
 International Journal of

Geo-Information

Article

High-Performance Overlay Analysis of Massive
Geographic Polygons That Considers Shape
Complexity in a Cloud Environment

Kang Zhao 1, Baoxuan Jin 2,*, Hong Fan 1, Weiwei Song 3, Sunyu Zhou 3 and Yuanyi Jiang 3

1 State Key Laboratory for Information Engineering in Surveying, Mapping, and Remote Sensing,
Wuhan University, 129 Luoyu Road, Wuhan 430079, China

2 Information Center, Department of Land and Resources of Yunnan Province, Kunming 650504, China
3 Department of Geoinformation Science, Kunming University of Science and Technology,

Kunming 650504, China
* Correspondence: jbx@yngc.org; Tel.: +86-0871-65747357

Received: 24 March 2019; Accepted: 24 June 2019; Published: 26 June 2019
����������
�������

Abstract: Overlay analysis is a common task in geographic computing that is widely used in
geographic information systems, computer graphics, and computer science. With the breakthroughs in
Earth observation technologies, particularly the emergence of high-resolution satellite remote-sensing
technology, geographic data have demonstrated explosive growth. The overlay analysis of massive
and complex geographic data has become a computationally intensive task. Distributed parallel
processing in a cloud environment provides an efficient solution to this problem. The cloud computing
paradigm represented by Spark has become the standard for massive data processing in the industry
and academia due to its large-scale and low-latency characteristics. The cloud computing paradigm
has attracted further attention for the purpose of solving the overlay analysis of massive data. These
studies mainly focus on how to implement parallel overlay analysis in a cloud computing paradigm
but pay less attention to the impact of spatial data graphics complexity on parallel computing efficiency,
especially the data skew caused by the difference in the graphic complexity. Geographic polygons
often have complex graphical structures, such as many vertices, composite structures including holes
and islands. When the Spark paradigm is used to solve the overlay analysis of massive geographic
polygons, its calculation efficiency is closely related to factors such as data organization and algorithm
design. Considering the influence of the shape complexity of polygons on the performance of overlay
analysis, we design and implement a parallel processing algorithm based on the Spark paradigm in
this paper. Based on the analysis of the shape complexity of polygons, the overlay analysis speed is
improved via reasonable data partition, distributed spatial index, a minimum boundary rectangular
filter and other optimization processes, and the high speed and parallel efficiency are maintained.

Keywords: overlay analysis; shape complexity; massive data; cloud; parallel computing

1. Introduction

Overlay analysis is a common geographic computing operation and an important spatial analysis
function of geographic information systems (GIS). It is widely used in applications related to spatial
computing [1,2]. This operation involves the spatial overlay analysis of different data layers and their
attributes in the target area. It connects multiple spatial objects from multiple data sets, creates a new
clip data set, and quantitatively analyzes the spatial range and characteristics of the interactions among
different types of spatial objects [3]. The development of geospatial science has entered a new stage with
the rapid popularization of the global Internet, sensor technologies, and Earth observation technologies.
The transformation of a space information service from digital Earth to intelligent Earth has posed

ISPRS Int. J. Geo-Inf. 2019, 8, 290; doi:10.3390/ijgi8070290 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://dx.doi.org/10.3390/ijgi8070290
http://www.mdpi.com/journal/ijgi
https://www.mdpi.com/2220-9964/8/7/290?type=check_update&version=2

ISPRS Int. J. Geo-Inf. 2019, 8, 290 2 of 19

challenges, such as being data-intensive, computationally intensive, and time–space-intensive and
high concurrent access [4,5]. Overlay analysis deals with massive data, for which traditional data
processing algorithms and models are no longer suitable. For example, the number of land use
classification patches in Yunnan Province investigated in this study is hundreds of thousands at the
county level, millions at the city level, and tens of millions at the provincial level. With the development
of the social economy and the progress of data acquisition technologies, the number of land use
classification patches will continue to increase. Effectively calculating land use change using traditional
single-computer calculation models is difficult.

The rise of parallel computing technologies, such as network clustering, grid computing, and
distributed processing in recent years has gradually shifted research on high-performance GIS spatial
computing from the optimization of algorithms to the parallel transformation and parallel strategy
design of GIS spatial computing in a cloud computing environment [6]. Recently, MapReduce and
Spark technology have been applied to overlay analysis of massive spatial data, and some results have
been achieved. Nevertheless, the massive spatial data is different from the general massive Internet data.
The spatial characteristics of spatial data and the complexity of a spatial analysis algorithm determine
that simply copying a cloud computing programming paradigm cannot achieve high-performance
geographic computing. Therefore, this study chooses the classical Hormann clipping algorithm [7] to
analyze and measure the impact of the shape complexity of geographic polygons on parallel overlay
analysis, and proposes a Hilbert partition method based on the shape complexity measure to solve
the data skew caused by the difference of the shape complexity of polygons. In addition, through
the combination of MBR (Minimum Bounding Rectangle) filtering, R-tree spatial index and other
optimizations, an efficient parallel overlay analysis algorithm is designed. The experimental analysis
shows that the proposed method reduces the number of polygon intersection operations, achieves
better load balancing of computing tasks, and greatly improves the parallel efficiency of overlay
analysis. When the computational core increases, the algorithm achieves an upward acceleration ratio,
and the computational performance presents a nonlinear change.

The rest of this paper is organized as follows. Section 2 reviews the research background and
related studies, including those on shape complexity and overlay analysis algorithms. In Section 3, the
Hormann algorithm is improved for a parallel polygon clipping process, and the process of a parallel
polygon clipping algorithm is optimized according to the shape complexity of polygons. Section 4
describes the experimental process in detail and analyzes the experimental results. Section 5 provides
the conclusion drawn from this research, followed by potential future work.

2. Relevant Work

This paper discusses the related research work from two aspects: shape complexity and overlay
analysis algorithm.

