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Abstract: Probabilistic time geography uses a fixed distance threshold for the definition of the
encounter events of moving objects. However, because of the distance-decay effect, different distances
within the fixed threshold ensure that the encounter events do not always have the same possibility,
and, therefore, the quantitative probabilistic time geography analysis needs to consider the actual
distance-decay coefficient (DDC). Thus, this paper introduces the DDC and proposes a new encounter
probability measure model that takes into account the distance-decay effect. Given two positions of a
pair of moving objects, the traditional encounter probability model is that if the distance between the
two positions does not exceed a given threshold, the encounter event may occur, and its probability
is equal to the product of the probabilities of the two moving objects in their respective positions.
Furthermore, the probability of the encounter at two given positions is multiplied by the DDC in
the proposed model, in order to express the influence of the distance-decay effect on the encounter
probability. Finally, the validity of the proposed model is verified by an experiment, which uses
the tracking data of wild zebras to calculate the encounter probability, and compares it with the
former method.

Keywords: time geography; distance-decay coefficient; space-time interaction; movement ecology;
encounter probability

1. Introduction

Probabilistic time geography states that the encounter between two moving objects without
observation is random. Given two observation points of a moving object or two adjacent control
points in a space–time trajectory, time geography uses a space–time prism to represent the space–time
uncertainty of the moving object between two given points. The intersection of a space–time prism and
a plane at a certain moment, commonly referred to as a space–time disc, contains all of the reachable
positions of the moving object at that moment. The position in the space–time disc is non-unique, and
the moving object can only be in one position at a time, so the position of the moving object in the
space–time disc is a random event. This randomness is expressed by probability density (PD) clouds
in probabilistic time geography, which describes the probability of a moving object to each location in
the disc. Furthermore, PDs can be used to measure the uncertainty of an encounter event when two
moving objects are randomly located at their respective positions.

Winter and Yin [1,2] first developed the foundation for probabilistic time geography by modeling
the PDs of moving objects through a random walk principle, and the encounter probability between
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moving objects with an overlap of PDs. Note that the positions of a pair of moving objects, A and B, are
a and b, respectively, and p(a) and p(b) are the probability of A and B visiting a and b, respectively. In the
discrete space, Winter and Yin [1] believed that if two moving objects are located in the same grid cell at
the same time, it is possible for them to encounter each other, otherwise it is impossible. However, this
method was based more on intuition and had some limitations, for example, A and B in the same cell
cannot meet, because the distance between them is beyond their respective perceptual range. Recently,
Downs [3] argued that the PD of a moving object can also be calculated by the inverse-distance-weighted
method, and then proposed a method to calculate the probability of encounter based on a 3D voxel
structure. In essence, Winter and Yin’s approach is consistent with Downs’s one. In terms of a PD
model, although the random walk method is different from the inverse-distance-weighted method,
the PD has a common feature, namely: the farther from the center, the smaller the probability is, which
takes into account the distance-decay effect of PD. In terms of the encounter measure, although one
is based on the areal unit in 2D and the other is based on the volumetric unit (voxel) in 3D, their
encounter semantics are the same, that is, only two individuals located in the same unit can encounter.
However, these encounter semantics neglect the individual’s perception ability, and their application
in continuous space will bring about the modifiable areal unit problem (MAUP), where the probability
of encountering changes as the granularity of the discrete structure changes.

In order to improve the measurement of encounter uncertainty in continuous space, Yin et al. [4]
proposed an encounter-probability measure model based on the distance relationship, which states that
if the distance between two moving objects does not exceed the maximum range that the individual
can perceive, their encounter is possible. This method of measuring the encounter probability uses the
distance relationship between individuals, instead of the relationship of individuals in a discrete unit,
so that it can be independent of the spatial data structure. This means that the method for continuous
space can theoretically avoid MAUP when implemented with discrete structures. However, this
method ignores the attenuation effects associated with distance, and thus the likelihood of encounter
does not decrease with increasing the distance, with the result of overestimating the likelihood of
encounter. According to Tobler’s first law of geography [5], near things are more related to each other;
this means that the intensity of interaction based on the distance measure should decrease with the
increasing distance, which is independent of the type of moving object.

