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Abstract: Currently, the rapid development of cities and the rapid increase in urban populations have
led to a sharp increase in urban components, making precise urban component management, query
efficiency, and operational visualization urgent problems to be solved. In this paper, an in-depth study
is carried out, pointing out that the current two-dimensional map or component management method
based on a real-life three-dimensional city has defects, including query difficulty, fuzzy management,
and inefficiency, and it is impossible to accurately and efficiently manage urban components. Then,
this paper uses a combination of GIS technology and BIM technology as the starting point. On one
hand, this combined technology is based on the high efficiency of the underlying data organization
of the GeoSOT grid code and the accuracy of real geographic location expression; on the other
hand, based on the integrity of the building information representation and the accuracy of the
relative position of internal components of BIM, a precise urban component management method
based on GeoSOT grid code and BIM is proposed. Finally, based on this method, a real-time 3D
Earth visualization platform is established by using the Cesium platform. Taking the fire hydrant
component management of the commercial Guanlan Street in Baiyin City, Gansu Province, China as
an example, the precise management of the components in this area is realized, which proves that the
method can achieve precise urban component management.
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1. Introduction

Urban components are various facilities within the urban management public area, including
public facilities, road traffic, city appearance, landscaping, housing, and other municipal engineering
facilities and municipal utilities. These components are an important object in urban management
and are at the core of digital city management. Therefore, urban component management is the top
priority of urban management. Today’s cities are growing rapidly, and the size of the urban population
is increasing dramatically. According to statistics from the UN, by 2030, nearly 60% of the world’s
population, which is nearly 5 billion people, is expected to live in urban areas [1]. In addition, worldwide,
the growth rate of urban land is at least twice that of the urban population, and in some places, the
growth rate is three or four times faster [2,3]. A recent study showed that more than half of city land on
Earth will be built in the first three decades of the 21st century [4]. The rapid development of cities
has led to a sharp increase in urban components, making the precise urban component management,
query efficiency, and operational visualization urgent problems to be solved. This requires urban
component management to change from fuzzy management to refined and efficient management,
from qualitative static management to quantitative dynamic management, from lagging management
to real-time management, from two-dimensional to three-dimensional scenes, and so on.
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However, the current domestic part is based on the component management method on the
two-dimensional map. Because the real scene cannot be realized, the visualization effect is very poor,
and the position of the component cannot be accurately located, which is not suitable for the effective
management of management personnel. Part of the real-time 3D city-based component management
uses a comprehensive real-life 3D image to build a 3D model, but this 3D model has no structure, so it
is difficult for managers to query and cannot be accurately and efficiently managed [5,6]. The accuracy
and efficiency of the urban management system are steadily decreasing, which seriously affects the
use of the urban management system. The reason for this decrease is not only the defects in the current
urban component management methods, but also involves three main aspects. First, problems such as
inaccurate and omitted early component censuses have been highlighted. Second, urban road changes,
urban expansion, and many components have emerged, which result in urban components in some
areas not being included in system management. Third, many cities use old topographical maps that
need updating [7].

Through the analysis of the above research and applications, we find that there is an urgent need
for a new method to solve the problems of management precision, query efficiency, and operation
visualization in urban component management. Currently, the combination of GIS and BIM technologies
has become a trend that has great demand. This combination is widely regarded as a major research
direction to break through the bottlenecks in current research areas, such as urban management,
environmental planning, and emergency management [8–13]. This paper also starts from this basis
and proposes a new urban management method to meet these needs. Through the combination of
the GeoSOT grid code and BIM technology, a real-time 3D visualization earth platform was built by
using the Cesium platform to achieve refined and efficient management of urban components. Within
this combined technology, GeoSOT globally divided the three-dimensional grid technology from the
bottom of the data to achieve data gridding processing and packaging [14–16]; BIM technology, from
the perspective of three-dimensional urban building models, achieved architectural visualization and
provided a complete and actual situation construction engineering information database.