2.1. Shape Complexity

Many studies use abstract language to describe the shapes and complex details of geometric
objects, such as “the structure of polygons with multiple holes, the number of vertices is very
large, and polygons with multiple concaves.” To evaluate the computational cost, the complexity
and computational efficiency of geometric computing problems should be accurately measured [8].
The concept of complexity is also introduced [9–12]. Many applications related to spatial computing
heavily depend on algorithms to solve geometric problems. When dealing with large-scale geographic
computing problems, the evaluation of computational cost must consider the quantity of input data,
the complexity of graphical objects, and the time complexity of computing models [10]. When the
amount of input data and the algorithm are determined, the complexity of different graphical objects
frequently leads to considerable differences in the computing efficiency.

Mandelbrot described the complexity of geometric objects from the perspective of a fractal
dimension [13]. The most commonly used method is the box-counting technique [14,15]. Brinkhoff

ISPRS Int. J. Geo-Inf. 2019, 8, 290 3 of 19

quantitatively reported the complexity of polygons from three aspects, namely, the frequency of local
vibration, the amplitude of local vibration, and the deviation from the convex hull, to describe the
complexity of a global shape [16]. On the basis of Brinkhoff’s research, Bryson proposed a conceptual
framework to discuss the query processing-oriented shape complexity measures for spatial objects [17].
Rossignac [8] analyzed shape complexity from the aspects of algebraic, topological, morphological,
combinatorial, and expression complexities. Rossignac also reduced the shape complexity by using a
triangular boundary representation at different scales [8]. Ying optimized graphic data transmission
on the basis of shape complexity [18].

From the above discussion, we know that the complexity of graphics has different meanings and
measurement methods in different professional fields, such as design complexity, visual complexity
and so on. Therefore, we should consider the shape complexity from the perspective of geographic
computing. Shape complexity directly affects the efficiency of spatial analysis and spatial query
computation, such as the numbers of vertices and local shapes (such as the concavity) of graphics,
considerably influencing the efficiency of spatial geometry calculation. These values are important
indicators for evaluating the calculation cost. Fully considering the influence of graphical complexity
on specific geographic computations can effectively optimize the computing efficiency of applications.

2.2. Overlay Analysis

The study on vector overlay analysis arithmetic originates from the field of computer graphics.
For example, two groups of thousands of overlay polygons are often clipped in 2D and 3D graphics
rendering. Subsequently, different overlay analysis algorithms have been produced. Among which, the
Sutherland–Hodgman [19], Vatti [20], and Greiner–Hormann [7] algorithms are the most representative
when dealing with arbitrary polygon clippings. The Sutherland–Hodgman algorithm is unsuitable
for complex polygons. The Weiler–Atherton algorithm requires candidate polygons to be arranged
clockwise and with no self-intersecting polygons. The Vatti algorithm does not restrict the types
of clipping, and thus, self-intersecting and porous polygons can also be processed. The Hormann
algorithm clips polygons by judging the entrance and exit of directional lines. This algorithm also
addresses point degradation by moving small distances [21]. In addition, the Hormann algorithm can
deal with self-intersecting and nonconvex polygons. The Weiler algorithm uses tree data structures,
whereas the Vatti and Greiner–Hormann algorithms adopt a bilinear linked list data structure. Therefore,
the Vatti and Greiner–Hormann algorithms are better than the Weiler algorithm in terms of complexity
and running speed.

Subsequent researchers have implemented many improvements to the aforementioned traditional
vector clipping algorithms [22–24], which simplify the calculation of vector polygon clippings. However,
these studies are based on the optimization of a serial algorithm. When overlay analysis is applied to
the field of geographic computing, it will deal with more complex polygons (such as polygons with
holes and islands) and a larger data volume (the number of land use classification patches in a province
is tens or even hundreds of millions, and a polygon may have tens of thousands of vertices). A vector
clipping algorithm can be applied efficiently to computer graphics but cannot be applied efficiently
to geographic computing. Moreover, many traditional geographic element clipping algorithms also
exhibit poor suitability and performance degradation. With the development of computer technology
and the increase in spatial data volume, traditional vector clipping algorithms frequently encounter
efficiency bottlenecks when dealing with large and complex geographic data sets. Therefore, improving
the overlay algorithm and using the parallel computing platform for the overlay analysis of massive
data is a new research direction.

With the rapid development of MapReduce and Spark cloud computing technologies, the use of
large-scale distributed storage and parallel computing technology for massive data processing and
analysis has become an effective technical approach [6,25]. Recent studies have applied the MapReduce
and Spark technology to the overlay analysis of massive spatial data. Wang [26] used MapReduce to
improve the efficiency of overlay analysis by about 10 times by a grid partition and index. Zheng [27]

ISPRS Int. J. Geo-Inf. 2019, 8, 290 4 of 19

built a multilevel grid index structure by combining the first-level grid with quartering based on Spark
distributed computation platform. Zheng’s experiments show that a grid index algorithm achieves
good results when polygons are uniformly distributed; otherwise, the efficiency of the algorithm is low.
Xiao [28] proves that parallel task partitioning based on polygons’ spatial location achieves better load
balancing than random task partitioning. In addition, SpatialHadoop [29–32] and GeoSpark [32–35]
extend Hadoop and Spark to support massive spatial data computing better. Among them, Spatial
Hadoop designed a set of spatial object storage model, which provides HDFS with grid, R-tree, Hilbert
curve, Z curve and other indexes. In addition, it also provides a filtering function for filtering data that
need not be processed. GeoSpark also adds a set of spatial object models and extends RDD (Resilient
Distributed Dataset) to SRDD (Spatial Resilient Distributed Dataset) that supports spatial object storage.
GeoSpark also provides filtering functions to filter data that need not be processed. The design ideas
of SpatialHadoop and GeoSpark have great reference value for the research of this paper.

