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Abstract: Due to the emergence of new big data technology, mobility data such as flows
between origin and destination areas have increasingly become more available, cheaper, and faster.
These improvements to data infrastructure have boosted spatial and temporal modeling of OD
(origin-destination) flows, which require the consideration of spatial dependence and heterogeneity.
Both ordinary least square (OLS) and negative binomial (NB) regression methods have been used
extensively to calibrate OD flow models by processing flow data as different types of dependent
variables. This paper aims to compare both global and local spatial interaction modeling of OD
flows between traditional and geographically weighted OLS (GWOLSR) and NB (GWNBR) modeling
methods. From this study with empirical data it is concluded that GWNBR outperforms GWOLSR
in reducing spatial autocorrelation and in detecting spatial non-stationarity. Although, it is noted
that both local modeling methods show improvement when compared against the equivalent
global models.

Keywords: OD flows; spatial interaction modeling; geographically weighted OLS; geographically
weighted negative binomial regression; Jiangsu

1. Introduction

Spatial interaction models, extensively used to investigate and analyze spatial movements, have
become a well-established method for understanding factors affecting geographical mobility, such as
migration [1,2], transport [3], international trade [4], commuting [5], and tourism [6]. A primary concern
in spatial interaction modeling is the statistical and spatial distributions of OD (origin-destination)
flows between origin and destination locations, which do not tend to follow normal distribution and
spatial independence.

Traditionally, spatial interaction models are calibrated using an ordinary least square (OLS)
regression, especially when dealing with normally distribution data. Here, log-transformed flow
data, which follows an approximately normal distribution, is used as the dependent variable for
calibrating spatial interaction models. However, in large networks, OD flow data often consist of zero
flows between some ODs. As these zero flows are not always compatible with OLS estimation, the
Poisson model is often used, particularly when dealing with count data. Where flow data is shown
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to demonstrate over-dispersion, negative binomial regression (NB) is used to replace the Poisson
model. Comparisons between OLS and NB have been reported within the literature [7] and can inform
decisions concerning choice of statistical model to analyze flow data.

However, in addition to it following a non-normal distribution, flow data, which represents
geographical mobility, can often demonstrate complicated spatial structures resulting from complex
spatial interactions between origin and destination units. Thus, consideration of spatial dependence
and heterogeneity is required. Spatial dependence, as the first law of geography, is caused by
certain spill-over effects which is an event in one context that occurs because of something else in
a neighboring context, whereas, spatial heterogeneity, as the second law of geography, is driven
by contextual variation over space. Within the literature, spatial autocorrelation—a form of spatial
dependence—has been used to examine spatial randomness in the residuals of statistical models.
Likewise, spatial non-stationarity—a form of spatial heterogeneity—has been frequently employed to
explore the variability of independent variable contributions across space. As such, geographically
weighted modeling has been proven effective and efficient with respect to spatial autocorrelation and
non-stationarity [8].

Due to the emergence of new technology associated with big data, such as sensors, tracking devices,
smart transactions, and citizen science, the availability of mobility data (i.e., flows between origin
and destination areas) has increased, as collection methods become cheaper and faster [9–11]. This
improved data infrastructure has boosted spatial and temporal modeling of OD flows [12–14], which
have a long-standing progression in the evolution of GIS [15,16]. Furthermore, this has stimulated
interest in, and demand for, temporally and geographically weighted flow modeling. For example,
Qian et al. [17] analyzed the spatial-temporal characteristics of expressway traffic flow, and Hui et
al. [18] focused on the nonlinear characteristics of expressway traffic flow in their analysis.

A variety of modeling methods have been employed to predict traffic flows on different
infrastructure types. For example, to predict highway traffic flow, studies have used agent-based
modeling with spatial cognition methods [19] as well as support vector regression along with
Bayesian classifiers [20]. Likewise, high-speed traffic flow has also been predicted using deep learning
methods [21,22]. However, many empirical studies [2,12,23] do not consider the spatial dependence
present in the flow data [24–26] and spatial non-stationarity of flow determinants [27]. This can lead to
biased and inefficient modeling results. Indeed, Fischer and Griffith [24] and LeSage and Pace [25]
identified theoretical and empirical reasons to explain inadequacies of global OLS and NB models
when analyzing flows that exhibit spatial dependence. There are several methods that consider spatial
heterogeneity, such as moving window regression [28] and spatially adaptive filtering [29,30]. The
geographically weighted regression (GWR) approach has been widely applied, with many variations
that are adapted for specific domains [31,32] or include spatial interactions [27]. This approach has
also given rise to the modeling of spatial non-stationarity. However, there are few studies that develop
and apply geographically weighted NB for regional transport flows in the literature.

Approaches employing both OLS and NB regression have been used extensively for statistical
modeling of flow data [24,25], where (depending on the dependent variable) a counting or
log-transformed ratio variable is used. Statistically, there is a strong argument that NB should
be used when flow data demonstrates an over-dispersion pattern [27]. Spatially, there is also a
strong statement that a geographically weighted regression model can better reduce the spatial
autocorrelation in the residuals of a model than its global model counterpart. However, it is unclear
which geographically weighted model—geographically weighted OLS (GWOLSR) or geographically
weighted negative binomial regression (GWNBR)—better reduces spatial autocorrelation of model
residuals. Thus, presenting a research gap in spatial statistical modeling of flow data. Findings from
such methodological comparisons can enable model developers to make informed decisions regarding
local modeling of flow data.

Using Jiangsu province, an economically wealthy province in eastern China, as a case study, this
paper analyzes and models traffic flow data, collected through transaction recordings [33], using both



ISPRS Int. J. Geo-Inf. 2019, 8, 220 3 of 18

global and local modeling methods (OLS and NB). The remainder of the paper is structured as follows:
Section 2 introduces the study area, data sets, and global and local modeling methods. Section 3
presents analytical and modeling results, followed by a comparison between two modeling methods
in Section 4. Finally, Section 5 draws general conclusions and makes recommendation for future work.