The essential difference between the method of this paper and the previous methods is that the
proposed method combines the GeoSOT grid with real geographic information from the building
information model. On one hand, the proposed method realizes the association between a certain part
of the building model and a certain spatial area of the earth’s surface; on the other hand, it realizes
gridding processing of building information, thereby realizing the precise and efficient management of
urban components. However, previous methods did not combine the building information model with
real geographic information or gridded processing data but only with the two-dimensional platform
or the three-dimensional platform for the inherent three-dimensional building model and for parsing
and establishing the corresponding parts database, which resulted in poor accuracy and the inefficient
management of urban components [5–7]. The innovative aspect of this proposed method is that it
integrates the advantages of the multilevel spatiotemporal transformation of the GeoSOT grid and the
rich geometric and semantic information of the BIM model. Multilevel meshing is used to manage a
variety of urban components with different granularities, and multilevel precise management of the
model data is realized from the data management level.

2. Materials and Methods

This section mainly describes, in detail, the method proposed in this paper. The basis of the
precise management implementation is based on the GeoSOT global meshing technology to analyze
the BIM model to obtain the coordinate information and attributes of each component and to perform
gridded data processing and grid encapsulation, respectively. The GeoSOT grid code is the unique
ID of each GeoSOT grid, and each GeoSOT grid is a data container that contains all aspects of all
parts of the grid area. Through this method of gridding data organization, as well as the calculation
of the GeoSOT global meshing grid, the floating point number calculation of the traditional global
meshing grid is directly realized by an integer multiple of 2, and the grid coding is realized in degrees
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and seconds. This method not only has high interchangeability and aggregation with the traditional
latitude and longitude recording method but also greatly improves the efficiency of spatial relationship
and position index and is beneficial for the efficient storage of geospatial data.

Figure 1 shows the general idea of the method. First, a 3D Earth platform is constructed with a 3D
Earth platform that is built using the Cesium platform. The Cesium platform, which was created by
AGI (Analytical Graphics, Inc., Exton, PA, USA), is a cross-platform virtual globe for dynamic spatial
data visualization. It is an open-source JavaScript library for building a world-class 3D Earth platform
and for providing the best performance for visualization [17–19]. Second, according to the GeoSOT
global split technology, the earth space is decomposed into a multiscale nested space stereo grid system
that assigns a unique split code to each stereo. Third, a three-dimensional model of urban architecture
and its components through BIM technology was built, and then its file format was converted to
a Cesium loadable 3D entity file format; that is, from FBX format to GLTF format. Fourth, the file
is parsed to obtain the coordinates, texture, and various attribute information of each component
inside the model by converting the coordinates to the geographic coordinates of the WGS84 on the
corresponding three-dimensional sphere. Finally, the converted BIM 3D model file is loaded on the 3D
Earth platform, and each part of the model is coded into the database through GeoSOT global splitting
technology to realize fine management, efficient management, and real-time dynamic management of
the components.
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In short, the method proposed in this paper has the following advantages over other existing
methods, with high precision, efficient query, intuitive and easy operation, and a good visualization
effect. Compared with the method based on a two-dimensional map, the proposed method
realizes real-time visualization, which is convenient for nonprofessional operation and management.
Compared with the real-life three-dimensional city-based method, the BIM model used in this method
can realize the complete and identical actual situation construction engineering information database
and solve the defect that the three-dimensional model has no structure and is difficult to query.
Moreover, the GeoSOT splitting technique is used to decompose the surface of the earth into a
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multiscale nested patch system, in which each patch is given a unique split code, and then a unique
split code is assigned to each component to achieve precise component management.

2.1. Global Meshing

2.1.1. GeoSOT Global Grid

GeoSOT (Geographic Coordinate Subdividing Grid with One Dimension Integral Coding on 2n

Tree) was proposed by the Cheng Chengqi research team of Peking University [15]. The core idea is
to expand three times, as shown in Figure 2. First, the Earth is expanded to 512◦ × 512◦, then 1◦ is
expanded to 64′ and, finally, 1′ is expanded to 64′ ′, and the quadrilateral tree of completeness and
division is realized to form an up to the earth (level 0), down to the cm-level bin (level 32) multiscale
quad tree grid.