In summary, using a Spark cloud computing paradigm to develop high-performance geographic
computing is a cheap and high-performance method. It is also one of the research hotspots in the field
of high-performance geographic computing. Recent studies have implemented overlay analysis in
Spark, which greatly improves the efficiency of overlay analysis. Optimizing strategies for spatial
data characteristics, such as reasonable data partitioning and an excellent spatial data index, play an
important role in improving the efficiency of parallel computing, and Hilbert partitioning is more
suitable for parallel overlay analysis of non-uniform spatial distribution data than grid partitioning.
It is noticed that the current parallel overlay analysis is based on the third-party clipping interface and
ignores the impact of the shape complexity of geographic polygons on the clipping algorithm, which
will cause a serious data skew.

3. Methodology

In this section, the core idea of the paper will be introduced. First, an excellent basic overlay
analysis algorithm is selected for execution on each computing node. Then, according to the complexity
and location of graphics, the polygons are divided reasonably, and an index based on spatial location
is established to realize fast data access and load balancing of parallel computing nodes.

3.1. Basic Overlay Analysis Algorithm Running on Each Computing Node.

3.1.1. Hormann Algorithm and Improvement of Intersection Degeneration Problem.

The basic overlay analysis algorithm, which is the basic processing program for each parallel
computing node, performs overlay analysis on two sets of polygons. In designing an overlay analysis
algorithm, we use the Hormann algorithm, which can deal with complex structures (e.g., self-intersection
and polymorphism with holes), as reference. However, the point coordinate perturbation method
used by the Hormann algorithm is not the best solution for the degradation problem, which brings
cumulative errors in the area statistics of massive patches. Therefore, we solve the intersection
degeneration by judging the azimuth interval between intersecting correlation lines. We also use the
improved algorithm as the basis of parallel overlay analysis.

In order to achieve a simplified expression of the overlay analysis of two groups of polygons, we
assume that each group of polygons has only one polygon object, because the overlay analysis of two
groups of layers with multiple polygons only increases the number of iterations. The processing steps
of the improved Hormann algorithm are as follows:

1. Calculating the intersections of the clipped and target polygons
2. Judging the entry and exit of the intersection point by the vector line segment (judging the entry

or exit point of the intersection point) and adding the entry point to the vertex sequence of the
clipping result polygon

ISPRS Int. J. Geo-Inf. 2019, 8, 290 5 of 19

3. Comparing the azimuth intervals of the degenerated vertices of the intersection points and
adding the overlapping vertices of the azimuth intervals to the vertex sequence of the clipping
result polygon

4. Forming a new polygon (clipping result) in accordance with the sequence of vertices

As shown in Figure 1a, the clipped polygon P1 and the target polygon P2 intersect. Intersection
points K1 and K2 can be obtained through a collinearity equation. By judging the positive and negative
values of the product of vector line segments, the intersection points can be judged to enter and

exit. As illustrated in the same figure,
⇀

A1A2 ×
⇀

B1B2 > 0, and thus, K1 is the entry point relative to P2.

Moreover,
⇀

A2A3 ×
⇀

B1B2 < 0, and thus, K2 is the exit point. The resulting polygon is composed of a
sequence of vertices that consist of K1, A2, and K2. As illustrated in Figure 1b–d, the entry and exit
points are unsuitable for describing intersection degradation.

ISPRS Int. J. Geo-Inf. 2019, 8, 290 5 of 19

As shown in Figure 1a, the clipped polygon 𝑃ଵ and the target polygon 𝑃ଶ intersect. Intersection
points 𝐾ଵ and 𝐾ଶ can be obtained through a collinearity equation. By judging the positive and
negative values of the product of vector line segments, the intersection points can be judged to enter
and exit. As illustrated in the same figure, 𝐴ଵ𝐴ଶሬሬሬሬሬሬሬሬሬሬ⃑ × 𝐵ଵ𝐵ଶሬሬሬሬሬሬሬሬሬ⃑ ൐ 0, and thus, 𝐾ଵ is the entry point relative
to 𝑃ଶ. Moreover, 𝐴ଶ𝐴ଷሬሬሬሬሬሬሬሬሬሬ⃑ × 𝐵ଵ𝐵ଶሬሬሬሬሬሬሬሬሬ⃑ < 0, and thus, 𝐾ଶ is the exit point. The resulting polygon is composed
of a sequence of vertices that consist of 𝐾ଵ, 𝐴ଶ, and 𝐾ଶ. As illustrated in Figure 1b, c, and d, the entry
and exit points are unsuitable for describing intersection degradation.

Figure 1. Polygon overlay.

Figure 2 shows how to deal with the phenomenon of intersection degeneration. In Figure 2, the
dotted arrow N points toward the north, which is the starting point of the azimuth calculation.
Therefore, each line segment has its own azimuth. The clipped and target polygons have an
intersection point K, which is also the location of vertices 𝐴௠ and 𝐵௠. The azimuth intervals of the
clipped and target polygons at intersection K are 𝐴஼(𝛼ଵ, 𝛼ଶ) and 𝐴்(𝛼ଵ, 𝛼ଶ) . If 𝐴஼(𝛼ଵ, 𝛼ଶ) and 𝐴்(𝛼ଵ, 𝛼ଶ) have overlapping parts (yellow in the figure), then both polygons overlap near the
intersection point, which should be added to the vertex sequence of the resultant polygon.

Figure 2. Diagram of azimuth interval calculation.

3.1.2. Effect of Shape Complexity on Parallel Clipping Efficiency

In parallel clipping computing, each computing node is usually assigned the same number of
polygons. Generally speaking, it is difficult to ensure that complex polygons are evenly allocated to
each computing node; usually, one computing node is allocated more complex polygons. Although
the total number of polygons allocated by each computing node is the same, this computing node
needs a long time to complete the allocated computing task, while other computing nodes will be in
a waiting state. Therefore, ignoring the complexity differences of polygons will result in a situation
in which each computing node cannot complete the computing task at the same time, thus the
efficiency of parallel computing is reduced.

