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Abstract: Uncontrolled and continuous urbanization is an important problem in the metropolitan
cities of developing countries. Urbanization progress that occurs due to population expansion and
migration results in important changes in the land cover characteristics of a city. These changes
mostly affect natural habitats and the ecosystem in a negative manner. Hence, urbanization-related
changes should be monitored regularly, and land cover maps should be updated to reflect the
current situation. This research presents a comparative evaluation of two classification algorithms,
pixel-based support vector machine (SVM) classification and decision-tree-oriented geographic
object-based image analysis (GEOBIA) classification, in producing a dynamic land cover map of
the Istanbul metropolitan city in Turkey between 2013 and 2017 using Landsat 8 Operational Land
Imager (OLI) multi-temporal satellite images. Additionally, the efficiencies of the two data dimension
reduction methods are evaluated as part of this research. For dimension reduction, built-up index
(BUI) and principal component analysis (PCA) data were calculated for five images during the
mentioned period, and the classification algorithms were applied on data stacks for each dimension
reduction method. The classification results indicate that the GEOBIA classification of the BUI data set
provided the highest accuracy, with a 91.60% overall accuracy and 0.91 kappa value. This combination
was followed by the GEOBIA classification of the PCA data set, which highlights the overall efficiency
of the GEOBIA over the SVM method. On the other hand, the BUI data set provided more reliable
and consistent results for urban expansion classes due to representing physical responses of the
surface when compared to the data set of the PCA, which is a spectral transformation method.

Keywords: land cover mapping; support vector machine classification; object-based decision tree
classification; principal component analysis; built-up index

1. Introduction

The increase in urbanization and residential areas has been an inevitable process due to economic
development and rapid population growth throughout human history [1]. Extreme urbanization,
especially in metropolitan cities, causes significant changes in land cover (LC) characteristics [2]. The
increase in urbanization also leads to negative consequences, such as ecological deterioration and global
warming due to the rapid consumption of natural resources [3,4]. Therefore, the regular follow-up of
the current LC and changes in the LC is important for environmental and urban management and
planning processes [5].

With developments in satellite systems and technologies in the last 20 years, satellite image based
analysis has become an alternative to the classic terrestrial measurements in determining the LC and
changes in LC. Moderate and high-spatial-resolution satellite images, which are available free of charge,
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have become advantageous for terrestrial measurements considering high labor requirements, costs,
and temporal burdens [6–8]. Specifically, since the 1990s, there have been significant improvements
in accessibility and the spectral and spatial resolutions of remote sensing data. Consistent with these
developments, important studies have been carried out to determine the LC status in heterogeneous
areas [9–12]. On the other hand, the proposed methods and analyses vary according to the resolution
characteristics of the satellite images and the complexity of the targeted LC classes. For this reason,
standardized and simplified methods need to be developed to determine the status and changes in LC
using remote sensing data in densely populated areas where complex surfaces are present [13].

Pixel-based classification algorithms are frequently used to determine the status of LC from
satellite images. Among these algorithms, there are studies indicating that machine learning-based
methods, such as support vector machine (SVM), random forest (RF), k-nearest neighbor (kNN),
and decision tree (DT) methods, which have increased in usage rate in recent years, provide higher
accuracies than traditional algorithms due to their non-parametric structure [14–20]. Comparative
evaluations of machine learning algorithms in LC mapping report similar accuracies for the SVM
and RF methods, which outperform other algorithms [18–20]. In addition, according to Tanh
Noi and Kappas (2018) and Maulik and Chakraborty (2017), the SVM method converges with
acceptable accuracy values much faster and with less memory requirement compared to other machine
learning-based classifiers for imbalanced data sets, where the amount of training samples is very
limited when compared to the whole dataset, similar to the image classification situation [20,21].

In recent years, geographic object-based image analysis (GEOBIA) has become an extensively
used classification algorithm, especially after the widespread use of very high-resolution satellite
images. The use of this method in the classification of moderate spatial resolution data, such as
Landsat, with high accuracy has also become widespread [22–25]. The main advantage gained by the
object-based classification is the segmentation of pixels to form objects, which reduces the within-object
heterogeneity problem faced in pixel-based classification methods due to spectral variations in pixels
that constitute a single object [26]. In addition, the GEOBIA method enables the use of the non-metric
decision tree approach, which takes into account the statistical, geometric, textural, and spectral
properties [27].

When the investigation of LC change is of concern, most studies—even recent ones—mainly
focused on separately performing the classification of images with different dates and performing a
change detection analysis on the thematic maps produced by the classification [28–30]. On the other
hand, Wulder et al. (2018) [31] pointed out the expansion on the availability of freely available and
spatially and spectrally compatible satellite images with Landsat and Sentinel missions, which triggers
high temporal and multi-sensor data analysis. With respect to the abovementioned developments
in remotely sensed data availability, they proposed a new concept, called “Land Cover 2.0”, which
integrates the land change information into the land cover maps by processing dense time series of
multispectral data.

The critical issue that should be taken into account when dealing with high temporal satellite
image data is the nonlinear and highly correlated structure of such a dataset. Multispectral satellite
sensors record electromagnetic radiation from different portions of the spectrum and thus provide
high dimensional data with several image bands [32]. Despite the advantages of high dimensional
data, the high correlation of pixel values in nearby bands brings out difficulties in classification due to
undesired, highly correlated data; high processing time; and high storage needs. Additionally, high
dimensionality of the feature space when compared to the limited training samples results in low
classification accuracies, which is known as the Hughes effect in the literature [33]. These drawbacks
become more evident, when multi-temporal analysis is of concern, due to the increased number of
image bands included in the process [34].