The GeoSOT grid consists of 32 levels. The 0-level grid is defined as the 512◦ square of the Earth’s
expansion. The corresponding area is global, and the grid is coded as G, meaning Globe. The level 1
grid is defined as an average of 4 copies on a 0-level grid, each level 1 grid size is 256◦, and the grid
code is Gd, where d is 0, 1, 2, or 3, and so on, to obtain a 2- to 9-level grid. Each 9-level grid is 1◦ in size
and is encoded as Gddddddddd. Level 9 and above is the GeoSOT degree grid. The 10th to 15th levels
are hierarchical grids; the 16th to 21st levels are second-order grids. The size of the 32-level grid is
(1/2048), and its grid code is Gddddddddd-mmmmmm-ssssss-uuuuuuuuuuu.
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2.1.2. Algorithm Implementation

GeoSOT global grid split algorithm implementation, including the encoding function, decoding
function, and drawing grid function in three parts, draws the grid function and includes single grid
drawing, local grid drawing, and global grid drawing. The GeoSOT global grid split algorithm flow
chart is shown in Figure 3.

The encoding function is used mainly to realize the conversion of longitude, latitude, and elevation
to GeoSOT encoding. Its input is four parameters of level, longitude, latitude, and elevation, and
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the output corresponds to the GeoSOT code. The decoding function is used mainly to realize the
conversion of GeoSOT encoding into longitude, latitude, elevation, and level. Its input is GeoSOT
encoding, and the output is the corresponding level, longitude range, latitude range, and elevation
range. The grid drawing function is used mainly to realize the drawing of the solid mesh. To draw a
single solid mesh, just call the DrawSingleGrid function and enter the GeoSOT code. To draw a local
area mesh, just call the DrawRangeGrid function, input level, longitude range, latitude range, and
elevation range. When the longitude and latitude ranges are taken as the minimum and maximum,
respectively, the global solid mesh is drawn. The specific code of the above function is shown in
Appendix A.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 5 of 18 

 

The encoding function is used mainly to realize the conversion of longitude, latitude, and 
elevation to GeoSOT encoding. Its input is four parameters of level, longitude, latitude, and 
elevation, and the output corresponds to the GeoSOT code. The decoding function is used mainly to 
realize the conversion of GeoSOT encoding into longitude, latitude, elevation, and level. Its input is 
GeoSOT encoding, and the output is the corresponding level, longitude range, latitude range, and 
elevation range. The grid drawing function is used mainly to realize the drawing of the solid mesh. 
To draw a single solid mesh, just call the DrawSingleGrid function and enter the GeoSOT code. To 
draw a local area mesh, just call the DrawRangeGrid function, input level, longitude range, latitude 
range, and elevation range. When the longitude and latitude ranges are taken as the minimum and 
maximum, respectively, the global solid mesh is drawn. The specific code of the above function is 
shown in Appendix A. 

Input level, latitude, longitude, 
elevation

GeoSOT code

output level, the range of latitude, longtitude 
and elevation Single split grid Multiple split grids

Function encode 
(level , latitude, 

longtitude , 
elevation)

Function decode 
(code)

DrawSingleGrid 
(viewer ,code)

DrawRangeGrid (viewer, level, 
lat_range, lon_range, 

elevation_range)

 
Figure 3. GeoSOT global grid split algorithm flow chart. 

2.2. Building Information Modeling 

Building Information Modeling (BIM) technology was first introduced by Autodesk in 2002 and 
is now widely recognized in the industry globally. This technology can help to achieve the 
integration of building information; from the design, construction, and operation of the building to 
the end of the life cycle of the building, all kinds of information is always integrated into a 
three-dimensional model information database [20–25]. The core is to provide a complete and 
consistent construction engineering information library for the model by establishing a virtual 
three-dimensional model of architectural engineering and using digital technology. The repository 
contains not only the geometric information, professional attributes, and status information that 
describe the building components but also the status information of the noncomponent objects. The 
biggest feature of the BIM 3D model is its visualization, because BIM visualization is a kind of 
visualization that can form interaction and feedback between components, including information 
other than the size, position, and color of the components, and can reflect the internal structure of the 
object [26–29]. The BIM model that is used in this paper is shown in Figure 4. 

Figure 3. GeoSOT global grid split algorithm flow chart.