2. Materials and Methods

2.1. Study Area

Jiangsu province is located on China’s eastern coast and covers an area of 102,600 square kilometers.
With a total of 63 counties and cities, this province is usually divided into three regions—northern
(29 counties), central (16 counties, with its capital, Nanjing city), and southern (18 counties). These
three regions have been shown to demonstrate large variations in levels of economic growth and
social welfare, where the southern region, popularly called SuNan, has become a model of growth in
China within current literature [34]. In 2014, Jiangsu reported a gross domestic product (GDP) of up
to 6.51 trillion yuan RMB [35], thereby representing one of the fastest growing economies and most
vigorous provinces in China.

2.2. Data Collection

In 2015, the expressway network across Jiangsu was ranked first in China with respect to
density [35]. In this case study, the following data sets were used: location of toll-gates on expressway
network, OD traffic flows between toll-gates, and county-level socio-economic data. The location of
334 toll-gates, covering the whole Jiangsu Province, as shown in Figure 1, was captured by a GPS
device. The OD traffic flows between the 334 toll-gates were calculated from the transaction records at
each toll-gate. Each vehicle driver is required to pay a fee to use the expressway network. Fees are
paid in cash or electrically (e.g., WeChat) when the driver passes through a toll-gate. Every transaction
record contains the ID of the vehicle and its time of entering or leaving the toll-gate. Therefore, each
vehicle only has two records per trip—time the driver enters the expressway through the first toll-gate
and a second time where the driver exits the expressway through the second toll-gate. These two
records define the complete OD flow for the vehicle, from the entering gate to the exiting gate. In 2014,
there were 235 million OD flows between the 334 toll-gates, which is typical in terms of high volume
and velocity of big data. Administrative units in China include province, prefecture, and county.
Statistically, the county unit is the lowest spatial unit for national socio-economic census surveys.
To model the inter-dependence between transport and economy on regional scale, it is important to
aggregate the traffic flows from toll-gate to county unit. The two counties, in which the entering and
exiting gates (recorded when calculating OD flow) are located, become the origin and destination
counties accordingly. As there were very few OD flows within a county, intra-flows at county level
were excluded from inter-county flows. Out of the 63 counties within Jiangsu province, no transaction
records were available in 2014 for four counties (Gaochun County, Rudong County, Funing County,
and Jinhu County). Therefore, a total of 59 counties were included within the empirical study. The
aggregated traffic flows at county level was shown to form a flow matrix 59 × 59 for 2014. Statistical
(secondary) data of GDP were collated from the Jiangsu Statistical Yearbook 2015 [35]. This study
assumes that the distance between two counties is the measured road network distance (including the
expressway and other road networks) between the capitals (towns) of the two counties.
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2.3. Global and Local Modeling

Spatial interaction modeling has been employed extensively to analyze a variety of geographical
mobility factors (e.g., commuting, tourism, and migration). However, differences in methods used, e.g.,
OLS, Poisson, and NB regression, to calibrate the spatial interaction models have also been highlighted
within the literature [1,7,9]. When considering spatial non-stationarity within spatial interaction
models [27], calibration becomes more complicated as mobility often deals with count-type dependent
variables (e.g., number of people or goods).

There has been confusion amongst modelers concerning the proper selection of modeling methods
for a specific application. Theoretically, empirical evidence confirms the inter-dependence between
transport and economy on a regional scale. Meaning that the improvement of transport infrastructure
is driven by both rapid economic development [36] and increased economic activities, which in turn
are stimulated by decreasing transport cost due to improvements to transport infrastructure [37]. GDP
is a crucial indicator of economic development and has been used extensively for flow modeling in the
research of trade [38], migration [39], tourism [40], and aviation [41]. In this study, the study area has
been shown to have advanced transport infrastructure and nationally renowned urban and economic
agglomeration zones. Consequently, it is important to examine the impacts of economic development
on transport flows at county level. Taking spatial interaction modeling as an example, this paper aims
to compare two local modeling methods—GWNBR and GWR.

2.3.1. Global Models of Flow

The spatial interaction model for traffic flows at a regional level is represented by Equation (1):

Mij = K∗GDPa
i ∗GDPb

j /f
(
dij

)
, (1)

where Mij is the number of vehicles travelling from county i to county j (indicating the interaction
intensity between two areas), GDPi and GDPj represent the push and pull forces at the origin county i
and destination county j, respectively, and dij denotes the network distance between the capitals of

counties i and j. A negative exponential function was selected for the distance decay function f
(
dij

)
at a

regional scale [1,42], e.g., exp
(
−βdij

)
, where βmeans the spatial distance friction coefficient, where a

higher β value indicates that the flow is more sensitive to the network distance.
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Here, the equivalent global model can be calibrated by OLS as follows (Equation (2)):

log
(
Mij

)
= k + α∗ log(GDPi) + β∗ log

(
GDPj

)
+ γ ∗ dij + eij, (2)

whereα, β, and γ are the parameters to be calibrated and eij is the error term. In this case, the dependent
variable has been transformed from an integer to a real variable. In most cases, across disciplines, the
transformed variable follows a normal distribution so OLS regression is used for calibration [43–45].

However, traffic flow is considered a counting variable, where the data follows a Poisson
distribution. The Poisson regression method has been employed in numerous studies to calibrate the
model in Equation (1) [46–48]. In cases where the flow data is shown to demonstrate over-dispersion
(i.e., its variance is much larger than its mean), negative binomial regression should be chosen [1] and
Equation (2) updated accordingly, as shown by Equation (3):

Mij = NB
[
k∗ exp

(
α∗ log(GDPi) + β∗ log

(
GDPj

)
+ γ∗ log

(
dij

))
, alpha

]
, (3)

where alpha is a dispersion parameter, which is greater than 0 in the case of over-dispersion.