This paper develops a new method based on the distance-decay effect as a measure of the
probability of encounter in continuous space. In theory, this method extends the distance-decay
coefficient (DDC), based on Yins’ former method. Given that two moving objects are located at two
locations where the distance does not exceed a given threshold, the former method considers that the
probability of encounter is equal to the product of the probabilities of two moving objects accessing
their respective positions; in the proposed method, the resultant probability value is multiplied by the
DDC in order to comprehensively measure the uncertainty of the encounter. Therefore, the proposed
method is different from the traditional one. We will study the mathematical basis of the encounter
probability measure method considering the distance-decay effect, and will develop the corresponding
algorithm in a homogeneous space, which can also be extended to a constrained space [6].

The remainder of the paper is organized as follows: Section 2 provides an overview of the
probabilistic time geography and random encounter in it, the distance-decay effect, and DDC. Section 3
constructs an encounter probability model based on the distance-decay effect. Sections 4 and 5 describe
the proposed model’s algorithm and its application results, respectively. Then, this paper closes with a
discussion of the results and guidance for future work in Section 6. Finally, Section 7 summarizes the
full paper.
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2. Background

2.1. Probabilistic Time Geography and Random Encounter

2.1.1. Probabilistic Time Geography

Probabilistic time geography is an extension of time geography based on probability. Given the
space–time constraints of a moving object, including space–time trajectory control points (also known
as anchor points), time geography considers the space–time position of the moving object between two
anchor points to be uncertain [7]. The prism represents the uncertainty in the period between the two
anchor points, while the space–time disc represents the reachable position range of the moving object
at any time point. The events of the mobile object at each location in the space–time disc, hereafter
referred to as location events, are random. Probabilistic time geography considers that the occurrence
of location events is not always uniform, and provides a probability density cloud distributed over the
disc as a sample space for location events.

In probabilistic time geography, some basic formulas, such as truncated normal distribution [2],
truncated Brownian Bridge [8], and the Markov process [9], are used to estimate the position probabilities
for vehicles [10], animals [3], and pedestrians [11], by using their trajectory data. As the probability
density cloud can reflect the difference in the frequency of moving objects to different locations in the
space–time disc, it can answer when and where a moving object is most likely to appear, and thus
provides a basis for applications related to location probability. For example, it can be applied to person
search and rescue [12], car accident analysis, and movement ecology research [3]. Probabilistic time
geography not only focuses on the positional probability of a moving object, but also on the possibility
of encountering between two moving objects.

2.1.2. Random Encounter in Probabilistic Time Geography

Random encounter in probabilistic time geography has been widely discussed in recent years.
As a kind of dynamic interaction, the probability of moving objects’ random encounters can be
quantitatively calculated by the methods of probabilistic time geography, taking into account the
heterogeneity of time and space. Downs et al. [3] first proposed a method for calculating the encounter
probability in continuous space, whose implementation is based on discrete structures. This method
is convinced that an encounter event can occur when two moving objects are only in one discrete
unit (i.e., voxel), otherwise it is impossible. However, this approach results in a MAUP as a result
of the dependence on discrete structures. In general, as the granularity of discrete voxels decreases,
the resultant encounter-probability decreases. Thus, on the basis of this method, Yin et al. [4] proposed
a new method that introduces the concept of an encounter–distance threshold. If the distance between
two moving objects does not exceed the threshold, it is possible that they encounter, otherwise it is
impossible. This definition of encounter semantics is different from that of Downs et al. [3], and is
independent of the type of spatial data structure.

For two moving objects, named H and G, their space–time discs are defined separately as Ωx
t (x ∈

Ωx
t ) and Ωy

t (y ∈Ωy
t ) at a specific time t, where x is a potential location for Hat time t and y is a potential

location for G at time t. The encounter event can be calculated as follows:

Emeet
(
Ωx

t , Ωy
t

)
=

{
< x, y; t >‖ y− x ‖≤ dmeet, x ∈ Ωx

t , y ∈ Ωy
t

}
(1)

where, Ement is a collection of encounter events of H and G at time t, dment is the encounter distance
threshold, and ‖ − ‖ is the Euclidean distance operator between any two locations. It is worth
mentioning that the determination of the distance threshold is related to the characteristics of the
moving object and the geographical environment. The size of the threshold has great influence on the
measurement of the encounter event. Taking into account the mutual exclusion between encounter
events, the probability of encounter can be calculated as follows:
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Pmeet
(
Ωx

t , Ωy
t

)
=

∑
x∈Ωx

t

∑
y∈Ωy

t ,‖y−x‖≤dmeet

h(x; t) · g(y; t) (2)

where Pment is the encounter probability of two moving objects at time t, h (x; t) represents the
probability that object H is at point x at time t, and g (y; t) represents the probability that object G is at
point y at the same time t.