2.2. Building Information Modeling

Building Information Modeling (BIM) technology was first introduced by Autodesk in 2002 and
is now widely recognized in the industry globally. This technology can help to achieve the integration
of building information; from the design, construction, and operation of the building to the end of
the life cycle of the building, all kinds of information is always integrated into a three-dimensional
model information database [20–25]. The core is to provide a complete and consistent construction
engineering information library for the model by establishing a virtual three-dimensional model of
architectural engineering and using digital technology. The repository contains not only the geometric
information, professional attributes, and status information that describe the building components but
also the status information of the noncomponent objects. The biggest feature of the BIM 3D model is
its visualization, because BIM visualization is a kind of visualization that can form interaction and
feedback between components, including information other than the size, position, and color of the
components, and can reflect the internal structure of the object [26–29]. The BIM model that is used in
this paper is shown in Figure 4.
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Baiyin City in 3D MAX.

2.2.1. BIM Model Loading

The method proposed in this paper is a general method that is applicable to any urban building
BIM model. Because we did not obtain data from Beijing, Shanghai, and Shenzhen, this article uses the
BIM model of the commercial Guanlan Street in Baiyin City. The file type of this model is FBX. The FBX
file is difficult to parse, and the Cesium 3D Earth platform does not support loading. Therefore, the
file must be type converted and then converted into a GLTF file. The conversion is divided into three
steps, the flow chart for which is shown in Figure 5.
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The FBX file is converted into an OBJ file by the 3D MAX software and the parameters in the OBJ
export option are selected as shown in Figure 6.

1. Install the plugin OpenCOLLADA in 3D MAX software to convert OBJ files into DAE files in
open-source format

2. To convert DAE files into GLTF files that are easy to parse and load, we need to use the
open-source pipeline tool developed by Khronos Group, which can be directly converted
into GLTF files. The tool can be downloaded directly from GitHub at https://github.com/
KhronosGroup/COLLADA2GLTF. Enter the command mode under Windows and enter the file
where COLLADA2GLTF-bin.exe is located, then enter the following command to convert, -f DAE
model path -e, you can get the GLTF file in the target folder.

After successfully converting the GLTF file, it can be loaded on the Cesium platform. There are
two ways to load a 3D model in Cesium. One is to add the entity method through entity addition, and
the other is to add the primitive method through the prototype. The results obtained by these two
methods are basically the same. The method chosen in this paper is to add the model through the
prototype. Figure 7 shows the flow chart of the BIM model data loading process.

https://github.com/ KhronosGroup/COLLADA2GLTF
https://github.com/ KhronosGroup/COLLADA2GLTF
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2.2.2. BIM Model Parsing

Model parsing is used to parse the converted GLTF file. The GLTF file is mainly composed of
four parts [30,31], as shown in Figure 8. The first part is a JSON file, which mainly stores the node
hierarchy, material, camera, lighting, etc. of the model. The JSON file is the core of the GLTF model.
It has two main functions: First, it is equivalent to the catalog of the entire GLTF model. By looking up
a specific name in the JSON file, the application can read its corresponding content and then obtain the
corresponding data in the other three parts of the file according to the information that is provided by
the content. Second, the JSON file also has environment and scene settings. Second, the JSON file also
has environment and scene settings. The JSON file contains parameter information such as the camera
position, lighting, and material that are used for WebGL graphics drawing. The application program
sets the environment and scene parameters of the model by reading the information. The second part
is a binary file, which is used to store the graphic data of the model. The data content, such as vertex
coordinates, texture coordinates, index, and animation, was mainly used to establish the data buffer of
WebGL graphics rendering. The third part is some image files such as PNG, JPG, and other formats
that were used to texture map the model. The fourth part is the shader file, which is mainly the vertex
shader and fragment shader that are required for graphics rendering.
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Parsing the GLTF file, that is, parsing the JSON file, which contains the main information of the
file, as shown in Figure 9. We can clearly see the information that is contained in the JSON file, such as
accessors, images, nodes, and so on.
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JSON is the native format of JS. No special APIs or toolkits are required to process JSON data in
JS. glTF parsing uses JS’s native function JSON.parser to convert a JSON-formatted string file into a
JSON object. Then, from the JSON object, the vertex coordinates, texture coordinates, index and other
graphic information, camera, animation and other scene information, and the corresponding shader
and texture image information of the model, and so on, are read.

