconstructed by intersecting
the adjacent plane primitives and optimized by line features from oblique images. Minor manual
interactive model editing work is conducted to refine the reconstructed building model, and the
accurate LoD3 building model is finally obtained. The UAV LiDAR point clouds, terrestrial LiDAR
point clouds and oblique images of a certain urban area in Wuhan City were collected and used
to validate the proposed method. Experimental results on realistically collected multi-source data
explain that our method can greatly improve the efficiency of LoD3 building model reconstruction and
achieved better horizontal and elevation accuracies than other state-of-the-art methods.
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