2.3.2. Local Models of Flow

The global models mentioned above do not take into account spatial non-stationarity when
modeling spatial interaction. Spatial non-stationarity, which highlights the varying relationships
between flows and other socio-economic variables across the study area, can be explored using
geographically weighted regression (GWR) [8,49]. As with global models, there are two different local
modeling methods for treating dependent variables differently. When using a log-transformed flow as
the dependent variable, local modeling can be represented as Equation (4):

log
(
Mij

)
= k + αij ∗ log(GDPi) + βij ∗ log

(
GDPj

)
+ γij∗dij + eij. (4)

For a Gaussian model, the calibration WLS (weighted least square) method is applicable as shown
by Equation (5):

b′i j =
(
XTWi jX

)−1
XTWi j Ti j. (5)

Further details concerning model calibration can be found in Fotheringham et al. [27].
When using raw flow values as the dependent variable, local modeling is updated as shown by

Equation (6):
Fij = NB

[
kij ∗ exp

(
αij ∗ log

(
Popi

)
+ βij ∗ log

(
GDPj

)
+ γij∗dij

)
, aij

]
, (6)

where ij means the location of flow from origin site i to destination site j. Here, each flow has a set of
parameters together with other local statistics, e.g., standard error and t-statistics.

The spatially weighted interaction model (SWIM) is a local modeling method that incorporates
flow data [27] and is based on the Poisson model. In the case of NB regression, where it is assumed
that there are a total of n flows and m explanatory variables, parameters in Equation (6) are calibrated
as shown by Equation (7) (for further details of algorithms, see da Silva and Rodrigues [32]):

ˆβ{i j} =
[
A′W{i j}G{i j}A

]−1
A′W{i j}G{i j}Z{i j}, (7)

where A is a vector matrix of n ×m and W{ij} is an n × n diagonal matrix of spatial weight for flow ij,
as shown by Equation (8).

W{ij} =


ωi1 0 . . . 0

0 ωi2 . . . 0
...

...
. . .

...
0 0 . . . ωin

 (8)
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2.3.3. Bandwidth

Due to the complexity of flow data that includes both origin and destination sites, local modeling
needs to appropriately measure the distance between flows and properly calibrate the local models. In
the case of flow-focused spatial interaction modeling [27], the distance between two flows ij and i′j′, as
shown in Figure 2, are measured as d(ij)(i′j′) (as shown by Equation (9)), in which the direction of flow
is considered:

d(ij)(i′j′) = sqrt
[
(xi − xi′)

2 +
(
yi − yi′

)2
+

(
xj − xj′

)2
+

(
yj − yj′

)2
]
. (9)
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There are two popular methods to calculate spatial weight W
(
dij

)
: fixed bandwidth and

adaptive bandwidth.
Fixed bandwidth aims to search for an optimal distance, within which all flows of j will be

calculated a spatial weight, wij by following a Gaussian function, as shown by Equation (10):

ωi j = exp

−0.5
(di j

b

)2, (10)

where b is the optimal threshold distance, called bandwidth in this case, and dij is the distance between
flows i and j.

Adaptive bandwidth aims to search for the optimal number of nearest flows and is used to
determine the distance bi for each flow i. It is clear the bi is affected by the density of flows near flow i.
In this case, spatial weight is calculated using the bi-square kernel function, as shown by Equation (11).

ωi j =


[
1−

(
di j
bi

)2
]2

, i f di j < bi

0, otherwise
, (11)

Here, optimal bandwidth is generated through a golden selection process until a minimum corrected
Akaike information criterion (AICc) value has been achieved.

2.3.4. Flow-Based Global Moran

Global Moran I has become a popular method to measure spatial autocorrelation, which is a form
of spatial dependence. Many geographic patterns demonstrate spatial dependence due to complicated
socio-economic processes shaping the patterns, such as economic agglomeration in this case study.
When the spatial autocorrelation, a form of spatial dependence, is present in the model residuals, the
statistical model will have biased and inefficient parameter estimations [8]. In this paper, this method
is employed to compare the reduction of spatial auto-correlation in the residuals of global and local
models. Considering the unique spatial autocorrelation in flow data, spatial weight is defined by using
contiguity at both origin and destination sites (as detailed by Chun [50]).
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Flows are considered adjacent only when both sites (origin and destination) are immediately
adjacent to one another, as shown in Figure 3. In the spatial weight matrix, wij = 1 if flow i and j are
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2.3.5. Comparisons

Model performance was assessed using several statistical methods. In the case of global models,
adjusted R2 were used to show how much variance (%) in the dependent variable can be explained
by the global model. AICc was used to compare the efficiency of model performance improvements
between global and local models. However, due to different methods of calibration, AICc cannot
be used to compare OLS and NB. Flow-based Moran I, which indicates the spatial autocorrelation
in the residuals of models, was instead used to compare the efficiency of modeling methods when
considering spatial dependence. The strengths of local modeling methods were evident when mapping
the distribution of parameter estimations and their t-statistics. To compare the spatial patterns between
significant parameter estimations from two local modeling methods, the Lee–Sallee shape [51] indicator
was used, as shown by Equation (12):

L = (A0 ∩A1)/(A0 ∪A1), (12)

where A0 and A1 are the spatial distribution of parameter estimations from OLS and NB local models,
respectively, ∩ is the logic intersection between both spatial distributions, and U is the union of both.

The traditional correlation coefficients were used to compare the statistical correlation between
their data distribution as follows:

Rk = correlation coefficient between the parameter estimates from both OLS and NB models and
k = 1, 2, 3 represents three explanatory variables (GDPi, GDPj, and Dij).

3. Results

3.1. Flow Patterns

In 2014, there were 111,556 (= 334 × 334) traffic flows between the 334 toll-gates, with a total
volume across these traffic flows of 234,119,115. Flows with a volume larger than 10,000 were mapped
using ARCGIS 10.6, as shown in Figure 4a. Figure 4a clearly shows that high-volume flows are mainly
distributed across southern Jiangsu. Among these flows, 22 flows were shown to have volumes greater
than 500,000, accounting for 7.37%; 79 flows had volumes between 200,000 and 500,000, accounting for
9.47%; and 84,126 flows had volumes smaller than 1000, accounting for 6.45%. Spatially, large-volume
flows between a small number of primary toll-gates were found to dominate, particularly around
the urban agglomeration zones of Nanjing, Suzhou, and Wuxi cities. This highlights the imbalanced
distribution of traffic flows across the study area.
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aggregated to county level.