After the above function is obtained, the create function first reads the corresponding vertex
coordinates, texture coordinates, indexes, and other specific data from the binary file and creates a
corresponding buffer, for which the coordinate analysis information is shown in Figure 10. Then, vertex
shaders and fragment shaders are created, and WebGL functions are used to set various environment
and material properties. Finally, the generated WebGL rendering information is transmitted to the
visualization module. The analysis flow chart is shown in Figure 11.
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2.2.3. Coordinate Transformation

In Cesium, there are two commonly used coordinate systems: the WGS84 geographic coordinate
system and the Cartesian space Cartesian coordinate system. Through the model analysis, the various
attribute information of the building is obtained, including the coordinates, attributes, etc. of each
component. However, the coordinates of the resolved components are only the offset from the center
point coordinates of the model and are derived from the spatial Cartesian coordinate system inside
the model. The model is loaded on the 3D sphere by using the WGS84 geographic coordinate system,
which requires coordinate transformation. The steps are as follows.

1. Since the coordinates of the center point are set by us, it is assumed that the coordinates of the
center point coordinates on the three-dimensional sphere are in the WGS84 geographic coordinate
system longitude, latitude, and elevation are lng, lat, and alt, respectively.

2. Find the (x, y, z) corresponding to the Cartesian space Cartesian coordinate system on the
three-dimensional sphere.

3. According to the parsed coordinate data, these coordinates are the offsets from the coordinates
of the center point, assuming (X, Y, Z), so (x + X, y + Y, z + Z) is the Cartesian space right angle
coordinates in the coordinate system on the three-dimensional sphere.

4. Convert all calculated (x + X, y + Y, z + Z) to the corresponding (lng, lat, alt) in the WGS84
geographic coordinate system, which is the target coordinate that is needed.

In the Cesium platform, cesium.js provides these coordinate transformations. There are two ways
to convert the WGS84 geographic coordinate system into a Cartesian space Cartesian coordinate system.

The first one is indirect conversion. Since there is no specific latitude and longitude object in
Cesuim, to obtain the latitude and longitude, you first need to calculate it as radians and then convert
it. The code is as follows.
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var ellipsoid = viewer.scene.globe.ellipsoid (1)

var coord_wgs84 = Cesium.Cartographic.fromDegrees(lng, lat, alt) (2)

var coord_xyz = ellipsoid.cartographicToCartesian(coord_wgs84) (3)

The second way is direct conversion, cesium.js provides the corresponding conversion function
Cesium.Cartesian3.fromDegrees (longitude, latitude, height, ellipsoid, and result), you can directly
call the function.

For the Cartesian space, input the Cartesian coordinate system into the WGS84 geographic
coordinate system, that is, the inverse operation of the WGS84 geographic coordinate system into the
Cartesian space Cartesian coordinate system. The code is as follows.

var ellipsoid = viewer.scene.globe.ellipsoid (4)

var cartesian3 = new Cesium.cartesian3(x, y, z) (5)

var wgs84 = ellipsoid.cartesianToCartographic(cartesian3) (6)

var lat = Cesium.Math.toDegrees(wgs84.latitude) (7)

var lng = Cesium.Math.toDegrees(wgs84.longitude) (8)

var alt = wgs84.height (9)

3. Results

The experimental results of the precise urban component management method based on the
GeoSOT grid code and BIM include the following aspects.

First, GeoSOT global split stereo mesh implementation, including global solid mesh rendering
implementation, arbitrary hierarchical latitude and longitude elevation single solid mesh rendering
implementation, and local area solid mesh rendering, as shown in Figure 12.
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Figure 12. This is the GeoSOT global split stereo grid implementation. (a) 6-level GeoSOT global
split stereo grid. (b) Local area GeoSOT globally split stereo grid. The level, latitude, and longitude
parameters are (12, [35.5555, 37.5860], [103.1827, 105.2057], [0,50]). (c) Any level, latitude, longitude,
and elevation, a single GeoSOT global split stereo grid. The level, latitude, longitude and elevation
parameters are (12, 36.546219, 104.164491, 20).
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Second, the BIM model is loaded and coded. The model file is loaded, and the BIM model is
loaded according to the physical 1:1 scale and is in the real geographical position of the building (Baiyu
City Commercial Street), as shown in Figure 13.
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longitude, and elevation to achieve the coding of the model parts. To facilitate the coding of 
components, we divided the model externally and internally, as shown in Figure 14a. According to 
the size of the original proportion of the fire hydrant, the 25-level three-dimensional grid size is 
suitable for fire hydrant parts. The hydrant parts are coded as shown in Figure 14b. 
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Figure 13. This is the BIM model loading display of the commercial Guanlan Street in Baiyin City.
(a) Google map search real location. (b) Viewing the model from a vertical perspective. (c) View of the
model from a side perspective.