At this point, several dimension reduction methods can be used to reduce the number of inputs
while keeping the separation capacity of the data at an acceptable level. Spectral index analysis is
one of the basic methods used to simplify the complex spectral characteristics of surface coverage
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types and emphasize specific features. Spectral indices are designed to be sensitive to a particular
type of surface cover, such as the vegetation index, built-up index, and water index. In the literature,
successful results were obtained with index-based classification approaches for the determination of
settlement areas [35,36]. Another way to reduce the data dimension is to apply spectral transformation
methods, such as the principal components analysis (PCA) and independent component analysis
(ICA), to remove the correlations and higher order dependencies in the image bands and use the
produced components as input data for classification [37,38].

The main objective of this research is to produce a land cover map of the Istanbul metropolitan
city in Turkey, which shows heterogeneous surface characteristics and faces extensive LC changes
due to urbanization and industrial development. This research specifically focusses on introducing
a method for the determination of dynamic change classes in addition to static LC classes in a
single classification process with the use of multi-temporal satellite images. The critical advantage
gained by multi-temporal data is the inclusion of temporal responses of the surface in addition
to spectral, textural, and contextual information. Within this context, the performances of two
classification algorithms, pixel-based SVM classification and non-parametric decision tree GEOBIA
classification, were evaluated. Additionally, this research evaluates the effect of spectral index-based
and spectral transformation-based dimension reduction methods, namely, the built-up index and PCA
transformation, on the classification process.

2. Study Area and Data

Istanbul is a metropolitan city that has been exposed to continuous urbanization, with a prominent
position that connects the European and Asian continents economically and culturally. It is the most
crowded city in Turkey and one of the largest metropolitan areas in Europe. The city covers an area of
5500 square kilometers, and according to the national population statistics released in 2017, it hosts
15 million residents, which corresponds to 18% of the country [39].

Specifically, in the second half of the 20th century, industrial development and uncontrolled
urbanization due to migration resulted in extensive changes in the land cover structure and morphology
of the city [40]. Increasing urbanization in Istanbul and the related changes in LC since the beginning
of the 2000s attracted the attention of many researchers.

Many studies have been carried out to determine the current LC situation and changes in LC
using satellite images. These studies, which were performed with use of pixel-based classification
algorithms, indicate that there has been a significant decrease in natural surface cover types due to the
intense increase in residential areas [8,41–43].

Within the last decade, three important infrastructures have been constructed, which are the Yavuz
Sultan Selim Bridge, the Black Sea Highway, and the Istanbul International Airport, to strengthen the
transportation network. These constructions have direct and indirect impacts on the ecosystem by
increasing the number of impervious surfaces and making their surroundings a center of attraction for
new settlements, respectively. Specifically, the northern part of the city is affected negatively by this
phenomenon due to decrease in forest and natural lands (Figure 1).
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Figure 1. Study sites and overview of the images used in this research: (a) Geographic location of 
Turkey (Google Earth©). (b) Overview of Istanbul city from 2017-dated Landsat 8 data. 

The Landsat 8 satellite images that cover the administrative borders of the city, which were 
acquired between 2013 and 2017, were used in this research. The selected images were acquired in 
the summer and early fall seasons to minimize seasonal effects and ensure the regularity of the 
temporal interval. The OLI sensor onboard the Landsat 8 satellite provides eight spectral channels 
with a 30 m spatial resolution and a single panchromatic channel with a 15 m spatial resolution. 
Additionally, two thermal channels are provided from the TIRS sensor, which are acquired with a 
100 m native resolution and resampled to 30 m. The spatial coverage of the images acquired by the 
satellite is 170 × 183 km [44]. The images are distributed by USGS at the L1TP processing level, which 
includes basic radiometric calibration and orthorectification steps. In the orthorectification step, 
ground control points and the Global Land Survey (GLS) 2000 digital elevation model are used to 
ensure high positional accuracy and accurate terrain correction. The properties of the satellite images 
used in this research are presented in Table 1. 

Google Earth was used for reference data in the training data selection and accuracy assessment 
steps, as it provides very high-resolution imagery of a region at the required time interval.  

Table 1. Specifications of the Landsat 8 OLI satellite images used in this study. 

Image Name Acquisition Date Path/Row 
LC08_L1TP_180031_20130730_T1 30 July 2013 180/31 
LC08_L1TP_180031_20141021_T1 21 October 2014 180/31 
LC08_L1TP_180031_20150906_T1 6 September 2015 180/31 
LC08_L1TP_180031_20160722_T1 22 July 2016 180/31 
LC08_L1TP_180031_20170623_T1 23 June 2017 180/31 

Figure 1. Study sites and overview of the images used in this research: (a) Geographic location of
Turkey (Google Earth©). (b) Overview of Istanbul city from 2017-dated Landsat 8 data.

The Landsat 8 satellite images that cover the administrative borders of the city, which were
acquired between 2013 and 2017, were used in this research. The selected images were acquired in the
summer and early fall seasons to minimize seasonal effects and ensure the regularity of the temporal
interval. The OLI sensor onboard the Landsat 8 satellite provides eight spectral channels with a 30 m
spatial resolution and a single panchromatic channel with a 15 m spatial resolution. Additionally, two
thermal channels are provided from the TIRS sensor, which are acquired with a 100 m native resolution
and resampled to 30 m. The spatial coverage of the images acquired by the satellite is 170× 183 km [44].
The images are distributed by USGS at the L1TP processing level, which includes basic radiometric
calibration and orthorectification steps. In the orthorectification step, ground control points and the
Global Land Survey (GLS) 2000 digital elevation model are used to ensure high positional accuracy and
accurate terrain correction. The properties of the satellite images used in this research are presented in
Table 1.