AT(α1,α2)AC(α1,α2)

αKAm+1αKAm-1

αKBm-1

αKBm+1

N

KBm

Bm+1

Bm-1

Am+1

Am-1

Am

Figure 1. Polygon overlay.

Figure 2 shows how to deal with the phenomenon of intersection degeneration. In Figure 2,
the dotted arrow N points toward the north, which is the starting point of the azimuth calculation.
Therefore, each line segment has its own azimuth. The clipped and target polygons have an intersection
point K, which is also the location of vertices Am and Bm. The azimuth intervals of the clipped and
target polygons at intersection K are AC(α1,α2) and AT(α1,α2). If AC(α1,α2) and AT(α1,α2) have
overlapping parts (yellow in the figure), then both polygons overlap near the intersection point, which
should be added to the vertex sequence of the resultant polygon.

ISPRS Int. J. Geo-Inf. 2019, 8, 290 5 of 19

As shown in Figure 1a, the clipped polygon 𝑃ଵ and the target polygon 𝑃ଶ intersect. Intersection
points 𝐾ଵ and 𝐾ଶ can be obtained through a collinearity equation. By judging the positive and
negative values of the product of vector line segments, the intersection points can be judged to enter
and exit. As illustrated in the same figure, 𝐴ଵ𝐴ଶሬሬሬሬሬሬሬሬሬሬ⃑ × 𝐵ଵ𝐵ଶሬሬሬሬሬሬሬሬሬ⃑ ൐ 0, and thus, 𝐾ଵ is the entry point relative
to 𝑃ଶ. Moreover, 𝐴ଶ𝐴ଷሬሬሬሬሬሬሬሬሬሬ⃑ × 𝐵ଵ𝐵ଶሬሬሬሬሬሬሬሬሬ⃑ < 0, and thus, 𝐾ଶ is the exit point. The resulting polygon is composed
of a sequence of vertices that consist of 𝐾ଵ, 𝐴ଶ, and 𝐾ଶ. As illustrated in Figure 1b, c, and d, the entry
and exit points are unsuitable for describing intersection degradation.

Figure 1. Polygon overlay.

Figure 2 shows how to deal with the phenomenon of intersection degeneration. In Figure 2, the
dotted arrow N points toward the north, which is the starting point of the azimuth calculation.
Therefore, each line segment has its own azimuth. The clipped and target polygons have an
intersection point K, which is also the location of vertices 𝐴௠ and 𝐵௠. The azimuth intervals of the
clipped and target polygons at intersection K are 𝐴஼(𝛼ଵ, 𝛼ଶ) and 𝐴்(𝛼ଵ, 𝛼ଶ) . If 𝐴஼(𝛼ଵ, 𝛼ଶ) and 𝐴்(𝛼ଵ, 𝛼ଶ) have overlapping parts (yellow in the figure), then both polygons overlap near the
intersection point, which should be added to the vertex sequence of the resultant polygon.

Figure 2. Diagram of azimuth interval calculation.

3.1.2. Effect of Shape Complexity on Parallel Clipping Efficiency

In parallel clipping computing, each computing node is usually assigned the same number of
polygons. Generally speaking, it is difficult to ensure that complex polygons are evenly allocated to
each computing node; usually, one computing node is allocated more complex polygons. Although
the total number of polygons allocated by each computing node is the same, this computing node
needs a long time to complete the allocated computing task, while other computing nodes will be in
a waiting state. Therefore, ignoring the complexity differences of polygons will result in a situation
in which each computing node cannot complete the computing task at the same time, thus the
efficiency of parallel computing is reduced.

AT(α1,α2)AC(α1,α2)

αKAm+1αKAm-1

αKBm-1

αKBm+1

N

KBm

Bm+1

Bm-1

Am+1

Am-1

Am

Figure 2. Diagram of azimuth interval calculation.

3.1.2. Effect of Shape Complexity on Parallel Clipping Efficiency

In parallel clipping computing, each computing node is usually assigned the same number of
polygons. Generally speaking, it is difficult to ensure that complex polygons are evenly allocated to

ISPRS Int. J. Geo-Inf. 2019, 8, 290 6 of 19

each computing node; usually, one computing node is allocated more complex polygons. Although
the total number of polygons allocated by each computing node is the same, this computing node
needs a long time to complete the allocated computing task, while other computing nodes will be in a
waiting state. Therefore, ignoring the complexity differences of polygons will result in a situation in
which each computing node cannot complete the computing task at the same time, thus the efficiency
of parallel computing is reduced.

Complexity is an intuitive linguistic concept. Generally speaking, different professional fields
pay different attention to shape complexity. In the field of geographic computation, shape complexity
is related to specific geographic algorithms. The same shape corresponds to different geographic
algorithms and may have different shape complexities.

On the other side, specifically to geographic polygons, different polygons have different
morphological characteristics, such as convex, concave, self-intersection and a large number of
vertices. To measure complexity, information must be compressed into one or more comparable
parameter and expression models. Although the starting point and location are completely different,
similar shapes may still appear. Therefore, when discussing the shape complexity of a polygon,
we can neglect the spatial position and scale, and focus on the influence of polygon features on
geographic computing.

Shape complexity can be defined from the perspective of geographic computing:

Definition 1. Shape complexity is a measure of the computational intensity index of shapes participating in the
calculation of geographic algorithms. Shape complexity can be measured by the number of repetitions of basic
operations in a geographic algorithm caused by a shape.

As for the overlay analysis of polygons, the most basic operation of the Hormann algorithm is to find the
intersection point of two sides. Therefore, for the Hormann algorithm, the complexity of a polygon is the number
of edges it possesses.