As already mentioned, through the BIM model analysis, the coordinate information of each
component of the building is obtained, and then the coordinates of WGS84 of each component on the
three-dimensional sphere are obtained by Cesium coordinate transformation. At this time, we directly
call the GeoSOT grid drawing function, determine the level, and input the latitude, longitude, and
elevation to achieve the coding of the model parts. To facilitate the coding of components, we divided
the model externally and internally, as shown in Figure 14a. According to the size of the original
proportion of the fire hydrant, the 25-level three-dimensional grid size is suitable for fire hydrant parts.
The hydrant parts are coded as shown in Figure 14b.
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hydrant parts coding. Three-dimensional grids of different colors represent the hydrant parts on
different floors.

Excluding the coding of the model fire hydrant parts, we also partitioned the model as a whole
and designed a set of semantics from absolute coding (GeoSOT grid code) to relative coding (significant
reduction of coding length) to the position information. The coding system of the code can greatly



ISPRS Int. J. Geo-Inf. 2019, 8, 159 12 of 18

assist nonprofessionals, or firefighting component installers can quickly find the target fire hydrant on
the ground, as shown in Figure 15.
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Figure 15. Model partition.

Third, a database was established to achieve precise management. After the coding of each part
of the model was completed, each grid code was used as a key to establish a database to realize the
two-way query and to dynamically add and delete components, to realize the refined management,
efficient management, real-time dynamic management, etc. of urban components.

For example, in a precise two-way query, such as the fire protection component and the business
system data interconnection, the fire protection component in the model in the platform is clicked,
which can query and pop up the information on the fire protection component in the business system.
In the same way, searching for a firefighting component in the business system can display the
firefighting component directly in the platform, as shown in Figure 16.
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For example, to accurately add fire hydrant components, click the “Add component” button to
pop up the dialog box. In the interface, as the mouse moves, the system automatically fills in the
longitude, latitude, and elevation. We only need to select the parts to be added, such as the fire hydrant,
then click on the location you want to add in the platform model, then click the confirm button and
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the system will automatically fill in the relative code (RCode); the GeoSOT code is also the absolute
code (GCode). Finally, click the Confirm Add button is clicked to complete the addition, and the
corresponding information will be stored in the database and can be queried, as shown in Figure 17, in
which the red grid contains the successfully added hydrant components.
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4. Discussion

Through the above experimental results, we can analyze the following conclusions:
(1) From the experimental results that are shown in Figures 12–14, it can be concluded that the

method does achieve the fusion of the GeoSOT grid with real geographic information and the building
information model, which is not the previous method. In addition, combined with the GeoSOT grid,
BIM can truly improve urban component management.

Global meshing is achieved through the GeoSOT grid, and the GeoSOT grid can be as small as a
centimeter. The entire urban architecture, roads, etc. can be modeled through BIM technology, and the
city is presented in its original proportion. The two are just complementary. The BIM model lacks real
geolocation attributes, and the GeoSOT grid just makes up for this; the GeoSOT grid is just a way of
splitting the Earth with only its geographic location and lack of city information, and the BIM model
just makes up for this. The combination of the two is perfect for improving the problem of urban
component management.

(2) From the experimental results shown in Figure 16 for the precise query of the fire hydrant
and the precision-added fire hydrant components shown in Figure 17, it can be seen that the method
can indeed achieve the precise management of urban components. Moreover, the BIM model data
visualization can be realized on the 3D Earth platform, and it is more intuitive and easier to operate for
urban component management, such as querying components, adding components, and so on.