Table 1. Specifications of the Landsat 8 OLI satellite images used in this study.

Image Name Acquisition Date Path/Row

LC08_L1TP_180031_20130730_T1 30 July 2013 180/31
LC08_L1TP_180031_20141021_T1 21 October 2014 180/31
LC08_L1TP_180031_20150906_T1 6 September 2015 180/31
LC08_L1TP_180031_20160722_T1 22 July 2016 180/31
LC08_L1TP_180031_20170623_T1 23 June 2017 180/31
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Google Earth was used for reference data in the training data selection and accuracy assessment
steps, as it provides very high-resolution imagery of a region at the required time interval.

3. Methodology

3.1. Preprocessing of the Satellite Images

The Landsat 8 image pixels are delivered as quantized digital numbers (DNs), which represent
the brightness values. Within the context of multi-temporal satellite image analysis, it is necessary
to convert the values from brightness values to top of atmosphere (ToA) values to minimize the
differences in the illumination and reflectance properties that occur due to the image detection date
and to perform analyses at the equivalent radiometric scale [45]. This conversion was performed using
parameters provided with the metadata file of the Landsat 8 satellite images and the following formula
set [46]:

ρλ′ = MρQcal + Aρ (1)

where

ρλ′ = ToA planetary spectral reflectance without correction for the solar angle (unitless)
Mρ = Reflectance multiplicative scaling factor for the band
Aρ = Reflectance additive scaling factor for the band
Qcal = L1 pixel value in the DN

This process does not include correction for the solar elevation angle. The following additional
formula is used to obtain the true ToA reflectance:

ρλ = ρλ′/sin(

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  5 of 23 

 

3. Methodology 

3.1. Preprocessing of the Satellite Images  

The Landsat 8 image pixels are delivered as quantized digital numbers (DNs), which represent 
the brightness values. Within the context of multi-temporal satellite image analysis, it is necessary to 
convert the values from brightness values to top of atmosphere (ToA) values to minimize the 
differences in the illumination and reflectance properties that occur due to the image detection date 
and to perform analyses at the equivalent radiometric scale [45]. This conversion was performed 
using parameters provided with the metadata file of the Landsat 8 satellite images and the following 
formula set [46]: 

ρλ′ = MρQcal + Aρ (1) 

where 
ρλ′ = ToA planetary spectral reflectance without correction for the solar angle (unitless)  
Mρ = Reflectance multiplicative scaling factor for the band 
Aρ = Reflectance additive scaling factor for the band 
Qcal = L1 pixel value in the DN 
This process does not include correction for the solar elevation angle. The following additional 

formula is used to obtain the true ToA reflectance: 

ρλ = ρλ′/sin(ƟSE) (2) 

where 
ρλ = ToA Planetary Reflectance (unitless) ƟSE = Solar Elevation Angle 
After the radiometric calibration process, the ToA images are recorded as float data. 
The second step of pre-processing is pan-sharpening of the Landsat 8 images. For this purpose, 

the Gram–Schmidt spectral pan-sharpening algorithm was used. In this algorithm, an artificial 
panchromatic channel is derived from the low-spatial-resolution multispectral channels in the first 
stage. In the second stage, the Gram–Schmidt transformation is applied to the artificial panchromatic 
channel and multispectral channels. In the third stage, the first Gram–Schmidt channel is displaced 
with high-spatial-resolution panchromatic data. In the last stage, the inverted Gram–Schmidt 
transform is applied to the data set to obtain pan-sharpened spectral channels [47]. The main 
advantage of the algorithm lies behind the procedure, which performs orthogonalization after 
weighting each multispectral image channel based on its spectral formation with panchromatic data, 
thus allowing all of the low-resolution multispectral image channels, including the shortwave 
infrared (SWIR) channel, to be included in the process. In the last step, pan-sharpened images were 
clipped with administrative boundary vector data of the Istanbul metropolitan city. 

3.2. Dimension Reduction 

The first approach that was evaluated in this research is the spectral index-based method. As 
this research mainly concentrated on evaluating the LC changes due to urbanization, the built-up 
index-based approach was adopted. The normalized difference built-up index (NDBI) is one of the 
first introduced indexes [48]. The NDBI was modified by integration of the normalized difference 
vegetation index (NDVI), which is referred to as the built-up index (BUI). Previous studies with BUI 
data reported that this index improves the separation between urban areas and bare lands [49]. 
Equation 3 provides the calculation of the BUI. 

BUI = ((SWIR − NIR)/(SWIR + NIR) − ((NIR − RED)/(NIR + RED)) (3) 

 
where SWIR corresponds to the shortwave infrared band, NIR corresponds to the near infrared band 
and RED corresponds to the red image band.  

) (2)

where

ρλ = ToA Planetary Reflectance (unitless)

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  5 of 23 

 

3. Methodology 

3.1. Preprocessing of the Satellite Images  

The Landsat 8 image pixels are delivered as quantized digital numbers (DNs), which represent 
the brightness values. Within the context of multi-temporal satellite image analysis, it is necessary to 
convert the values from brightness values to top of atmosphere (ToA) values to minimize the 
differences in the illumination and reflectance properties that occur due to the image detection date 
and to perform analyses at the equivalent radiometric scale [45]. This conversion was performed 
using parameters provided with the metadata file of the Landsat 8 satellite images and the following 
formula set [46]: 

ρλ′ = MρQcal + Aρ (1) 

where 
ρλ′ = ToA planetary spectral reflectance without correction for the solar angle (unitless)  
Mρ = Reflectance multiplicative scaling factor for the band 
Aρ = Reflectance additive scaling factor for the band 
Qcal = L1 pixel value in the DN 
This process does not include correction for the solar elevation angle. The following additional 

formula is used to obtain the true ToA reflectance: 