After aggregating the traffic flows from toll-gate to county level, there were 3481 flows (=59 × 59)
between 59 counties, as shown in Figure 4b. In 2014, high-volume flows were mainly located in
southern Jiangsu, with dominant flows present around the core centers of Nanjing, Suzhou, and
Wuxi. The smaller-volume flows (less than 100,000) were found to be primarily situated in northern
Jiangsu. However, within this region, some flows were found to be larger than 100,000, which can
be mainly attributed to connections amongst the regional central cities of Xuzhou, Huai’an, and
Yancheng. Among all the flows, 10 flows with a volume larger than 3 million were found to account for
24.43%, taking a dominant position on the network. In addition, 32 flows with volumes between 1 to
3 million were found to account for 21.47% and 2214 flows with volumes less than 10,000 were found
to account for only 2.71%. Same as the flow patterns at toll-gate level, the network was dominated by a
small-number of high-volume flows in southern Jiangsu.

Statistically, a mean volume of 67,256.29 was reported, with a standard deviation of 424,074.9. From
this, the ratio of variance to mean was calculated at 2,673,943.5 indicating an over-dispersion statistical
pattern. Figure 5 shows county level traffic flows as histogram and log-transformed data. For the
former, an exponential distribution of flow volumes can be seen. Comparatively, the log-transformed
data indicates that the flow volume follows an (approximately) normal distribution. Thus, two options
for calibrating the spatial interaction models were employed. OLS-based calibration was used for
log-transformed flow data as it follows a normal distribution. Meanwhile, NB regression was used for
raw flow data, as the data is considered a counting variable with a strong over-dispersion pattern. The
polygon-based Moran I for GDP, as shown in Figure 6, was 0.207 (p value of 0), indicating a clustering
pattern of GDP, with the highest values in Nanjing and Suzhou cities.
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3.2. Global Modeling—OLS/NB

The OLS global model was calibrated as follows (t-statistic value of the parameter estimation
given in brackets):

log
(
Mij

)
= −2.592 + 0.960 ∗ log(GDPi) + 1.069∗ log(GDPj − 0.008∗dij + eij, (13)

(−10.538) (36.565) (40.704) (−48.949).

Here, the adjusted R2 was found to be 0.609 with an AICc value of 11,633.207. This indicates that
60.9% of the variance in the log-transformed volume of flows can be explained by the three variables.
All three explanatory variables were found to be statistically significant at a 1% level. Comparatively,
the parameter estimations of GDP at origin site (OGDP) and GDP at destination site (DGDP) were
found to be 0.960 and 1.069, respectively. This indicates that a greater positive contribution was
reported by the economic power in the destination county when compared with the origin county. It
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also reveals that GDP has much higher pulling than pushing effects on traffic flows across the province.
The parameter estimation of OD distance was found to be significantly negative at −0.008.

By contrast, the NB global model (Equation (3)) was calibrated as follows (t-statistic values for
each parameter estimation are given in brackets):

Mij = NB
[
8.036 ∗ exp

(
0.787 ∗ log(GDPi) + 0.987 ∗ log

(
GDPj

)
− 1.958 ∗ log

(
dij

))
, 2.165

]
, (14)

(25.454) (27.704) (33.920) (−51.613) (50.521).

Here, the adjusted pseudo R2 was reported to be 0.737 with an AICc value of 72,822.835. The
pseudo R2 does not have the same meaning as the adjusted R2 from the OLS model although a
higher pseudo R2 does indicate better performance. All three explanatory variables were found to
be statistically significant at a 1% level. Comparatively, the parameter estimations of GDP at origin
site (OGDP) and GDP at destination site (DGDP) were 0.7870 and 0.987, respectively, which again
highlights a greater contribution from the economic power in the destination county when compared to
the origin county. This reveals that GDP has a much greater pulling than pushing effect on traffic flows
across the province. The parameter estimation of OD distance was found to be significantly negative at
−1.958. Here, the alpha value was found to be 2.165, indicating a strong over-dispersion pattern.

Deploying the contiguity-based Moran I, as described in Section 2, the spatial autocorrelations in
the residuals from the global OLS and NB models were calculated to be 0.348 and 0.197, respectively.
All of which were found to be statistically significant at a 1% level. This indicates that the global NB
model has a weaker spatial dependence than the global OLS model.

3.3. Local Modeling—OLS/NB

Considering the varied density of flows across the study area, as shown in Figure 4b, an adaptive
bandwidth strategy (Equation (9)) was chosen to calibrate each local model.

3.3.1. GWOLS Flowing Model

Based on a golden selection process, a bandwidth of 18 (meaning 18 flows are picked up as
a sample for a local OLS model of each flow) was searched to achieve the minimum AICc value.
The adjusted R2 for the local modeling was reported as 0.839, which is a vast improvement on the
performance of the global OLS model. Here, the AICc value was found to be reduced from 11,633.207 to
the current value of 10,352.371. At a significance level of 1%, there were 1624 (46.7%), 1714 (49.2%), and
1440 (41.4%) flows out of 3481 with statistically significant parameter estimations of OGDP, DGDP, and
distance, respectively. No explanatory variables were found to achieve 50% of significant parameter
estimation. The statistical distributions of all three t-statistics, and their corresponding parameter
estimations, are shown in Figure 7.

All parameter estimations of flows found to be significant at a 1% level were mapped, as shown
in Figure 8. Among the parameter estimation of OGDP, the maximum value was found to be 13.53,
with a minimum of −13.13, and around 50 flows were found to have a negative parameter estimation.
The majority of parameter estimations were found to range between 0 and 3, indicating a pushing
effect of economic development on traffic flows, particularly in northern Jiangsu. Comparatively, the
maximum parameter estimation value of DGDP was found to be 13.05, with a minimum of −12.7,
and around 51 flows were found to have a negative parameter estimation. The majority of parameter
estimations were found to be positive, indicating a pulling effect of economic development on traffic
flows, particularly in northern Jiangsu.
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Finally, parameter estimation values of distance were found to range from a minimum −0.073 to a
maximum 0.005, with a higher value (indicating greater sensitivity to transport distance) reported in
southern Jiangsu. Overall, these parameters have demonstrated spatial heterogeneity across the study
area. However, the spatial effects of GDP were found to be relatively stronger than distance.