Accuracy is mainly reflected in two aspects: the accuracy of the GeoSOT grid for real-world
geographic location and the accuracy of the BIM model for the relative position of urban components
within the building. In addition, because it is directly operated by meshing and visualizing the
three-dimensional earth, by realizing the virtual reality and putting the whole building in front of
us, turning urban component management, such as moving, deleting, adding component, and so on,
into stacked wood can make those nonprofessionals easy to get started, thus making management
more efficient.

(3) The method is highly scalable because it operates directly on 3D Earth. Through gridding,
down to a city and up to a country, you can achieve unified management.

This is the natural advantage of this method. Based on the Cesium three-dimensional earth, its
starting point is to start from the whole earth, from large to small. In contrast, it is easier to move from
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small to large. The GeoSOT grid remains unchanged. We only need to model the scope. There are one
to two cities. Similar to the fire hydrant components in this article, we can achieve unified management
of fire hydrant components across the country.

5. Conclusions and Directions for Future Research

Currently, cities are developing more rapidly, and the management of 3D urban components is
gaining more attention. Urban components are important objects of urban management. Managing the
3D parts of the city is the key way to construct 3D digital city management. The combination of GIS and
BIM will become an important trend in the development of 3D digital urban management. This paper
proposes a combination of GIS and BIM technologies that uses a precise urban component management
method based on the GeoSOT grid code and BIM, which effectively solves the shortcomings of the
current urban component management methods that cannot achieve refined, efficient and dynamic
management of urban components. In addition, the method proposed in this paper with combined
GIS and BIM technologies plays a large role in the future of smart fire protection.

Future research should be as follows. The grid management system relies on the GeoSOT global
dissection theory as the theoretical basis and completes the accurate identification and efficient query
and retrieval of fire parts, facilities, and personnel by constructing a large distributed index table and
relies on modern high-precision sensors to obtain real-time information on firefighting parts, facilities,
and firefighters in firefighting scenes. Through the modeling of fire facilities operation, fire brigade
and material control, risk hazard investigation, social rescue situation monitoring, and operational
abnormalities, a fire disaster classification warning model should be established to realize the fire
warning. Through grid-based data management and the precise location of the disaster site, the
pathless navigation method should be used to establish scientific rescue of the disaster site. Through
the internet of things data at the time of the disaster, combined with the gridded proximity analysis
and the shortest path analysis algorithm, the grid analysis of fire protection should be completed,
thereby completing the fire lifecycle management from predisaster early warning and disaster relief
and disaster analysis to achieve intelligent fire protection.
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Appendix A

1. encode function specific code:
function encode(level, lon, lat, height) {

let lonlatResolution = LON_LAT_TABLE[level];
let heightResolution = HEIGHT_TABLE[level];
let lonInt = Math.floor(Math.abs(lon)/lonlatResolution);
let latInt = Math.floor(Math.abs(lat)/lonlatResolution);
let heightInt = Math.floor(Math.abs(height) / heightResolution);
console.assert(lonInt <= Math.pow(2, level- 1));
console.assert(latInt <= Math.pow(2, level-1));
console.assert(heightInt <= Math.pow(2, level-1));
if (heightInt > Math.pow(2, level - 1))

console.log(height);
let lonBinS = lonInt.toString(2);
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let latBinS = latInt.toString(2);
let heightBinS = heightInt.toString(2);
console.assert(lonBinS.length <= level - 1);
console.assert(latBinS.length <= level - 1);
console.assert(heightBinS.length <= level - 1);
let lonBin = Array(level-lonBinS.length).join(‘0’) + lonBinS;
let latBin = Array(level - latBinS.length).join(‘0’) + latBinS;
let heightBin = Array(level - heightBinS.length).join(‘0’) + heightBinS;
lonBin = lon >= 0¿1’ + lonBin:‘0’ + lonBin;
latBin = lat >= 0¿1’ + latBin:‘0’ + latBin;
heightBin = height >= 0 ? ‘1’ + heightBin : ‘0’ + heightBin;
let codeArray = Array();
console.assert(lonBin.length === latBin.length && latBin.length === heightBin.length);
for (var i = 0; i < lonBin.length; i++) {

codeArray.push(lonBin[i]);
codeArray.push(latBin[i]);
codeArray.push(heightBin[i]);