ρλ = ρλ′/sin(ƟSE) (2) 

where 
ρλ = ToA Planetary Reflectance (unitless) ƟSE = Solar Elevation Angle 
After the radiometric calibration process, the ToA images are recorded as float data. 
The second step of pre-processing is pan-sharpening of the Landsat 8 images. For this purpose, 

the Gram–Schmidt spectral pan-sharpening algorithm was used. In this algorithm, an artificial 
panchromatic channel is derived from the low-spatial-resolution multispectral channels in the first 
stage. In the second stage, the Gram–Schmidt transformation is applied to the artificial panchromatic 
channel and multispectral channels. In the third stage, the first Gram–Schmidt channel is displaced 
with high-spatial-resolution panchromatic data. In the last stage, the inverted Gram–Schmidt 
transform is applied to the data set to obtain pan-sharpened spectral channels [47]. The main 
advantage of the algorithm lies behind the procedure, which performs orthogonalization after 
weighting each multispectral image channel based on its spectral formation with panchromatic data, 
thus allowing all of the low-resolution multispectral image channels, including the shortwave 
infrared (SWIR) channel, to be included in the process. In the last step, pan-sharpened images were 
clipped with administrative boundary vector data of the Istanbul metropolitan city. 

3.2. Dimension Reduction 

The first approach that was evaluated in this research is the spectral index-based method. As 
this research mainly concentrated on evaluating the LC changes due to urbanization, the built-up 
index-based approach was adopted. The normalized difference built-up index (NDBI) is one of the 
first introduced indexes [48]. The NDBI was modified by integration of the normalized difference 
vegetation index (NDVI), which is referred to as the built-up index (BUI). Previous studies with BUI 
data reported that this index improves the separation between urban areas and bare lands [49]. 
Equation 3 provides the calculation of the BUI. 

BUI = ((SWIR − NIR)/(SWIR + NIR) − ((NIR − RED)/(NIR + RED)) (3) 

 
where SWIR corresponds to the shortwave infrared band, NIR corresponds to the near infrared band 
and RED corresponds to the red image band.  

= Solar Elevation Angle

After the radiometric calibration process, the ToA images are recorded as float data.
The second step of pre-processing is pan-sharpening of the Landsat 8 images. For this purpose,

the Gram–Schmidt spectral pan-sharpening algorithm was used. In this algorithm, an artificial
panchromatic channel is derived from the low-spatial-resolution multispectral channels in the first
stage. In the second stage, the Gram–Schmidt transformation is applied to the artificial panchromatic
channel and multispectral channels. In the third stage, the first Gram–Schmidt channel is displaced
with high-spatial-resolution panchromatic data. In the last stage, the inverted Gram–Schmidt transform
is applied to the data set to obtain pan-sharpened spectral channels [47]. The main advantage of
the algorithm lies behind the procedure, which performs orthogonalization after weighting each
multispectral image channel based on its spectral formation with panchromatic data, thus allowing all
of the low-resolution multispectral image channels, including the shortwave infrared (SWIR) channel,
to be included in the process. In the last step, pan-sharpened images were clipped with administrative
boundary vector data of the Istanbul metropolitan city.

3.2. Dimension Reduction

The first approach that was evaluated in this research is the spectral index-based method. As
this research mainly concentrated on evaluating the LC changes due to urbanization, the built-up
index-based approach was adopted. The normalized difference built-up index (NDBI) is one of the
first introduced indexes [48]. The NDBI was modified by integration of the normalized difference
vegetation index (NDVI), which is referred to as the built-up index (BUI). Previous studies with
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BUI data reported that this index improves the separation between urban areas and bare lands [49].
Equation (3) provides the calculation of the BUI.

BUI = ((SWIR − NIR)/(SWIR + NIR) − ((NIR − RED)/(NIR + RED)) (3)

where SWIR corresponds to the shortwave infrared band, NIR corresponds to the near infrared band
and RED corresponds to the red image band.

BUI data were calculated from the satellite images and stored as a single band.
The second approach evaluated in this research is the principal component analysis (PCA)-based

spectral transformation method. This method performs a rotation of the axes of the original feature
space coordinate system to new orthogonal axes called principle axes, which maximizes the data
variance [50]. In general, 90% of the variance is stored in the first three axes, and variance reduces with
increasing axis number [51]. In this research, the first component is calculated for each satellite image
and stored as a single data layer.

After dimension reduction, the BUI and PCA data were layer-stacked according to the date order
and recorded as unsigned 8-bit data (Figure 2).

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  6 of 23 

 

BUI data were calculated from the satellite images and stored as a single band. 
The second approach evaluated in this research is the principal component analysis (PCA)-based 

spectral transformation method. This method performs a rotation of the axes of the original feature 
space coordinate system to new orthogonal axes called principle axes, which maximizes the data 
variance [50]. In general, 90% of the variance is stored in the first three axes, and variance reduces 
with increasing axis number [51]. In this research, the first component is calculated for each satellite 
image and stored as a single data layer. 

After dimension reduction, the BUI and PCA data were layer-stacked according to the date order 
and recorded as unsigned 8-bit data (Figure 2). 

 
Figure 2. Red / Green / Blue (RGB) view of the dimension reduction results: (a) built-up index (BUI) 
layer stack and (b) principal component analysis (PCA) layer stack (R: 2013/G: 2015/B: 2017). 