Based on these analyses, we know that shape complexity is an absolute value, which is difficult to program.
Therefore, it is necessary to get a relative value by normalization to measure the graphics complexity.

Definition 2. Given a set of polygons P = {P1, P1, · · ·Pn,}, the number of vertices of the polygon is Vi, Vmin is
the minimum number of vertices of all polygons, and Vmax is the maximum number of vertices of all polygons.
Then, the complexity Wi of the polygon Pi can be expressed as

Wi =
Vi −Vmin

Vmax −Vmin
(1)

Since a polygon is usually represented by a sequence of vertices in a polygon storage model. The number of
edges of a polygon is the same as that of vertices, so in Definition 2, we use vertices of a polygon instead of edges.

Therefore, in parallel overlay analysis, we can take shape complexity as an indicator for data partitioning.
The ideal state is that the polygon complexity of each data partition is the same, at which time all computing
nodes will complete the computing task at the same time.

3.2. Data Balancing and Partitioning Method that Considers Polygon Shape Complexity

3.2.1. Data Partitioning and Loading Strategy

Data partitioning is the key to accelerating a polygon clipping algorithm based on a
high-performance computing platform. A complete piece of data is divided into relatively small,
independent multiblock data, which provide a basis for distributed or parallel data operation. Spatial
data partitioning differs from general data partitioning. In addition to balancing the amount of
data, the spatial location relationship, such as spatial aggregation and proximity of data, should also
be considered. Commonly used spatial data partitioning methods are meshing and filling curve

ISPRS Int. J. Geo-Inf. 2019, 8, 290 7 of 19

partitioning [36]. Meshing is simple and considers the spatial proximity of data, but it cannot guarantee
a balanced amount of data. The Hilbert curve is a classical spatial filling curve with good spatial
clustering characteristics and that considers the spatial relationship and data load. Therefore, the data
partitioning strategy in this study adopts the Hilbert filling curve algorithm combined with shape
complexity to achieve load balancing.

In Figure 3, Hilbert partitioning divides the spatial region into 2N× 2N grids. During the iteration
process, N is the order of the Hilbert curve, i.e., the number of iterations. In general, N is determined
by the number of spatial objects, and the amount of spatial data requires n < 22×N.ISPRS Int. J. Geo-Inf. 2019, 8, 290 7 of 19

Figure 3. Hilbert partitioning and Hilbert curve generation.

Hilbert partitioning consists of the following four steps:

(1) Determine the order of the Hilbert curve, generate the Hilbert grid and the Hilbert curve,
number the Hilbert curve sequentially, and obtain the Hilbert grid coding set, GHid =ሼ𝐺𝐻ଵ, 𝐺𝐻ଶ ⋯ 𝐺𝐻௡ሽ.

(2) Calculate the polygon MBR center point, find its corresponding mesh, and use the Hilbert
coding of the mesh as the Hilbert coding of the polygon to obtain the Hilbert coding set of the
polygon, PHid = ሼ𝑃𝐻ଵ, 𝑃𝐻ଶ ⋯ 𝑃𝐻௡ሽ.

(3) In accordance with the number of computing nodes M, divide the Hilbert coding set of the
polygons into M partitions, and calculate the start–stop coding of the Hilbert coding of polygons in
each partition.

(4) Merge the grids of the Hilbert partitions to obtain partition polygons PS = ሼ𝑃𝑆ଵ, 𝑃𝑆ଶ, ⋯ , 𝑃𝑆ெሽ.
In actual partitioning, the shapes of polygons are different because the polygons are not in an

ideal uniform distribution. If only one polygon central point is strictly required for each grid, then
Hilbert’s order N may be extremely large, the edge length of the grid will be too small, and no
polygonal MBR center may exist in many grids. Thus, Hilbert partitioning and the Hilbert curve will
consume considerable computing time, and the subsequent overlay calculation will involve many
cross-partition problems. Therefore, the existence of multiple polygonal MBR centers in a grid is
necessary.

The order N of Hilbert grids is related to the length of the mesh edge. Grid length and order N
are also determined. To obtain a reasonable order N of the Hilbert curve, we can calculate the normal
distribution of the central point position of a polygon MBR, determine the optimal grid edge length,
and eventually achieve balance between the order N of the Hilbert curve and the number of polygon
MBR central points in each grid. The key to dividing the PHid of the Hilbert coding set of polygons
is to ensure the load balance of each partition. Considering that polygon complexity may vary
considerably, we cannot simply divide the Hilbert coding set PHid of polygons equally.

The shape complexity of polygon P௜ is defined as 𝑊௜ ., 𝑊 as the average complexity of all
polygons, the ideal complexity of each partition as 𝑊௜ௗ௘௔௟, and the actual complexity as 𝑊௔௖௧௨௔௟, then 𝑊௜ௗ௘௔௟ = ∑ 𝑊௜௡௜ୀଵ𝑀 (2)

if the polygons from j to k are placed into the same partition, then,

𝑊௔௖௧௨௔௟ = ෍ 𝑊௜௞
௜ୀ௝ (3)

|𝑊௜ௗ௘௔௟ − 𝑊௔௖௧௨௔௟| < 𝑊 (4)

Generally, the number of polygons in each partition is slightly different after partitioning, but
the complexity of polygons in each partition is basically the same. Therefore, this strategy guarantees
the load balancing of computing tasks.

3.2.2. R-tree Index Construction

R-tree is a widely adopted spatial data index method; it is used in commercial software, such as
the Oracle and the SQL Server [37]. To improve the efficiency of spatial data access, an R-tree must

Figure 3. Hilbert partitioning and Hilbert curve generation.

Hilbert partitioning consists of the following four steps:

(1) Determine the order of the Hilbert curve, generate the Hilbert grid and the Hilbert curve, number
the Hilbert curve sequentially, and obtain the Hilbert grid coding set, GHid = {GH1, GH2 · · ·GHn}.