ISPRS Int. J. Geo-Inf. 2019, 8, 220 12 of 18
ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 12 of 18 

 

  
(a) (b) 

 
(c) 

Figure 8. Distributions of three parameter estimations with GWOLS model. (a) OGDP; (b) DGDP; (c) 
distance. 

Finally, parameter estimation values of distance were found to range from a minimum −0.073 to 
a maximum 0.005, with a higher value (indicating greater sensitivity to transport distance) reported 
in southern Jiangsu. Overall, these parameters have demonstrated spatial heterogeneity across the 
study area. However, the spatial effects of GDP were found to be relatively stronger than distance.  

3.3.2. GWNBR Flowing Model 

Based on a golden selection process, a bandwidth of 75 (meaning 75 flows are picked up as a 
sample for local NB model for each flow) was searched to achieve the minimum AICc value. The 
adjusted pseudo Rଶ for local modeling was found to be 0.918, which indicates a vast improvement 
on the performance of the global NB model. The AICc value was found to be greatly reduced from 
72,822.835 to the current value of 69,648.787. At a significance level of 1%, 2582 (74.2%), 2735 (78.6%), 
and 3209 (92.2%) flows out of 3481 were found to be statistically significant parameter estimations of 
OGDP, DGDP, and distance, respectively. All explanatory variables were found to achieve more 
than 70% of significant parameter estimation. The statistical distributions of all three t-statistics, and 
their corresponding parameter estimations, are shown in Figure 9.  

Figure 8. Distributions of three parameter estimations with GWOLS model. (a) OGDP; (b) DGDP;
(c) distance.

3.3.2. GWNBR Flowing Model

Based on a golden selection process, a bandwidth of 75 (meaning 75 flows are picked up as a
sample for local NB model for each flow) was searched to achieve the minimum AICc value. The
adjusted pseudo R2 for local modeling was found to be 0.918, which indicates a vast improvement
on the performance of the global NB model. The AICc value was found to be greatly reduced from
72,822.835 to the current value of 69,648.787. At a significance level of 1%, 2582 (74.2%), 2735 (78.6%),
and 3209 (92.2%) flows out of 3481 were found to be statistically significant parameter estimations of
OGDP, DGDP, and distance, respectively. All explanatory variables were found to achieve more than
70% of significant parameter estimation. The statistical distributions of all three t-statistics, and their
corresponding parameter estimations, are shown in Figure 9.
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All parameter estimations of flows, found to be significant at a 1% level, were mapped as shown
in Figure 10. Among the parameter estimation of OGDP, the maximum value was found to be 3.43
and the minimum −1.95, with three flows reporting negative parameter estimations. The majority of
parameter estimations were found to range between 0.5 and 2. This highlights the pushing effect of
economic development on traffic flows, particularly in northern and central Jiangsu. Comparatively,
the maximum parameter estimation value of DGDP was found to be 2.9, with the minimum −2.03, and
six flows reported negative parameter estimations. Here, the majority of parameter estimations were
found to be positive, thus highlighting the pulling effect of economic development on traffic flows,
particularly in eastern Jiangsu.
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Figure 10. Distributions of three parameter estimations with the GWNBR model. (a) OGDP; (b) DGDP;
(c) distance.

Finally, the parameter estimation values of distance were found to range from a minimum −7.95
to a maximum 0.51, with a higher absolute value for the flows between northwestern and southern
Jiangsu (particularly in border counties). Relatively, distance was found to have a stronger spatial
effect than GDP. Overall, these parameters have demonstrated spatial non-stationarity across the study
area. However, relative spatial effects of GDP were found to be weaker than that of distance, which is
contrary to the conclusion made from the OLS local model.

4. Discussion

To compare the two modeling methods, differences in modeling results were evaluated. First,
statistics (mean, standard deviation, and number of significant flows) of the three parameter estimations,
as shown in Table 1, were compared. From this, it can be suggested that local NB modeling is superior
at distinguishing these flows statistically, and thus will detect heterogeneity with more ease.

Table 1. Comparison in t-statistics distribution from local OLS and NB.

Model
OGDP DGDP Distance

Mean SD Num. 1 Mean SD Num. 1 Mean SD Num. 1

GWOLS 2.223 2.031 1624 2.414 1.894 1714 −2.465 1.665 1440
GWNBR 4.812 3.285 2585 4.980 3.075 2735 −5.601 2.303 3209

1 number of significant flows.

Second, employing the contiguity-based Moran I, as described in Section 2.3.4, the spatial
autocorrelations of residuals from local OLS and NB models were calculated and found to be 0.143 and
0.111, respectively. Compared with traditional statistical models, e.g., OLS in this paper, geographically
weighted modeling methods lead to the reduction of spatial autocorrelation in the model residuals.
Between the two geographically weighted modeling methods compared in this paper, the geographically
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weighted negative binomial regression methods can better reduce the spatial autocorrelation in the
model residuals. It indicates the parameter estimations from local NB are more efficient.

Third, using all the flows as samples, the correlations between the parameter estimations from
both OLS and NB based local models were calculated for OGDP (0.599), DGDP (0.582), and distance
(0.25). This suggests that the parameter estimations of GDP have a higher similarity between the two
methods, but less for distance.

Fourth, using the Lee–Sallee shape index for the three parameter estimations, values were found
to be 0.41 for OGDP, 0.44 for DGDP, and 0.40 for distance. These very similar but low values indicate
variations between spatial distribution of three parameter estimations across the two methods. Both
the correlation coefficient and Lee–Sallee shape index confirm this disparity in the modeling results.

Finally, calibrating GWFM was found to be a time-consuming process due to the golden selection
of bandwidth, particularly when there was a large number of flows (e.g., 3481 flows in this case study).
Using the following computer configuration—CPU Intel i5-3470 (3.2 GHz) and RAM 4.00 GB—the
total times for calibrating the local OLS and NB models were 0.067 and 1.817 hours, respectively.