3.3. Land Cover Classes 

The LC classes used in this research were defined by taking the Anderson (1976) LC legend as 
the basis and by taking into account the resolving capacity of the Landsat 8 OLI images with a 15 m 
resolution [52]. Additionally, two change classes were included to define classes, with inspiration 
from the “Land Cover 2.0” concept introduced by Wulder et al. (2018), in which dynamic change 
classes are evaluated together with the main LC classes in a single classification [31]. In this context, 
the classes and their definitions are given in Table 2. 

Figure 2. Red/Green/Blue (RGB) view of the dimension reduction results: (a) built-up index (BUI)
layer stack and (b) principal component analysis (PCA) layer stack (R: 2013/G: 2015/B: 2017).



ISPRS Int. J. Geo-Inf. 2019, 8, 139 7 of 22

3.3. Land Cover Classes

The LC classes used in this research were defined by taking the Anderson (1976) LC legend as
the basis and by taking into account the resolving capacity of the Landsat 8 OLI images with a 15 m
resolution [52]. Additionally, two change classes were included to define classes, with inspiration from
the “Land Cover 2.0” concept introduced by Wulder et al. (2018), in which dynamic change classes are
evaluated together with the main LC classes in a single classification [31]. In this context, the classes
and their definitions are given in Table 2.

Table 2. Definitions of the land cover classes mapped in this research.

LC Class Definition

1. Built-up Lands Residential Areas, Industrial and Commercial Areas, Transportation Networks, Ports,
Airports, Construction Sites, Excavation Sites

2. Agricultural Lands Arable Lands, Annual Crops, Permanent Crops, Pastures

3. Forests Coniferous Forests, Broad-leaved Forests, Mixed Forests

4. Bare and Semi-Natural Lands Bare Rock, Bare Soil, Sparsely Vegetated Areas

5. Water Bodies Rivers, Lakes, Reservoirs

6. Urban Expansion 1 Areas transformed to built-up lands between 2013 and 2015

7. Urban Expansion 2 Areas transformed to built-up lands between 2015 and 2017

3.4. Classification

This research evaluated two state of the art classification methods for mapping the current LC
and its changes during a 5-year period. The first method used in this study was based on pixel-based
supervised implementation of the SVM algorithm. The SVM uses an iterative learning process to
define linear hyperplanes for separation between classes [53]. The initial implementation of the SVM
was working as a binary classifier, and a pairwise classification approach was developed to cope with
multiclass processing requirements, such as satellite image classification [54]. Additionally, the SVM
algorithm provides better results than the traditional classifiers, such as the maximum likelihood
classifier, when the input data are non-Gaussian, such as in satellite images, due to its non-parametric
structure [55]. Moreover, the SVM algorithm requires less training data than other machine learning
classifiers, which require intensive training samples for high-dimensional input data [56]. The learning
of hyperplanes in a higher dimensional space is achieved by kernel-based transformation. This research
uses the radial basis function (RBF) kernel due to its reported higher performance with non-linear
datasets and lower computational complexity [57,58].

The training samples were selected manually within the stacked images, with a simultaneous
check from Google Earth. The number of training samples was decided simply according to the areal
coverage and fuzziness of the LC class. The distribution of the training samples is summarized as
follows: Built-up Lands (657 polygons—95,705 pixels), Agricultural Lands (105 polygons—131,192
pixels), Forests (298 polygons—90,131 pixels), Bare and Semi-Natural Lands (51 polygons—12,964
pixels), Water Bodies (68 polygons—42,000 pixels), Urban Expansion 1 (314 polygons—21,755 pixels),
and Urban Expansion 2 (210 polygons—17,143 pixels). The spectral separability of the training samples
across different classes is an important metric that represents how well the selected samples pair
statistically. The tool included in the ENVI@ software calculates the pairwise separation metric based
on both the Jeffries–Matusita and transformed divergence separability measures [51,59]. This metric
can take values between 0 and 2, where values greater than 1.5 indicate good separation. Table A1
provides the pairwise separation values calculated for the BUI and PCA data sets for all possible class
combinations. Additionally, Table 3 provides detailed parameter values for the SVM classification
applied to the stacked datasets. The first two parameters given in the Table 3 are generic parameters of
the SVM algorithm, while the remaining ones belong to software specific parameters of the classification
process. The Gamma parameter is calculated as the inverse of the number of image bands. The penalty
parameter is set to 100 to avoid misclassification at the training step. The classification probability
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threshold ensures that all of the pixels are assigned to a class when set to a value of 0. A pyramid level
value greater than 0 allows for classification to be performed on a low-resolution pyramid image, and
if the class probability of a pixel is lower than the pyramid reclassification threshold, the pixel will be
reclassified at a finer resolution [60].

Table 3. Definition of the parameters used for SVM classification in ENVI@ software.

Support Vector Machine (RBF) Parameter Value

Gamma in Kernel Function 0.20
Penalty Parameter 100.00

Pyramid Levels 1.00
Pyramid Reclassification Threshold 0.90
Classification Probability Threshold 0.00

The second classification method evaluated in this research is the threshold-based decision
tree GEOBIA approach. The adaptation of the non-parametric statistical decision tree technique
to object-based classification has been performed successfully to determine LC mapping in past
decades [20,61–63].

The GEOBIA classification consists of two steps. In the first step, segmentation of the multi-layered
data set produces segments that represent a meaningful Earth object either alone or in groups. In the
segmentation process, scale, color, shape, and texture parameters are considered [64–66]. In the second
step, hierarchical or relational class definitions are structured according to the reflectance, shape and
texture characteristics of the segments [67,68].