(2) Calculate the polygon MBR center point, find its corresponding mesh, and use the Hilbert coding
of the mesh as the Hilbert coding of the polygon to obtain the Hilbert coding set of the polygon,
PHid = {PH1, PH2 · · ·PHn}.

(3) In accordance with the number of computing nodes M, divide the Hilbert coding set of the
polygons into M partitions, and calculate the start–stop coding of the Hilbert coding of polygons
in each partition.

(4) Merge the grids of the Hilbert partitions to obtain partition polygons PS = {PS1, PS2, · · · , PSM}.

In actual partitioning, the shapes of polygons are different because the polygons are not in an ideal
uniform distribution. If only one polygon central point is strictly required for each grid, then Hilbert’s
order N may be extremely large, the edge length of the grid will be too small, and no polygonal
MBR center may exist in many grids. Thus, Hilbert partitioning and the Hilbert curve will consume
considerable computing time, and the subsequent overlay calculation will involve many cross-partition
problems. Therefore, the existence of multiple polygonal MBR centers in a grid is necessary.

The order N of Hilbert grids is related to the length of the mesh edge. Grid length and order
N are also determined. To obtain a reasonable order N of the Hilbert curve, we can calculate the
normal distribution of the central point position of a polygon MBR, determine the optimal grid edge
length, and eventually achieve balance between the order N of the Hilbert curve and the number of
polygon MBR central points in each grid. The key to dividing the PHid of the Hilbert coding set of
polygons is to ensure the load balance of each partition. Considering that polygon complexity may
vary considerably, we cannot simply divide the Hilbert coding set PHid of polygons equally.

The shape complexity of polygon Pi is defined as Wi., W as the average complexity of all polygons,
the ideal complexity of each partition as Wideal, and the actual complexity as Wactual, then

Wideal =

∑n
i=1 Wi

M
(2)

if the polygons from j to k are placed into the same partition, then,

Wactual =
k∑

i= j

Wi (3)

ISPRS Int. J. Geo-Inf. 2019, 8, 290 8 of 19

|Wideal −Wactual| < W (4)

Generally, the number of polygons in each partition is slightly different after partitioning, but the
complexity of polygons in each partition is basically the same. Therefore, this strategy guarantees the
load balancing of computing tasks.

3.2.2. R-tree Index Construction

R-tree is a widely adopted spatial data index method; it is used in commercial software, such as the
Oracle and the SQL Server [37]. To improve the efficiency of spatial data access, an R-tree must be built.
In addition, data are segmented in accordance with Hilbert data partitioning points, and the grid area
of the Hilbert curve before each partitioning point is defined as a sub-index area. Moreover, the R-tree
index for spatial objects is established in the sub-index area. Similarly, the mapping relationship among
grid coding, polygon MBR central point coding, and sub-index area coding is established. Furthermore,
the corresponding index codes on computing nodes are cached. In this experiment, we directly use the
STR-tree (Sort Tile Recursive) class of the JTS (Java Topology Suite, a java software library) library to
construct an R-tree index.

3.3. Process Design of Distributed Parallel Overlay Analysis

To ensure that the process is suitable for decoupling, we divide the distributed parallel overlay
analysis process into six steps based on the characteristics of the algorithm: Data preprocessing,
preliminary filtering, Hilbert coding, data partitioning and index building, data filtering, and overlay
calculation (Figure 4).

ISPRS Int. J. Geo-Inf. 2019, 8, 290 8 of 19

be built. In addition, data are segmented in accordance with Hilbert data partitioning points, and the
grid area of the Hilbert curve before each partitioning point is defined as a sub-index area. Moreover,
the R-tree index for spatial objects is established in the sub-index area. Similarly, the mapping
relationship among grid coding, polygon MBR central point coding, and sub-index area coding is
established. Furthermore, the corresponding index codes on computing nodes are cached. In this
experiment, we directly use the STR-tree (Sort Tile Recursive) class of the JTS (Java Topology Suite, a
java software library) library to construct an R-tree index.

3.3. Process Design of Distributed Parallel Overlay Analysis

To ensure that the process is suitable for decoupling, we divide the distributed parallel overlay
analysis process into six steps based on the characteristics of the algorithm: Data preprocessing,
preliminary filtering, Hilbert coding, data partitioning and index building, data filtering, and overlay
calculation (Figure 4).

Data preprocessing

Split 1 Split 2 Split 3 Split N……

Step 1:
1. Computing MBR for each polygon
2. Statistics of the number of
vertices of each polygon
3. Other statistical indicators

Step 2:
1.Computing the overlapping
regions of the clipped and target
polygons
2.Filtering valid polygons using focus
areas

Step 3:
1. Calculating the Hilbert curve
2. Calculating polygon partition
points on the basis of shape
complexity
3. Hilbert coding for meshes and
polygons

Step 4:
Data partitioning and creating R-tree
indexes for each partition

Step 5:
1. Polygon filtering using MBR
2. Creating new RDD for filtered
polygons

Step 6:
1. Parallel computing with basic
overlay algorithms
2.Reducing computed results

Preliminary filtering

Split 1 Split 2 Split 3 Split N……

Hilbert coding and compute the data partition points

Data partitioning and indexing

Split 1 Split 2 Split 3 Split N……

Target polygon filtering

Split 1 Split 2 Split 3 Split N……

Overlay analysis

Split 1 Split 2 Split 3 Split N……

(2) Calculate the data
partition points.(1) Hilbert coding

Input

Output

Figure 4. Parallel overlay computing flow. Figure 4. Parallel overlay computing flow.