5. Conclusions

Big data, collected from the transaction records of toll-gates across Jiangsu province, was used to
determine traffic flow (aggregated to county level) for the purpose of spatial interaction modeling.
Using GDP as a pushing force at the origin site and a pulling force at the destination site, the
flow-focused spatial interaction modeling was calibrated globally, using ordinary least square (OLS)
regression and negative binomial (NB) regression methods. The results reveal that the pulling effect of
economic development was stronger on traffic flows than its pushing effect in economically wealthy
regions. To consider spatial auto-correlation and non-stationarity, local spatial interaction models
were calibrated using geographically weighted OLS and NB, respectively. This study has confirmed
that both local modeling methods (either OLS or NB oriented) can improve the model performance
of the counterpart global model, in terms of modeling statistics (e.g., adjusted R2 and AICc) and
spatial autocorrelation (e.g., Moran I). Both modeling results were also found to exhibit strong spatial
non-stationarity in the transport impacts of economy and transport distance. Comparatively, global and
geographically weighted negative binomial flow modeling was found to reduce spatial dependence
more efficiently than their OLS counterparts. In particular, results from local modeling, which were
massively different from those reported for geographically weighed OLS modeling, were found to
better detect spatial non-stationarity.

In conclusion, both methods could be used to model global and local flows that result from
complicated spatial interactions. Compared with global model counterparts, the two local modeling
methods considering spatial non-stationarity, could be used to produce maps to help understand the
spatial process of socio-economic contributions. Wider implications of this study suggest that these
results (maps and statistics) could be used by policy makers to further regional economic and transport
development. When flow data is shown to demonstrate an over-dispersion statistical pattern and a
strong clustering spatial pattern, GWNBR outperforms GWOLSR in reducing spatial autocorrelation
in the model residuals. As a comparative study, this paper has demonstrated the following novelties
and has added value to GIS in the following areas.

First, this study is novel in the use of new big data, where regional transaction data recorded at
toll-gates on an expressway network across a large-area province has been used. Statistical models of
such flow data were used to help understand the varied contributions of economic development to
traffic flows and to consider the spatial interaction between county units. Thus, this study has proven
the added value of using big data to analyze regional transport patterns.

Second, this study is novel as it has developed and successfully applied geographically weighted
NB, including the Moran I of flow data, which has been rarely reported in GIS literature. Different
from general geographically weighted regression methods, geographically weighted NB considers the
complicated statistical and spatial patterns of flow data and as such requires the measurement of flow
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distance and calibration of NB models. Again, this study has proven the added value of employing
GWNBR to model similar flow data locally.

Most importantly, this study adds value by making comparisons between GWOLSR and GWNBR
and discussing which is superior in reducing spatial autocorrelation in model residuals and in detecting
spatial non-stationarity. The more reducing spatial autocorrelation residual, the better the model
is. This will aid modelers in making decisions when modeling flow data, especially where spatial
non-stationarity needs to be considered.

However, this study highlights potential challenges that could be addressed in future work. The
first concerns the visualization of created parameter estimation maps, which was a challenge due to the
large number of flow lines. Second, future work could focus on reducing the computational time for
calibrating local models particularly when working with a large-size matrix. Here, the use of a cloud
or parallel computation has been identified as a potential solution to this challenge. Third, challenges
may become visible as spatio-temporal flow modeling becomes increasingly more complex due to the
increased availability of flow data with high temporal resolution, e.g., hourly records in this study.

Theoretically, more socio-economic variables could be included in the spatial interaction models.
This would enable increased model performance and provide more evidence for regional policy making.
Technically, transaction data should be disaggregated by vehicle type and mode of transport to enable
the integration of spatial interaction modeling into traffic simulation.

Author Contributions: Conceptualization, Jianquan Cheng and Cheng Jin; Methodology, Lianfa Zhang and
Jianquan Cheng; Software, Lianfa Zhang; Validation, Lianfa Zhang, Jianquan Cheng and Cheng Jin; Formal
Analysis, Cheng Jin and Jianquan Cheng; Investigation, Cheng Jin; Resources, Cheng Jin; Data Curation, Jianquan
Cheng; Writing-Original Draft Preparation, Cheng Jin; Writing-Review & Editing, Jianquan Cheng; Visualization,
Cheng Jin; Supervision, Jianquan Cheng; Project Administration, Jianquan Cheng; Funding Acquisition, Cheng Jin
and Jianquan Cheng.

Funding: This research was funded by National Natural Science Foundation of China, grant number 41871137,
41571134, & 41571124 and the Natural Science Foundation of the Jiangsu Higher Education Institutions, grant
number 16KJA170002.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cheng, J.; Young, C.; Zhang, X.; Owusu, K. Comparing inter-migration within the European Union and
China: An initial exploration. Migr. Stud. 2014, 2, 340–368. [CrossRef]

2. Mak, J.; Moncur, J.E. Interstate migration of college freshmen. Ann. Reg. Sci. 2003, 37, 603–612. [CrossRef]
3. Hwang, C.C.; Shiao, G.C. Analyzing air cargo flows of international routes: An empirical study of Taiwan

Taoyuan International Airport. J. Transp. Geogr. 2011, 19, 738–744. [CrossRef]
4. Neumayer, E. On the detrimental impact of visa restrictions on bilateral trade and foreign direct investment.

Appl. Geogr. 2011, 31, 901–907. [CrossRef]
5. McArthur, D.P.; Kleppe, G.; Thorsen, I.; Ubøe, J. The spatial transferability of parameters in a gravity model

of commuting flows. J. Transp. Geogr. 2011, 19, 596–605. [CrossRef]
6. Jin, C.; Cheng, J.; Xu, J. Using user-generated content to explore the temporal heterogeneity in tourist mobility.

J. Travel Res. 2018, 57, 779–791. [CrossRef]
7. Hoffmann, V.H.; Sprengel, D.C.; Ziegler, A.; Kolb, M.; Abegg, B. Determinants of corporate adaptation

to climate change in winter tourism: An econometric analysis. Glob. Environ. Chang. 2009, 19, 256–264.
[CrossRef]

8. Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially
Varying Relationships; Wiley: Chichester, UK, 2002; pp. 53–142.