The multiresolution segmentation algorithm implemented via eCognitionTM software was used
in this research. The algorithm aims to determine the most appropriate scale parameter for the whole
area based on the necessity of expressing different objects at different scales in line with the size and
texture characteristics. The scale parameter controls the amount of spectral variation in the pixel group
to create the object and resulting segment size. The first of the two complementary parameter sets in
the segmentation process is the Shape—Color component. Shape and color are defined to complement
each other at a value of 1, and the importance of these parameters in determining the object boundaries
is determined by this weighting. The shape features are determined by the sub-complementary
parameters, which are compactness and smoothness [69]. Different parameter combinations were
experimented on the BUI and PCA datasets, and the parameters producing the objects, in which
the surface cover types were significantly represented, were determined. In this context, the most
appropriate segmentation is provided by the following parameter set: scale factor: 20; shape: 0.2; and
compactness: 0.5.

The second step of the process is to determine the thresholds for class definitions based on the
spectral, textural and temporal characteristics of the segments and to build hierarchical relationships
of the classes. The thresholds were defined using the mean values for each data layer, the maximum
difference, grey level co-occurrence (GLCM) homogeneity and GLCM dissimilarity parameters, which
were obtained from image segments and variations in these parameters through the temporal domain.
The detailed calculation steps of the GLCM texture parameters can be found in the work performed by
Haralick et al. in 1973 [70].

The thresholds were defined by examining the abovementioned segment parameters at
approximate locations of the training dataset used in the SVM approach with a simultaneous check
from Google Earth. Then, iterative fine-tuning was performed on the thresholds by visual inspection
of class coverage across the whole dataset. The final class definitions and decision tree structures for
the BUI and PCA datasets are presented in Figures A1 and A2, respectively.
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3.5. Accuracy Assessment

An accuracy assessment of the classification results was performed with two different assessment
approaches. In the first approach, a point-based traditional accuracy assessment procedure was
performed by use of 250 stratified random points. The distribution of points was determined by taking
into account class coverage and class heterogeneity [71]. The error matrix was created by means of
class labels and corresponding reference labels [72]. User and producer accuracy measures and kappa
statistics are derived from these matrices [73,74].

As a second assessment method, the intersection of the area relative to the reference polygon
was used. This method performs an area-based ratio calculation between the intersected area from
the results to the reference polygon area (Aint/Aref) [75,76]. This method is used for evaluating the
segmentation accuracy and can be implemented on the classification accuracy simply by converting
the classification results into vector data and extracting the intersection with reference polygons.
For this purpose, 25 reference polygons were extracted for each class from Google Earth, and these
polygons were intersected with the classification vector. The ratio can take values from 0 (where the
pixels or segment under the reference polygon is completely misclassified) to 1 (where the pixels or
segment under the reference is completely true). After the ratio calculation, the mean and standard
deviation metrics were provided for each class and for all classification method—dimension reduction
method combinations.

4. Results and Discussion

4.1. Experimental Results

The LC maps produced by GEOBIA and SVM classification of the BUI and PCA datasets are
presented in Figures A3–A6. Moreover, the point-based accuracy assessment results are presented
in Table 4. When these results are evaluated, it can be seen that the GEOBIA method produced
thematically homogenous maps when compared to the SVM method for both datasets. The SVM
method especially suffered from the misclassification of uncultivated agricultural lands as built-up
areas, which is observable in the western part of the province. Nevertheless, the overall accuracies
achieved with the SVM classification results are within the same ranges as those in previous studies,
such as Tanh Noi and Kappas [20]. The GEOBIA method takes advantage of including textural
information from these regions (homogeneity for BUI—homogeneity, dissimilarity and homogeneity
for PCA), where reduced spectral information was similar. Moreover, the segmentation process in the
GEOBIA enables higher quality object boundary definition that reduces within object heterogeneity,
thus provides better thematic object representation.

Table 4. Point-based accuracy results (PA: Producer Accuracy; UA: User Accuracy; K: Kappa).

Data/Method BUI—GEOBIA PCA—GEOBIA BUI—SVM PCA—SVM

Class PA UA K PA UA K PA UA K PA UA K

Built-up Lands 93.18 93.18 0.92 88.64 88.64 0.86 88.64 84.78 0.82 79.55 74.47 0.69
Agricultural Lands 89.58 91.49 0.89 85.42 87.23 0.84 81.25 82.98 0.79 79.17 80.85 0.76

Forests 100.00 92.86 0.92 94.87 88.10 0.86 87.18 85.00 0.82 87.18 85.00 0.82
Bare & Semi-Natural Lands 94.87 92.50 0.91 89.74 87.50 0.85 89.74 87.50 0.85 79.49 77.50 0.73

Water Bodies 88.24 93.75 0.93 82.35 93.33 0.93 82.35 87.50 0.87 94.12 94.12 0.94
Urban Expansion 1 90.63 90.63 0.89 81.25 78.79 0.76 84.38 84.38 0.82 75.00 77.42 0.74
Urban Expansion 2 83.87 89.66 0.88 74.19 79.31 0.76 77.42 82.76 0.80 74.19 79.31 0.76

Total 92.00 0.91 86.00 0.84 84.80 0.83 80.40 0.78

When the dimension reduction methods were evaluated, the classification results from the BUI
dataset provided higher accuracies when compared to the PCA dataset, except for the water body
class. The lower accuracy of the water body class occurred due to similar multi-temporal responses
of shallow water areas and urban areas, which could be partially solved in the GEOBIA method
by adding the homogeneity parameter to the class definition but remained a problem in the SVM
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classification. In addition, the higher accuracies obtained for urban expansion classes with the BUI
dataset indicate superiority of the BUI dimension reduction method over the PCA method, especially
when change detection is the main concern. The main concern with the BUI-based method was its
efficiency to differentiate different land cover classes, as it was initially designed to determine built-up
areas. However, its stable and meaningful responses to different land cover types through the time
domain pointed out the effective usage in land cover mapping when multi-temporal satellite images
are available.