It can be known from Formula (1) that the judgment basis of the encounter event, ‖y − x‖ ≤ dmeet,
is independent of the change of the distance. That is, within the threshold dmeet, the intensity of the
likelihood of an encounter event does not decrease as the distance increases. Although Equation (2)
can reflect the strength of the encounter, it ignores the effect of distance decay, with the result of
overestimating the probability of encounter. Therefore, considering the distance-decay effect is helpful
for improving the encounter probability measure.

2.2. Distance-Decay Effect and Distance-Decay Function

The distance-decay effect comes from the first law of geography [6]—“Everything is related,
but the closer the distance, the closer the relationship is”. When in a space–time interaction, it can
be understood that the closer the distance between two moving objects, the stronger the interaction
between them. The distance-decay effect can be divided into two levels [13], namely: macroscopic and
microscopic. At the macroscopic level, because of the distance-decay effect, the interaction between
two geographical entities is negatively correlated with the distance, under the premise that other
factors are relatively stable. At the microscopic level, the distance-decay effect can be interpreted as the
probability that a single object (e.g., animal or person) that moves to a different destination is inversely
related to the distance, and the strength of the interaction between two moving objects is inversely
related to the distance.

The distance-decay effect can be quantified into a variety of mathematical expressions that fit the
distance-decay function [13–17]. Figure 1 shows several common types of distance-decay functions,
including the power-law type and exponential type (Figure 1a), piecewise function (Figure 1b).
A common feature of these functions is that the function value f (d) changes in a non-incremental
manner as the distance d increases. As a different expression of the distance-decay effect, these
functions have different characteristics or application specificities. For example, Östh et al. [18]
used the exponential-type distance-decay function to study the commuting distance in Sweden,
Nijkamp et al. [19] detailed the problem of selecting the power-law and exponential-type distance-decay
function, Stepniak et al. [20] used linear regression to fit the distance-decay function to study the spatial
agglomeration problem in spatial interactions, and Ladau et al. [21] analyzed the similarity between
biological community in the form of piecewise distance-decay functions.
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In recent years, distance attenuation effects have received constant attention in applications related
to trajectory data, such as the similarity between plant community [21–23], spatial interaction between
humans [24] or animals [25], and specific places. Some scholars have combined it with GIS in order
to study the effects of environmental factors such as automobile exhaust on human diseases with
distance attenuation [26,27]. However, most of these studies are focused on static interaction without
temporal information, but can provide an application basis for the dynamic interaction with temporal
information proposed in this paper.

3. Random Encounter Model under Distance-Decay Effect

The existing encounter probability measure model takes into account the temporal information,
but ignores the distance-decay effect. Therefore, this paper combines the two in order to establish an
encounter probability model based on the distance-decay effect.

3.1. Construction of Encounter Event Based on the Distance Decay Effect

From the perspective of GIScience, random encounter is a space–time phenomenon between two
moving objects. This encounter is related to the distance between them, usually not exceeding the
maximum perceived distance of both parties. Between the 0 and the encounter distance threshold
(i.e., the maximum perceived range), potential encounter events of two moving objects are likely to
occur. As a result of the existence of the distance attenuation effect, different distances will affect the
uncertainty of the encounter. One measure of the magnitude of uncertainty is entropy. The greater
the uncertainty, the greater the entropy, and vice versa. Thus, according to the first law of geography,
the entropy of the encounter uncertainty changes in a non-decreasing manner as the distance changes
from 0 to the distance threshold (Figure 2). As shown in Figure 2, rather than a constant weight “1”
to all of the encounter distance within the distance threshold, the distance-decay function assigns a
coefficient or weight of no more than 1 to different encounter distances, which could ensure that the
closer encounter distance has a smaller entropy.
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Figure 2. Illustration of the encounter event with distance-decay effect.

From the results of the uncertainty measure of the encounter event, the method that takes into
account the attenuation effect will be different from the traditional method, with the result of a Boolean
value of 0 or 1. The result of the proposed method is a DDC between 0 and 1, which distinguishes the
difference in the actual distance between two objects. However, the traditional method only considers
the upper bound of the distance, and does not factor in the actual distance. If the DDC is a constant 1
or the distance between two moving objects exceeds the encounter distance threshold, the proposed
method is consistent with the conventional method; this means that the traditional method is a special
case of the proposed method.