9. Xia, F.; Rahim, A.; Kong, X.; Wang, M.; Cai, Y.; Wang, J. Modeling and Analysis of Large-Scale Urban Mobility
for Green Transportation. IEEE Trans. Ind. Inform. 2018, 14, 1469–1481. [CrossRef]

10. Liao, C.; Brown, D.; Fei, D.; Long, X.; Chen, D.; Che, S. Big data-enabled social sensing in spatial analysis:
Potentials and pitfalls. Trans. GIS 2018, 22, 1351–1371. [CrossRef]

11. Long, Y.; Thill, J.C. Combining smart card data and household travel survey to analyze jobs-housing
relationships in Beijing. Comput. Environ. Urban. 2015, 53, 19–35. [CrossRef]

http://dx.doi.org/10.1093/migration/mnt029
http://dx.doi.org/10.1007/s00168-003-0130-4
http://dx.doi.org/10.1016/j.jtrangeo.2010.09.001
http://dx.doi.org/10.1016/j.apgeog.2011.01.009
http://dx.doi.org/10.1016/j.jtrangeo.2010.06.014
http://dx.doi.org/10.1177/0047287517714906
http://dx.doi.org/10.1016/j.gloenvcha.2008.12.002
http://dx.doi.org/10.1109/TII.2017.2785383
http://dx.doi.org/10.1111/tgis.12483
http://dx.doi.org/10.1016/j.compenvurbsys.2015.02.005


ISPRS Int. J. Geo-Inf. 2019, 8, 220 17 of 18

12. Zhang, Z.; He, Q.; Tong, H.; Gou, J.; Li, X. Spatial-temporal traffic flow pattern identification and anomaly
detection with dictionary-based compression theory in a large-scale urban network. Transp. Res. Part C 2016,
71, 284–302. [CrossRef]

13. Jenelius, E. Network structure and travel patterns: Explaining the geographical disparities of road network
vulnerability. J. Transp. Geogr. 2009, 17, 234–244. [CrossRef]

14. Kim, J.; Mahmassani, H.S. Spatial and temporal characterization of travel patterns in a traffic network using
vehicle trajectories. Transp. Res. Procedia 2015, 9, 164–184. [CrossRef]

15. Wilson, A.G. A family of spatial interaction models, and associated developments. Environ. Plan. A 1971, 3,
1–32. [CrossRef]

16. Roy, J.R.; Thill, J.C. Spatial interaction modeling. Pap. Reg. Sci. 2004, 83, 339–361. [CrossRef]
17. Qian, Z.S.; Li, J.; Li, X.; Zhang, M.; Wang, H. Modeling heterogeneous traffic flow: A pragmatic approach.

Transp. Res. Part B 2017, 99, 183–204. [CrossRef]
18. Hui, M.; Bai, L.; Li, Y.; Wu, Q. Highway traffic flow nonlinear character analysis and prediction. Math. Probl.

Eng. 2015, 2015, 902191. [CrossRef]
19. Manley, E.; Cheng, T. Exploring the role of spatial cognition in predicting urban traffic flow through

agent-based modeling. Transp. Res. Part A 2015, 109, 14–23.
20. Ahn, J.; Ko, E.; Kim, E.Y. Highway traffic flow prediction using support vector regression and Bayesian

classifier. In Proceedings of the 2016 International Conference on Big Data and Smart Computing (BigComp),
Hong Kong, China, 18–20 January 2016; pp. 239–244.

21. Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.Y. Traffic flow prediction with big data: A deep learning approach.
IEEE Trans. Intell. Transp. 2015, 16, 865–873. [CrossRef]

22. Jung, W.S.; Wang, F.; Stanley, H.E. Gravity model in the Korean highway. EPL (Europhys. Lett.) 2008, 81, 48005.
[CrossRef]

23. Chen, W.; Liu, W.; Ke, W.; Wang, N. Understanding spatial structures and organizational patterns of city
networks in China: A highway passenger flow perspective. J. Geogr. Sci. 2018, 28, 477–494. [CrossRef]

24. Fischer, M.M.; Griffith, D.A. Modelling spatial autocorrelation in spatial interaction data. J. Reg. Sci. 2008, 48,
969–989. [CrossRef]

25. LeSage, J.P.; Pace, R.K. Spatial econometric modeling of origin-destination flows. J. Reg. Sci. 2008, 48,
941–967. [CrossRef]

26. Chun, Y.; Kim, H.; Kim, C. Modeling interregional commodity flows with incorporating network
autocorrelation in spatial interaction models: An application of the US interstate commodity flows. Comput.
Environ. Urban 2012, 36, 583–591. [CrossRef]

27. Kordi, M.; Fotheringham, A.S. Spatially Weighted Interaction Models (SWIM). Ann. Am. Assoc. Geogr. 2016,
106, 990–1012. [CrossRef]

28. Lloyd, C.D. Local Models for Spatial Analysis; CRC Press: Boca Raton, FL, USA, 2010; pp. 97–123.
29. Trigg, D.W.; Leach, A.G. Exponential smoothing with an adaptive response rate. J. Oper. Res. Soc. 1967, 18,

53–59. [CrossRef]
30. Foster, S.A.; Gorr, W.L. An adaptive filter for estimating spatially-varying parameters: Application to

modeling police hours spent in response to calls for service. Manag. Sci. 1986, 32, 878–889. [CrossRef]
31. Hadayeghi, A.; Shalaby, A.; Persaud, B. Development of planning-level transportation safety models using

full Bayesian semiparametric additive techniques. J. Transp. Saf. Secur. 2010, 2, 45–68. [CrossRef]
32. Da Silva, A.R.; Rodrigues, T.C.V. Geographically weighted negative binomial regression-incorporating

overdispersio. Stat. Comput. 2014, 24, 769–783.
33. Jin, C.; Cheng, J.; Xu, J.; Huang, Z. Self-driving tourism induced carbon emission flows and its determinants

in well-developed regions: A case study of Jiangsu province, China. J. Clean. Prod. 2018, 186, 191–202.
[CrossRef]

34. Wei, Y.D. Beyond new regionalism, beyond global production networks: Remaking the Sunan Model, China.
Environ. Plan. C 2010, 28, 72–96. [CrossRef]

35. Jiangsu Bureau of Statistics (JBS). Jiangsu Statistical Yearbook 2014; China Statistical Press: Beijing, China, 2015;
pp. 1–199.