Although point-based accuracy metrics are well-known and intensely used parameters for
evaluating the accuracy of image classifications, information about the thematic representation quality
of land objects cannot be retrieved with these metrics. Thus, a polygon-based evaluation can be
more useful to derive the thematic accuracy of object representation. According to the polygon-based
accuracy analysis presented in Table 5, it can be seen that the GEOBIA-based classification results
provided higher accuracies in object representation, with higher mean values and comparatively lower
standard deviations. Additionally, the number of polygons with representation ratios below 50% was
smaller for the GEOBIA results when compared to the SVM results. The GEOBIA classification of the
BUI dataset provided the highest ratios for all classes, and the ratio ranges across classes were mostly
stable. The PCA-GEOBIA combination was ranked second, which was followed by the BUI-SVM and
PCA-SVM combinations. These results are consistent with the point-based accuracy analysis.

Table 5. Polygon-based accuracy results (Mean: Mean value of Aint/Aref; Std: Standard deviation of
Aint/Aref; C: Count for Aint/Aref ≤ 0.50).

Data/Method BUI—GEOBIA PCA—GEOBIA BUI—SVM PCA—SVM

Class Mean Std. C Mean Std. C Mean Std. C Mean Std. C

Built-up Lands 0.87 0.12 0 0.81 0.17 2 0.76 0.20 3 0.72 0.21 4
Agricultural Lands 0.86 0.19 2 0.80 0.23 3 0.73 0.24 4 0.71 0.23 4

Forests 0.89 0.15 1 0.85 0.19 3 0.81 0.19 4 0.77 0.18 3
Bare & Semi-Natural Lands 0.85 0.21 2 0.80 0.20 3 0.79 0.19 3 0.74 0.21 4

Water Bodies 0.88 0.20 2 0.87 0.19 1 0.84 0.18 2 0.86 0.12 1
Urban Expansion 1 0.88 0.12 0 0.81 0.18 2 0.83 0.15 2 0.76 0.18 3
Urban Expansion 2 0.82 0.23 3 0.79 0.24 4 0.81 0.17 2 0.71 0.23 5

The areal statistics were extracted from the classification results, and relative differences were
calculated by taking the BUI-GEOBIA classification as the reference, due to its highest point-based and
polygon-based accuracy metrics (Tables 4 and 5). According to this comparison, GEOBIA classification
of the PCA dataset provided similar areal information, with relative differences below 10%; however,
the SVM classification of both datasets provided over 10% differences specific to agricultural land,
water body and urban expansion classes (Table 6).

Table 6. Areal statistics and relative differences calculated from the classification results.

Areal Statistics (ha) Relative Difference (%)

Class/Method BUI—GEOBIA PCA—GEOBIA BUI—SVM PCA—SVM PCA—GEOBIA BUI—SVM PCA—SVM

Built-up Lands 99,979.70 103,274.00 106,661.00 106,241.00 3.29 6.68 6.26
Agricultural Lands 120,986.30 113,253.00 103,925.00 105,526.00 6.39 14.10 12.78

Forests 226,117.00 232,028.00 244,982.36 243,123.71 2.61 8.34 7.52
Bare and Semi-Natural Lands 73,127.90 71,595.16 64,070.70 65,988.80 2.10 12.39 9.76

Water Bodies 9928.91 10,545.30 11,338.36 11,774.00 6.21 14.20 18.58
Urban Expansion 1 6367.97 5993.38 5886.36 5048.83 5.88 7.56 20.72
Urban Expansion 2 8060.00 7878.94 7704.00 6865.44 2.25 4.42 14.82

Total 544,567.78 544,567.78 544,567.78 544,567.78

Evaluations on the current areal status of LC and urban expansion classes from the BUI-GEOBIA
classification results (Table 6), inform that a total urban expansion of 14,427.97 ha that occurred during
a five-year period corresponded to a 14.43% increase in urban areas when the built-up lands class is
taken as the reference. In addition, this expansion amount corresponds to 2.7% of the total province
area, which can be considered as an important urbanization process for a short time period. The forests
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cover 41.5% of the province area and are located in the northern part of the province, while extensive
built-up lands and agricultural lands mostly cover the southern part of the province.

Urban expansion that occurred during the analysis period mainly originated from the construction
of the Istanbul International Airport, Yavuz Sultan Selim Bridge, Black Sea Transit Highway and
connection roads to these transportation facilities. It is crucial that all of these constructions are located
along the northern axis of the province, where forests and natural lands exist. There is a need for the
continuous monitoring and management of lands near these facilities, as these regions are candidates
for uncontrolled urbanization.

4.2. Discussion on Possible Limitations and Error Sources

When the results are evaluated, it can be strongly suggested that GEOBIA-based non-parametric
classification method provided higher accuracies in both BUI and PCA datasets, due to the capability of
including textural parameters in addition to spectral information. On the other hand, it should be noted
that the segmentation process directly affects the thematic accuracy of the GEOBIA-based classification.
The segmentation accuracy was not evaluated directly on this research; however, the polygon-based
accuracy assessment results demonstrated higher accuracies for the GEOBIA classification results,
which may indicate acceptable performance of segmentation in object representation.