The encounter event based on the distance attenuation effect, Emeet, can be described as follows:

Emeet
(
Ωx

t , Ωy
t

)
=

{
< x, y; t >

∣∣∣F(‖ y− x ‖) > 0, x ∈ Ωx
t , y ∈ Ωy

t , t ∈ T
}
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= ∪
x∈Ωx

t

∪
y∈Ωy

t

Emeet(x, y; t) =

∪
x∈Ωx

t

∪
y∈Ωy

t

(
[F(‖ y− x ‖) > 0] · Ex

t · E
y
t

)
(3)

where T is a tracking period, and T = {t1, t2, t3, . . . . . . tn} with a time step; F(d) is the distance-decay
function with the result of a value between [0,1]; Emeet(x, y; t) indicates that two moving objects H
and G at the point pair (x, y) may meet at time t; and Ex

t (resp.Ey
t ) is an event indicating that the

object H (resp. G) accesses the point x (resp. y). Compared with Equation (1), the main difference of
Equation (3) is to use DDC instead of the Boolean test, so Equation (3) not only considers the distance
threshold dmeet in Equation (1), but also quantifies the effect of the different distances within dmeet on
the interaction strength.

According to Equation (3), the Cartesian product of Ωx
t and Ωy

t , Ωx
t × Ωy

t contains all of the
position pairs of objects H and G. The sample space of the encounter event is contained in Ωx

t × Ωy
t ,

which is the set of position pairs that satisfy F(‖ y− x ‖) > 0, x ∈ Ωx
t , y ∈ Ωy

t . Thus, if Emeet(x, y; t)
occurs, then (x, y) ∈ Ωx

t × Ωy
t , and vice versa. In probability theory, basic events are mutually exclusive;

this means that the basic event Emeet(x, y; t) is mutually exclusive. Thus, Emeet
(
Ωx

t , Ωy
t

)
is a collection

of mutually exclusive events Emeet(x, y; t), that is, Emeet
(
Ωx

t , Ωy
t

)
= ∪

x∈Ωx
t

∪
y∈Ωy

t

Emeet(x, y; t).

In addition, as the movement of H and G is considered to be independent, Ex
t and Ey

t are
independent of each other. Thus, event Emeet(x, y; t) can be decomposed into the following form:
Emeet(x, y; t) = [F(‖ y− x ‖) > 0] · Ex

t · E
y
t .

3.2. Quantifying Distance-Decay Effect

In this section, we need to solve the F(d), which is discussed in a previous section and is defined
in the encounter events. According to Long et al. [28], with research on encounter interactions, when
the distance between moving objects exceeds a certain range (i.e., the maximum sensing range),
the encounter between them is impossible; this means that there is an upper limit to the distance
at which the encounter event occurs. Thus, above this upper bound, the attenuation coefficient is
0; otherwise, it is a positive number not exceeding 1. In this way, it can be first concluded that the
distance-decay function should be a piecewise function, and meanwhile, the domain of each segment
function can be achieved as follows:

F(d) =


1 0 ≤ d ≤ dlb

f (d) dlb < d ≤ dub

0 d > dub

(4)

where F(d) is called the distance-decay function in the total domain, f (d) is a coefficient, d is the distance
between two moving objects, and dlb and dub are two segmentation points in the total domain. When d
> dub, F(d) = 0, this indicates that the encounter of two moving objects is not possible. When d ∈ [dlb,
dub], F(d) = f (d); otherwise, F(d) = 1. dub corresponds to the dmeet in Equation (1). Furthermore, if f (d) =

1, Equation (4) is degenerated into a two-stage function; correspondingly, F (‖y − x‖) > 0 in Equation (3)
is degenerated to ‖y − x‖≤ dmeet in Equation (1). This also shows that Equation (1) is a special case of
Equation (3).

Equation (4) provides a framework for the distance-decay function (e.g., Figure 3). In a specific
application, the setting of the segmentation points and the selection of the segmentation function are
related to the moving objects and the geographical environment.

Under the condition that the maximum sensing range of the moving object is known, the distance
attenuation function can be obtained in two ways. One is the use of mathematical statistics, and the
other is to use the common distance attenuation function mentioned earlier. Given the observation
data of the potential interaction of two moving objects, the distance attenuation function is generated
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by the statistics of the interaction frequencies based on the different distances. This method has good
application specificity, but requires a large amount of observation data, and it is difficult to apply to
other environments, because the obtained attenuation function comes from a specific geographical
environment. This paper uses a general distance attenuation function.
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3.3. Encounter Probability Model Based on the Distance-Decay Effect

The probability of encounter is the probability of an encounter event between two moving objects.
According to the function of Emeet(x, y; t) = [F(‖ y− x ‖) > 0] · Ex

t · E
y
t in Equation (3), the probability of

a basic event Emeet(x, y; t) can be calculated as follows:

Pmeet(x, y; t) = P[Emeet(x, y; t)] According to formula (3)
= F(‖ y− x ‖) · P(Ex

t · E
y
t ) Multiplication rule for independent events

= F(‖ y− x ‖) · P(Ex
t ) · P(E

y
t )=

F(‖ y− x ‖) · h(x; t) · g(y; t) (5)

where F(‖ y− x ‖) is a coefficient not less than 0, which is related to the distance ‖ y − x ‖; h (x; t)
represents the probability that object H is at point x at time t; and g (y; t) represents the probability that
object G is at point y at the same time t. Thus, Pmeet(x, y; t) represents the probability of encounter when
moving objects H and G are at point pair (x, y) at time t. As events Ex

t and Ey
t are independent of each

other, the calculation of probability P(Ex
t · E

y
t ) can be expressed as follows: P(Ex

t · E
y
t ) = P(Ex

t ) · P(E
y
t ),

according to the multiplication rule of independent events.
Furthermore, according to the function of Emeet

(
Ωx

t , Ωy
t

)
= ∪

x
∪
y

Emeet(x, y; t) in Equation (3), using

Equation (5), the probability of Emeet
(
Ωx

t , Ωy
t

)
can be calculated as follows:

Pmeet
(
Ωx

t , Ωy
t

)
= P

(
Emeet

(
Ωx

t , Ωy
t

))
According to Formula (3)

= P
(
∪
x
∪
y

Emeet(x, y; t)
)

Addition rule for mutually exclusive events

=
∑

x∈Ωx
t

∑
y∈Ωy

t

Pmeet(x, y; t) According to Formula (5)

=
∑

x∈Ωx
t

∑
y∈Ωy

t

F(‖ y− x ‖) · h(x; t) · g(y; t) (6)

where Pmeet
(
Ωx

t , Ωy
t

)
represents the probability of encounter when moving objects H and G at time t.

Equation (6), relative to Equation (2), introduces DDC, so that the uncertainty of the encounter
interaction can be quantified by the DDC and position probabilities together. In addition, Equation (6)
realizes the organic combination of the probability theory and perception-based encounter measures,
thus providing a theoretical framework for the time–geographic measure of random encounters. For
more complex scenarios, Equation (6) can also be extended, including introducing distance attenuation
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coefficients that vary over time and/or space, or constraints that are unlikely to meet at a particular
time and/or space.

As DDC involves two variables, dlb and dub (=dmeet), Equation (6) is not too sensitive to dmeet with
respect to Equation (2), only related to dmeet. In reality, the individual’s maximum range of perception,
dmeet, is often estimated based on a small number of samples, and is related to the specific geographical
environment and the individuals, and thus has a strong uncertainty. In Equation (2), using dmeet as
the only indicator will obviously bring uncertainty to the measurement of the encounter event and to
its probability. In DDC, the coefficients of the distance variable less than and close to dmeet are set to
a small value close to 0, so that Equation (6), based on the DDC encounter-probability model, is not
sensitive to the uncertainty of dmeet.

In addition, Equation (6) calculates the probability of encounter on a time slice t, so it can
continuously calculate the probability of encounter at different times. For a tracking period of T = {t1, t2,
t3, . . . . . . tn}, the probabilities of encounter at different times can be obtained, such as Pmeet

(
Ωx

t1
, Ωy

t1

)
,

Pmeet
(
Ωx

t2
, Ωy

t2

)
, and so on, thus showing the trend of the probability of encounter in time. It is worth

mentioning that the potential area (e.g., Ωx
t ) of the moving object in Equation (6) can be replaced with

a fixed spatial location point (e.g., x). An encounter probability for a given spatial location can be
derived as follows:

Pmeet
(
x, Ωy

t

)
=

∑
y∈Ωy

t

F(‖ y− x ‖) · h(x; t) · g(y; t) (7)

Furthermore, given that moving object H is located at x point in period T, the probability that H
can meet G can be calculated as follows:

Pmeet
(
x, Ωy

t ; T
)
= Pmeet

(
x, Ωy

t1

)
∪ Pmeet

(
x, Ωy

t2

)
∪, . . .∪ Pmeet

(
x, Ωy

tn

)
(8)

where Pmeet
(
x, Ωy

t ; T
)

is the probability that moving object H at point x can meet the moving object
G in period T. As H and G can have multiple encounters at different times in period T, the addition
of Equation (8) can only use the probability addition formula of general events and cannot use that
of mutually exclusive events. The mapping of variable Pmeet