36. Bröcker, J.; Korzhenevych, A.; Schürmann, C. Assessing spatial equity and efficiency impacts of transport
infrastructure projects. Transp. Res. Part B 2010, 44, 795–811. [CrossRef]

http://dx.doi.org/10.1016/j.trc.2016.08.006
http://dx.doi.org/10.1016/j.jtrangeo.2008.06.002
http://dx.doi.org/10.1016/j.trpro.2015.07.010
http://dx.doi.org/10.1068/a030001
http://dx.doi.org/10.1007/s10110-003-0189-4
http://dx.doi.org/10.1016/j.trb.2017.01.011
http://dx.doi.org/10.1155/2015/902191
http://dx.doi.org/10.1109/TITS.2014.2345663
http://dx.doi.org/10.1209/0295-5075/81/48005
http://dx.doi.org/10.1007/s11442-018-1485-x
http://dx.doi.org/10.1111/j.1467-9787.2008.00572.x
http://dx.doi.org/10.1111/j.1467-9787.2008.00573.x
http://dx.doi.org/10.1016/j.compenvurbsys.2012.04.002
http://dx.doi.org/10.1080/24694452.2016.1191990
http://dx.doi.org/10.1057/jors.1967.5
http://dx.doi.org/10.1287/mnsc.32.7.878
http://dx.doi.org/10.1080/19439961003687328
http://dx.doi.org/10.1016/j.jclepro.2018.03.128
http://dx.doi.org/10.1068/c0934r
http://dx.doi.org/10.1016/j.trb.2009.12.008


ISPRS Int. J. Geo-Inf. 2019, 8, 220 18 of 18

37. Han, J.; Hayashi, Y. Assessment of private car stock and its environmental impacts in China from 2000 to
2020. Transp. Res. Part D Transp. Environ. 2008, 13, 471–478. [CrossRef]

38. Krisztin, T.; Fischer, M.M. The gravity model for international trade: Specification and estimation issues.
Spat. Econ. Anal. 2015, 10, 451–470. [CrossRef]

39. Etzo, I. The determinants of the recent interregional migration flows in Italy: A panel data analysis. J. Reg. Sci.
2011, 51, 948–966. [CrossRef]

40. Khadaroo, J.; Seetanah, B. The role of transport infrastructure in international tourism development: A gravity
model approach. Tour. Manag. 2008, 29, 831–840. [CrossRef]

41. Matsumoto, H. International urban systems and air passenger and cargo flows: Some calculations. J. Air
Transp. Manag. 2004, 10, 239–247. [CrossRef]

42. Fotheringham, A.S.; O’Kelly, M.E. Spatial Interaction Models: Formulations and Applications; Kluwer Academic
Publishers: Dordrecht, The Netherlands, 1989; pp. 65–156.

43. Kimura, F.; Lee, H.H. The gravity equation in international trade in services. Rev. World Econ. 2006, 142,
92–121. [CrossRef]

44. Piras, R. A long-run analysis of push and pull factors of internal migration in Italy. Estimation of a gravity
model with human capital using homogeneous and heterogeneous approaches. Pap. Reg. Sci. 2017, 96,
571–602. [CrossRef]

45. Xu, L.; Wang, S.; Li, J.; Tang, L.; Shao, Y. Modelling international tourism flows to China: A panel data
analysis with the gravity model. Tour. Econ. 2018, 1354816618816167. [CrossRef]

46. Flowerdew, R.; Aitkin, M. A method of fitting the gravity model based on the Poisson distribution. J. Reg.
Sci. 1982, 22, 191–202. [CrossRef] [PubMed]

47. Cullinan, J.; Duggan, J. A school-level gravity model of student migration flows to higher education
institutions. Spat. Econ. Anal. 2016, 11, 294–314. [CrossRef]

48. Falk, M. A gravity model of foreign direct investment in the hospitality industry. Tour. Manag. 2016, 55,
225–237. [CrossRef]

49. Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for
exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [CrossRef]

50. Chun, Y. Modeling network autocorrelation within migration flows by eigenvector spatial filtering. J. Geogr.
Syst. 2008, 10, 317–344. [CrossRef]

51. Lee, D.; Sallee, G. A method of measuring shape. Geogr. Rev. 1970, 60, 555–563. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.trd.2008.09.007
http://dx.doi.org/10.1080/17421772.2015.1076575
http://dx.doi.org/10.1111/j.1467-9787.2011.00730.x
http://dx.doi.org/10.1016/j.tourman.2007.09.005
http://dx.doi.org/10.1016/j.jairtraman.2004.02.003
http://dx.doi.org/10.1007/s10290-006-0058-8
http://dx.doi.org/10.1111/pirs.12211
http://dx.doi.org/10.1177/1354816618816167
http://dx.doi.org/10.1111/j.1467-9787.1982.tb00744.x
http://www.ncbi.nlm.nih.gov/pubmed/12265103
http://dx.doi.org/10.1080/17421772.2016.1177195
http://dx.doi.org/10.1016/j.tourman.2016.02.012
http://dx.doi.org/10.1111/j.1538-4632.1996.tb00936.x
http://dx.doi.org/10.1007/s10109-008-0068-2
http://dx.doi.org/10.2307/213774
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Data Collection 
	Global and Local Modeling 
	Global Models of Flow 
	Local Models of Flow 
	Bandwidth 
	Flow-Based Global Moran 
	Comparisons 


	Results 
	Flow Patterns 
	Global Modeling—OLS/NB 
	Local Modeling—OLS/NB 
	GWOLS Flowing Model 
	GWNBR Flowing Model 


	Discussion 
	Conclusions 
	References