ISPRS Int. J. Geo-Inf. 2019, 8, 290 9 of 19

(1) Data preprocessing

In the whole process, many steps need to traverse all polygons and their vertices. To reduce
the number of traversals, we can conduct centralized processing in one traversal, such as calculating
the MBR of a polygon, its geometric center point, the area of the MBR, and the shape complexity of
the polygon, to prepare data for optimizing the processing flow. In the subsequent calculation, such
information can be read directly to avoid repeated calculation. Considering the massive amount of
data in preprocessing, the Spark paradigm can be used in parallel data processing. In accordance with
the calculation of the number of physical nodes N, data are divided by default, and the allocated data
are traversed at each computing node.

(2) Preliminary filtering

It can be determined that only the polygons in the area where the MBRs of two polygonal layers
intersect need to be clipped. Therefore, filtering polygons that do not require clipping can reduce the
computational cost.

(3) Hilbert coding and computation of data partition points base on polygon clip complexity

All polygons are divided by Hilbert grids in accordance with the spatial distribution position,
and each grid and polygon are Hilbert coded. Then, the data partition points are calculated on the
basis of shape complexity. This work is not suitable for decoupling and, therefore, cannot be executed
in parallel.

(4) Data partitioning and indexing

Based on the partitioning points, the region of the Hilbert curve is regarded as a sub-index region.
The STR-tree class of the JTS library is used to establish an R-tree index for each partition, and the
index file is stored in each computing node.

(5) Target polygon filtering

In overlay analysis, every point of the clipped and target polygons should be traversed. Even if
the two polygons are not covered, all points will be traversed, resulting in some invalid calculations.
Filtering out the invalid polygons of target polygons can obviously improve the efficiency. Before
overlay calculation, the target polygon without overlay analysis can be effectively eliminated by
calculating whether an overlay relationship exists between the MBR of the clipped polygon and the
MBR of the target polygon. The calculation method directly compares the maximum and minimum
coordinates of the clipped and target polygons without using an overlay algorithm.

(6) Overlay analysis

All computing nodes use the Hormann algorithm described in Section 3.1 for parallel overlay
computation. The results of each calculation node are reduced to obtain the final overlay analysis results.

3.4. Algorithmic Analysis

The major processes of the parallel overlay analysis conducted in this study include data
preprocessing, preliminary filtering, Hilbert partitioning, R-tree index establishment, polygon MBR
filtering, and polygon clipping.

In the data preprocessing, only the layer attribute data and vertex coordinate information of
the polygons are included in the original data. Polygon MBR and the number of polygon vertices
must be used thrice in the calculation process designed in this research. Therefore, we unified the
data preprocessing, establish a new data structure and avoided repetitive calculation. Unified data
preprocessing saves about half of the workload compared with separate data preprocessing.

In the Preliminary filtering, the time complexity of the MBR filtering algorithm is O(1), whereas
the complexity of the overlay analysis algorithm is O(logN), where N is the number of polygon

ISPRS Int. J. Geo-Inf. 2019, 8, 290 10 of 19

vertices. Therefore, computational complexity will be considerably reduced by filtering polygons
without overlay analysis through MBR. In addition, the reduced computational complexity depends
on the spatial distribution of polygons, which is an uncontrollable factor.

The time complexity of constructing the Hilbert curve is O
(
N2

)
, where N is the order of the Hilbert

curve. The larger N is, the longer the time that is spent on data partitioning is. However, if N is too
small, then multiple polygons will correspond to the same Hilbert coding. If Hilbert partitioning
strictly satisfies the condition that each mesh has only one central point of a polygon MBR, then a
Hilbert grid supports a maximum of 22×N polygons. Moreover, polygons in real data are generally
not uniformly distributed, and no polygons exist in many Hilbert grids. Therefore, allowing an
appropriate number of repetitive Hilbert-coded values is feasible. In addition, compared with grid
partition, Hilbert partition can solve the problem of the uneven location of data perfectly.

R-tree is a typical spatial data index method. The time for data traversal is considerably shortened
by establishing an R-tree index. The time complexity of R-tree is O(logN).

Data preprocessing, MBR filtering, R-tree index construction, and other processes are relatively
time-consuming. By using multi-node parallel computing in data partitioning, the time consumed can
be reduced to 1/N, where N is the number of parallel processes. In the Spark paradigm, data operations
are performed in memory, and I/O operations consume minimal time. Therefore, the proposed overlay
algorithm exhibits high efficiency.

4. Experimental Study

4.1. Experimental Design

To conduct overlay analysis experiments, we used the patches of land use types and the patches
with a slope greater than 25 degrees in a county of Yunnan Province in 2018. There are 500,000 patches
of land use types and 110,000 slope patches. These data are distributed in the area of 15,000 square
kilometers. Based on this data, we constructed different data sets for the experiments. We will use
different overlay analysis modes for the execution in the case of different data magnitude data, record
the change of execution time, and analyze the characteristics and applicability of different overlay
analysis modes.

4.1.1. Computing Equipment

Experiments were carried out using one portable computer and six X86 servers. The equipment
configuration information is shown in Table 1.

Table 1. Equipment configuration.

Equipment Num Hardware
Configuration

Operating
System Software Remark

portable
computer 1

Thinkpad T470p, 8
vcore, 16 G RAM, SSD

(Solid State Drive)
Windows 10 ArcMap 10.4.1

Single computer
experiment for desktop

overlay analysis.

X86 Server 6
DELL R720, 24 core, 64
G RAM, HDD (Hard

Disk Drive)
Centos7 Hadoop 2.7,

Spark 2.3.1
Spark Computing

Cluster

4.1.2. Experimental Data

(1) Clipping layer

The digital elevation model (DEM) data of a 30 m grid in the county were obtained from the
Internet, and a slope map was generated by it (Figure 5). The area with a slope greater than 25 degrees
was extracted, and 108,025 patches were obtained.