(
x, Ωy

t ; T
)

to the x point on the map can
generate an encounter-probability map, which can show the spatial distribution characteristics of the
encounter probability. Similarly, the probability of interaction between a pair of moving objects H and
G during the tracking period can be calculated as follows:

Pmeet
(
Ωx

t , Ωy
t ; T

)
= Pmeet

(
Ωx

t1
, Ωy

t1

)
∪ Pmeet

(
Ωx

t2
, Ωy

t2

)
∪, . . .∪ Pmeet

(
Ωx

tn
, Ωy

tn

)
(9)

4. Application

The encounter-probability algorithm based on the distance-decay effect is applied to the tracking
data of zebras from an open-source data website (https://crawdad.org), which is on elaborated by
Downs et al. [3] and Yin et al. [4]. This experiment selected data from three zebras, including a male
zebra (labeled A) and two female zebras (labeled B and C), during the same period for 60 h from
12:00:00 on 24 June 2005 to 00:00:00 on 27 June 2005. This time period was chosen mainly because the
tracking data of the three zebras during this period was relatively complete. These three zebras are
from different populations and thus reflect the behavioral characteristics of their respective populations.
Correspondingly, the interaction between the three zebras can also reflect the interaction characteristics
between adjacent populations. It is worth mentioning that zebra A is a bachelor and shows a trend
of courtship, which provides a biological basis for its interaction with the other two zebras. For the
interaction of the three zebras, this experiment mainly analyzes the interaction between two zebras,
and only considers the A–B interaction and A–C interaction. For illustration, the space–time trajectory
data of the three zebras is visualized in the ArcScene 10.2 as shown in Figure 4.

https://crawdad.org
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choice of the maximum possible speed of a moving object depends not only on the type of moving 
object (such as species), but also on the geographical environment and individual characteristics. The 
space–time trajectory is the result of the interaction of a particular individual with a particular 
environment, specifically, the outcome of an individual with the maximum possible speed limited by 
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The potential area for each zebra is represented using the voxel-based model with time steps
of 1 min, a raster resolution of 120 m, and a fixed maximum velocity of 1.5 m/s [3,4]. According to
the tracking data for each zebra, the average speeds between the adjacent track points are calculated
by the distance between these two points divided by the corresponding elapsed time. The result
shows that 99.7% of these average speeds do not exceed 1.5 m/s for the three zebras, which means that
1.5 m/s is large enough for this analysis. If too much speed is selected, the space–time disc proportional
to the speed will contain many positions that are impossible for the moving object to reach, and
thus the probability of non-zero will also be assigned to the unreachable position. Conversely, if too
small a speed is selected, it will cause the time–space disc to repel the reachable position. Therefore,
the choice of the maximum possible speed of a moving object depends not only on the type of moving
object (such as species), but also on the geographical environment and individual characteristics.
The space–time trajectory is the result of the interaction of a particular individual with a particular
environment, specifically, the outcome of an individual with the maximum possible speed limited
by a particular environment. In this sense, the maximum possible speed with trajectory derivation
is application-specific, which systematically considers the dual characteristics of the individual and
the environment. The inverse-distance-weight method is used to calculate the probability of each
location in the corresponding potential area; thus, the magnitude of the probability that a moving object
accesses a location is inversely related to the distance. In addition, the encounter distance threshold
dmeet was set to 200 m, which was the maximum observed distance of zebras in the population [4].

Based on the above data and parameters, the calculation of the encounter-probability can be
divided into two basic steps. First, determine the DDC. When the distance variable d is in the range
of 0–50 m, the DDC is set to 1; in 50–200 m), the DDC is set to a straight-line segment between the
two ends (50, 1) and (100, 0). For this illustration, this attenuation coefficient uses a simple linear
segmentation model, where the upper bound dub = 200 m is derived from the maximum sensing
range. The breakpoint of 50 m is derived from the literature [28], which uses this value to measure
the spatial proximity of the animals. Then, calculate the probability of encounter. According to
Equation (6), the probability of interaction between a pair of zebras at any one time can be calculated;
thus, the sequence encounter probability at a series of discrete moments can generate a graph of the
probability of encounter with time. Furthermore, according to Equation (8), the probability that one
zebra at a given position can encounter another zebra during a tracking period can also be generated,
and a map of the probability of encounter can be created by mapping these resultant probabilities to
their corresponding positions.
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5. Results