}
return codeArray.join(“);

}
2. decode function specific code:

function decode(code) {
console.assert(code.length % 3 === 0 && code.length > 3);
let level = code.length / 3;
let lonArray = Array();
let latArray = Array();
let heightArray = Array();
for (var i = 3; i < code.length; i++) {

if (i % 3 === 0) {
lonArray.push(code[i]);

}
else if (i % 3 === 1) {

latArray.push(code[i]);
}
else {

heightArray.push(code[i]);
}

}
let lonString = lonArray.join(“);
let latString = latArray.join(“);
let heightString = heightArray.join(“);
let lonInt = parseInt(lonString, 2);
let latInt = parseInt(latString, 2);
let heightInt = parseInt(heightString, 2);
let lonlatResolution = LON_LAT_TABLE[level];
let heightResolution = HEIGHT_TABLE[level];
let lonMin = lonInt * lonlatResolution;
let latMin = latInt * lonlatResolution;
let heightMin = heightInt * heightResolution;
lonMin = code[0] === ‘1’ ? lonMin : -lonMin;
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latMin = code[1] === ‘1’ ? latMin : -latMin;
heightMin = code[2] === ‘1’ ? heightMin : -heightMin;
return {

level: level,
min_coord: [lonMin, latMin, heightMin],
max_coord: [lonMin + lonlatResolution, latMin + lonlatResolution, heightMin

+ heightResolution]
}

}
3. DrawSingleGrid function specific code:

function DrawSingleGrid (viewer, code, style) {
let codeRange = decode(code);
let level = codeRange.level;
console.log(codeRange);
if (codeRange.min_coord[0] >= 180 || codeRange.max_coord[0] <= -180 ||

codeRange.min_coord[1] >= 90 || codeRange.max_coord[1] <= -90)
return;

let lon_min = codeRange.min_coord[0] < -180?-179.999 : codeRange.min_coord[0];
let lat_min = codeRange.min_coord[1] < -90?-89.999 : codeRange.min_coord[1];
let lon_max = codeRange.max_coord[0] > 180 ? 179.999 : codeRange.max_coord[0];
let lat_max = codeRange.max_coord[1] > 90 ? 89.999 : codeRange.max_coord[1];
console.log(lon_min, lat_min, lon_max, lat_max);
viewer.entities.add({

name:
code,
rectangle: {

coordinates: Cesium.Rectangle.fromDegrees(lon_min, lat_min, lon_max, lat_max),
material: Cesium.Color.WHITE.withAlpha(0),
extrudedHeight: HEIGHT_TABLE[level],
height: codeRange.min_coord[2],
outline: true,
outlineColor: Cesium.Color.YELLOW

}
});

}
4. DrawRangeGrid function specific code:

function DrawRangeGrid (viewer, level, lon_range, lat_range, height_range) {
let lonlatResolution = LON_LAT_TABLE[level];
let heightResolution = HEIGHT_TABLE[level];
let lon_min = lon_range ? lon_range[0] : -180;
let lon_max = lon_range ? lon_range[1] : 180;
let lat_min = lat_range ? lat_range[0] : -90;
let lat_max = lat_range ? lat_range[1] : 90;
let height_min = height_range ? height_range[0] : 0;
let height_max = height_range ? height_range[1] : Math.pow(2, 16);
console.log(“long lat resolution”, lonlatResolution);
console.log(“height resolution”, heightResolution);
for (var lon = lon_min; lon <= lon_max - lonlatResolution; lon += lonlatResolution) {

for (var lat = lat_min; lat <= lat_max - lonlatResolution; lat += lonlatResolution) {
for (var height = height_min; height <= height_max; height += heightResolution) {
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viewer.entities.add({
name:

encode(level,
lon + lonlatResolution / 2,
lat + lonlatResolution / 2,
height + heightResolution / 2

),
rectangle: {

coordinates: Cesium.Rectangle.fromDegrees(lon, lat, lon +
lonlatResolution, lat + lonlatResolution),

material: Cesium.Color.WHITE.withAlpha(0.01),
extrudedHeight: heightResolution,
height: height,
outline: true,
outlineColor: Cesium.Color.YELLOW

}
});

}
}

}
}
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