Another challenging step in the non-metric GEOBIA-based classification approach was
determining the parameter thresholds for class definitions. During this process, several segments
belonging to specific classes were determined with validation from Google Earth reference data, and
parameter thresholds were examined through these sample segments. At this point, the threshold
definition from the BUI dataset was less complicated, as the BUI represents normalized physical
responses of the surface reflectance characteristics, while the PCA provides a statistical dissimilarity
measure of the pixels throughout the image domain. In addition, although the BUI is mainly focused
on highlighting urban areas, the responses of the BUI dataset for other classes in the time domain also
provided more understandable and robust characteristics than the PCA dataset. The only drawback
of the BUI dataset was similar spectral responses of shallow water bodies and urban areas, which
was overcome by the use of the homogeneity parameter in the GEOBIA classification. Additionally,
the PCA dataset generally required more complex class definitions with the implementation of more
GLCM textural parameters.

The main constraint observed in the pixel-based SVM classification process is that only the spectral
features derived from the dimension reduction process can be included in the process. The similarity
of the responses from different LC surfaces, both in the scene and time domains, had a direct effect
on the classification accuracy. The separation metrics calculated from the training samples (Table A1)
provided a positive correlation with the accuracy assessment results, which indicated that they can be
used as pre-estimators of the classification efficiency before performing the whole process.

Specifically, the mixed responses of shallow water and urban areas in the BUI dataset were evident
in the SVM classification and resulted with the false classification of shallow water areas as urban class
areas, especially over the coasts of lakes. Second, the mixed response of built-up areas and agricultural
lands resulted with the misclassification of some agricultural lands as built-up areas in the midwest
part of the study area.

5. Conclusions

The results of the study show that the Istanbul province has been exposed to LC changes in
the form of urban expansion during the last five years. The main source of urban expansion is the
constructions of the new airport, new bridge and new connection highways to these transportation
facilities. In addition, the construction of new settlements also contributes to the expansion of urban
areas. This change causes the destruction of forest areas and natural areas, especially in the northern
half of Istanbul. This amount of change has a high potential for generating negative impacts on the
natural environment and ecosystem. The findings of this research and the proposed non-parametric
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decision-tree-based GEOBIA classification approach can be useful in providing a periodically updated
geospatial LC database, which can be used in the management activities of decision makers, thanks
to its capacity to detect time-dependent changes in a fast and reliable manner. Additional studies
plan to enhance this research by the use of images from different satellites, such as Sentinel 2, which
provide higher spatial, spectral and temporal resolutions and the evaluation of different dimension
reduction techniques to improve the accuracy and reliability of dynamic LC maps produced from
satellite images.
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Figure A1. Threshold-based decision tree structure for the BUI dataset. Figure A1. Threshold-based decision tree structure for the BUI dataset.
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Figure A2. Threshold-based decision tree structure for the PCA dataset. Figure A2. Threshold-based decision tree structure for the PCA dataset.
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Figure A3. GEOBIA classification results of the BUI dataset. Figure A3. GEOBIA classification results of the BUI dataset.
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Figure A4. GEOBIA classification results of the PCA dataset. Figure A4. GEOBIA classification results of the PCA dataset.
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Figure A5. SVM classification results of the BUI dataset. Figure A5. SVM classification results of the BUI dataset.



ISPRS Int. J. Geo-Inf. 2019, 8, 139 18 of 22
 

 

 
Figure A6. SVM classification results of the PCA dataset. Figure A6. SVM classification results of the PCA dataset.
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Table A1. Separation metrics derived from training samples for the BUI and PCA datasets.

BUI PCA

Pair Separation (Least to Most) Value Pair Separation (Least to Most) Value

Built-up Lands and Water Bodies 1.15 Built-up Lands and Agricultural Lands 1.31

Agricultural Lands and Urban Expansion 1 1.70 Agricultural Lands and Bare and
Semi-Natural Lands 1.51

Built-up Lands and Agricultural Lands 1.72 Built-up Lands and Bare and Semi-Natural
Lands 1.55

Water Bodies and Agricultural Lands 1.75 Agricultural Lands and Urban Expansion 1 1.65

Agricultural Lands and Bare and Semi-Natural
Lands 1.85 Built-up Lands and Urban Expansion 2 1.66

Water Bodies and Urban Expansion 1 1.85 Agricultural Lands and Urban Expansion 2 1.66

Built-up Lands and Urban Expansion 1 1.88 Forests and Urban Expansion 2 1.67

Urban Expansion 2 and Bare and Semi-Natural
Lands 1.89 Urban Expansion 2 and Bare and

Semi-Natural Lands 1.72

Built-up Lands and Bare and Semi-Natural
Lands 1.93 Built-up Lands and Urban Expansion 1 1.82

Urban Expansion 1 and Urban Expansion 2 1.94 Urban Expansion 1 and Urban Expansion 2 1.82

Agricultural Lands and Urban Expansion 2 1.95 Forests and Agricultural Lands 1.94

Forests and Urban Expansion 2 1.95 Forests and Built-up Lands 1.95

Built-up Lands and Urban Expansion 2 1.96 Urban Expansion 1 and Bare and
Semi-Natural Lands 1.96

Urban Expansion 1 and Bare and Semi-Natural
Lands 1.98 Forests and Urban Expansion 1 1.98

Water Bodies and Bare and Semi-Natural Lands 1.99 Built-up Lands and Water Bodies 1.98

Forests and Built-up Lands 2.00 Water Bodies and Urban Expansion 2 2.00

Water Bodies and Urban Expansion 2 2.00 Forests and Bare and Semi-Natural Lands 2.00

Forests and Agricultural Lands 2.00 Water Bodies and Urban Expansion 1 2.00

Forests and Urban Expansion 1 2.00 Forests and Water Bodies 2.00

Forests and Bare and Semi-Natural Lands 2.00 Water Bodies and Agricultural Lands 2.00

Forests and Water Bodies 2.00 Water Bodies and Bare and Semi-Natural
Lands 2.00
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