Figure 5 illustrates maps of the probability of encounter that take into account the effects of
distance attenuation. Of them, Figure 5a,c shows the probability maps of the interaction of zebra
A with B and C, respectively, during the tracking period. In order to show the impact of the DDC
introduction on the encounter probability, Figure 5b,d show the encounter-probability maps without
DDC, respectively. From these maps, there is little difference between the maps with DDC and those
with no DDC, especially for the spatial extent of the probability distribution. The biggest difference is
the probability density on the map. From the comparison of the A–B and A–C interaction probability
maps, it can be seen that the intensity and breadth of the A–B interactions are significantly larger than
the A–C interactions, so we can also conclude that A–B has dynamic interactions.
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While the probability map shows the encounter probability over the spatial distribution,
a probability histogram is also generated to detail the probability over time. As shown in Figure 6a,b,
the strength and duration of the interaction of A to B is greater than the interaction of A and C. Day
one—zebra A interacted with B and did not interact with C. Day two—zebra A has a strong interaction
with C but has a short duration, while interaction with B lasts for a long time with strong intensity.
Day three—zebra A has no interaction with C, while its interaction with B changes from strong to
weak. In general, the male zebra A was seeking interactive female zebras, and after a brief contact
with zebra C, finally chose a substantial interaction with zebra B. According to the variation diagram
of encounter probability with time, zebras A and B were attracted to each other, while zebras A and
C tended to repel each other. Despite the different expressions, maps and histograms are reflections
of the probability of encounter, and both show that the intensity of the A–B interaction is higher
than that of A–C. In addition, zebra A interacts with at most one zebra at a time during the tracking
period, which provides a basis for the analysis of dynamic interactions between multiple organisms in
movement ecology.
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In order to further compare the differences between the two encounter-probability models with
DDC and no DDC, based on the same parameters and data, the traditional encounter model is used to
generate the change of the encounter probability with time (Figure 6c,d). As a result of the existence of
the distance attenuation effect, the histogram generated by the proposed model avoids an excessive
pulse-type encounter probability with respect to the traditional model, and is smooth and hierarchical
overall. This difference can be attributed to the difference between the DDC and the constant 1 used in
the traditional model, which considers that the interaction strength does not decrease with increasing
distance (i.e., DDC = 1).

The above example uses the zebra data to test the effectiveness of the proposed model instead of
the traditional model. Although the model proposed in this paper is only validated based on zebra
data, it is also applicable to the space–time trajectory data of other objects, including other species of
wildlife and other types of moving objects.

6. Discussion

This paper constructs an encounter probability model based on the distance attenuation
effect, which takes into account the first law of geography compared to the traditional model.
The implementation of the proposed model involves many parameter settings, such as the unit size
of the discrete structure, the threshold of the maximum encounter distance, the distance attenuation
coefficient. Most of them are discussed in the existing literature (e.g., [3,4]). The setting of the DDC
function is mainly discussed here. The DDC replaces constant 1, so the proposed model is more flexible
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and adaptable; however, the DDC increases a coefficient function and its variable dlb compared to the
single dmeet in the traditional model, so the settings of the variables and their functions need to be
considered when applying the proposed model.

First, determine the appropriate values for the dlb and dub parameters in the DDC function, which
affect the measure of the probability of encounter. The DDC is a complex function, which is related to
moving objects, geographical environment, and research objectives. The maximum perceived distance
dub of different types of moving objects is different. In movement ecology, the dub usually comes
from the maximum distance between the different wild animals in the same population. Through
experimental observation, the maximum spacing of lions in the lion group and the maximum spacing
of the wild deer in the deer group are 200 m and 50 m, respectively [4]. This distance is suitable for the
identification of whether different individuals belong to the same population, but is not suitable for
interaction between different species (such as predation behavior), and thus cannot replace the dub of the
individuals in the interaction of avoiding natural enemies. In the DDC function, the maximum interval
between individuals within the same population can be used as dlb, and the maximum perceived
distance of the individual can be used as dub. In addition, according to the specific geographical
environment and research objectives, the two parameters dlb and dub can be adjusted appropriately.

Next, determine the type of DDC function. There are many types of distance attenuation functions,
each with their advantages and application specificity. However, the DDC function can usually
be divided into two types—linear and nonlinear (such as power function or exponential function).
Nevertheless, different types of DDC functions are not significantly different under the same conditions
of dlb and dub—point (0, 1) and point (dlb, 1) are usually connected as a horizontal straight line segment,
and a certain curve (the straight line is the simplest curve) is used to interpolate between point
(dlb, 1) and point (dub, 0). The accurate acquisition of the DDC functions requires a large amount of
spatiotemporal trajectory data and observation data for dynamic interactions in order to fit and correct
the DDC functions through the frequency statistics of interactions. An approximate DDC function can
use the universal distance attenuation function for reference and can be modified appropriately in
combination with specific applications.

Then, regress and verify the DDC. The distance attenuation effect is a law and is therefore
theoretically independent of the specific application. When the value of the dub variable is increased,
the encounter event and probability that the proposed model can contain will also change in an
undiminished manner. Moreover, this increase is convergent. When the dub is set to a sufficiently large
value, the distance between the two moving objects will not exceed this value as a threshold, and is
therefore considered to be always possible to meet, and the probability of encounter is always 1. For
this illustration, the value of dlb is fixed so as to simply analyze the distance attenuation phenomenon
of the encounter probability as a function of dub. For dub to uniformly sample nine points in the interval
of (200–1000 m), Equation (9) is used to calculate the cumulative encounter-probability of zebra A
and B during the tracking period. Figure 7a shows the average of the cumulative probability as a
function of dub; Figure 7b shows the derivative of the function, which expresses the characteristic that
the increase (or variation) of the encounter-probability decreases as the distance dub increases, and
thus can be used for the correction and verification of the DDC function.

Finally, apply the encounter probability to analyze the dynamic interaction mode. In this paper,
the distance-decay effect is applied to a space–time interaction such as a dynamic interaction. However,
how to determine the type of dynamic interaction is one of the hot research issues in movement
ecology nowadays [29]. In the case analysis, the encounter probability maps and histograms generated
by the encounter probability model can be used to analyze the patterns of dynamic interaction,
including mutual independence, mutual exclusion, or attraction. The encounter probability map and
the histogram bridge the encounter probability model and the dynamic interaction model. Future
work will develop an algorithm to determine the interaction mode using the encounter probability
based on the space–time trajectory data. In addition, the encounter probability map is not a probability
density function, because the sum of the probability on the map is generally not 1. The events in
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which zebra A encounters zebra B at any position are non-mutually exclusive. Such events can occur
in multiple places during the tracking period, and their respective probabilities can be equal to 1,
so that the sum of the encounter probabilities on the map is greater than 1. Although the sum of the
probabilities on the map can be equal to 1 by the normalization method, the normalized map will
be difficult for comparing the difference in the interaction strength between the A–B group and the
A–C group. Another work in the future is to normalize the probabilities on the two maps as a whole,
which not only facilitates the comparison between the two groups of interactions, but also uniformly
expresses the interaction probabilities of zebra A in the different groups.
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7. Conclusions

In this paper, an encounter-probability model based on the distance-decay effect has been
introduced, which uses the distance attenuation coefficient instead of the constant 1 in the traditional
encounter model. As constant 1 is a special case of distance attenuation coefficient, the proposed
model is also a generalization and unification of the traditional model. In the case study, the proposed
model can generate the encounter probability and its change graph with time and space, based on the
space–time trajectory data of moving objects, and it can also support the analysis of dynamic interaction
patterns between moving objects. In addition, in order to compare the effect of the improvement,
the proposed model is compared with the traditional model, including the encounter probability map
and the encounter probability histogram. The results show that the proposed model exhibits smooth
and continuous characteristics on the encounter probability map and histogram compared with the
traditional model, which is consistent with the continuous characteristics of the interaction behavior
of wild zebras on the grassland in time and space. Finally, the distance-decay effect of the encounter
behavior is simulated by the model proposed in this paper, which provides a basis for the regression
analysis of the distance attenuation coefficient.

However, several limitations and improvements should be discussed in future research. First of
all, although the implementation of the proposed model is independent of the spatial data structure
type, its application in the real environment is based on a discrete structure. As with any discrete
model, the smaller the size of the discrete unit, the higher the accuracy of the model shows, but this
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also increases the computational complexity. In the future, we will study how to choose an appropriate
spatial granularity based on the specific application. Next, in the case analysis, this paper uses the
inverse-distance-weight method to calculate the position probability, but this method ignores spatial
heterogeneity. Future research will provide a position probability method that takes into account
spatial differentiation. Then, applying the framework provided by the common law of distance
attenuation function in different fields, combined with the encounter problem, how to construct the
application-specific encounter-distance attenuation function is a problem that needs to be solved
in future research. Finally, as an alternative to the traditional encounter model, how the proposed
model is applied to measure the dynamic interaction mode of moving objects is another direction of
future research.
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