ISPRS Int. J. Geo-Inf. 2019, 8, 290 11 of 19

ISPRS Int. J. Geo-Inf. 2019, 8, 290 11 of 19

The digital elevation model (DEM) data of a 30 m grid in the county were obtained from the
Internet, and a slope map was generated by it (Figure 5). The area with a slope greater than 25 degrees
was extracted, and 108,025 patches were obtained.

Figure 5. Extracting slope as the clipping layer from the digital elevation model (DEM).

(2) Target layer

A total of 10 groups of experimental data were obtained from 500,000 original land-type patches
of the county using sparse and intensive data sets. The number of patches was 50,000, 100,000,
250,000, 500,000, 1 million, 2 million, 4 million, 6 million, 8 million and 10 million, respectively.

Through data checking, 88,000,000 vertices were found in 500,000 original terrain pattern data.
Among all the polygons, the simplest polygon has four vertices, whereas the most complex polygon
has 99,500 vertices. A total of 890,000 vertices were recorded in 110,000 slope patches. Among all
slope patches, the simplest has 8 vertices, whereas the most complex has 5572 vertices. The statistics
of the number of polygon vertices in the query and target layers are illustrated in Figure 6 and 7,
respectively.

Figure 6. Polygons distribution with different number of vertices.

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

<
10

<
20

<
30

<
40

<
50

<
60

<
70

<
80

<
90

<
10

0
<

50
0

<
10

00
<

20
00

<
30

00
<

40
00

<
50

00
<

60
00

<
70

00
<

80
00

<
90

00
<

10
00

0
<

20
00

0
<

30
00

0
<

40
00

0
<

50
00

0
<

60
00

0
<

70
00

0
<

80
00

0
<

90
00

0
<

10
00

00

N
um

be
r o

f p
ol

yg
on

s

Number of vertices

Figure 5. Extracting slope as the clipping layer from the digital elevation model (DEM).

(2) Target layer

A total of 10 groups of experimental data were obtained from 500,000 original land-type patches
of the county using sparse and intensive data sets. The number of patches was 50,000, 100,000, 250,000,
500,000, 1 million, 2 million, 4 million, 6 million, 8 million and 10 million, respectively.

Through data checking, 88,000,000 vertices were found in 500,000 original terrain pattern data.
Among all the polygons, the simplest polygon has four vertices, whereas the most complex polygon
has 99,500 vertices. A total of 890,000 vertices were recorded in 110,000 slope patches. Among all slope
patches, the simplest has 8 vertices, whereas the most complex has 5572 vertices. The statistics of the
number of polygon vertices in the query and target layers are illustrated in Figures 6 and 7, respectively.

ISPRS Int. J. Geo-Inf. 2019, 8, 290 11 of 19

The digital elevation model (DEM) data of a 30 m grid in the county were obtained from the
Internet, and a slope map was generated by it (Figure 5). The area with a slope greater than 25 degrees
was extracted, and 108,025 patches were obtained.

Figure 5. Extracting slope as the clipping layer from the digital elevation model (DEM).

(2) Target layer

A total of 10 groups of experimental data were obtained from 500,000 original land-type patches
of the county using sparse and intensive data sets. The number of patches was 50,000, 100,000,
250,000, 500,000, 1 million, 2 million, 4 million, 6 million, 8 million and 10 million, respectively.

Through data checking, 88,000,000 vertices were found in 500,000 original terrain pattern data.
Among all the polygons, the simplest polygon has four vertices, whereas the most complex polygon
has 99,500 vertices. A total of 890,000 vertices were recorded in 110,000 slope patches. Among all
slope patches, the simplest has 8 vertices, whereas the most complex has 5572 vertices. The statistics
of the number of polygon vertices in the query and target layers are illustrated in Figure 6 and 7,
respectively.

Figure 6. Polygons distribution with different number of vertices.

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

<
10

<
20

<
30

<
40

<
50

<
60

<
70

<
80

<
90

<
10

0
<

50
0

<
10

00
<

20
00

<
30

00
<

40
00

<
50

00
<

60
00

<
70

00
<

80
00

<
90

00
<

10
00

0
<

20
00

0
<

30
00

0
<

40
00

0
<

50
00

0
<

60
00

0
<

70
00

0
<

80
00

0
<

90
00

0
<

10
00

00

N
um

be
r o

f p
ol

yg
on

s

Number of vertices

Figure 6. Polygons distribution with different number of vertices.

ISPRS Int. J. Geo-Inf. 2019, 8, 290 12 of 19

ISPRS Int. J. Geo-Inf. 2019, 8, 290 12 of 19

Figure 7. Polygons distribution with different number of vertices.

In parallel computing, data are organized into GeoJson format and uploaded to HDFS. HDFS
data blocks are three copies, each of which is 64 MB.

4.1.3. Experimental Scene

Before describing the experimental scenario design, we first define several different modes for
comparison and explain the differences of each mode (Table 2).

Table 2. Explanation of the experimental mode.

Mode Abbreviation Equipment
Data

Storage
Mode

Notes

ArcMap
1 portable

computer with
ArcMap

Local File
System

Use the clip tool of Toolbox to perform
overlay analysis on the portable

computer

Spark_original
Multiple X86
servers with

Spark
HDFS

Directly partition the data randomly
and do parallel overlay analysis

without any improvement.

Spark_improved
Multiple X86
servers with

Spark
HDFS

Completely implement parallel
overlay analysis according to the

process of Section 3.3.
Hilbert partitioning method

considering graph complexity

Spark_NoComlexity
Multiple X86
servers with

Spark
HDFS

Except that the complexity of polygon
graphics is not considered, all of them
are the same as the Spark_improved

mode.

Spark_MBR
Multiple X86
servers with

Spark
HDFS

Based on the Spark_original model,
MBR filtering is performed first, and

then parallel overlay analysis is
performed.

Spark_MBR_Hilbert
Multiple X86
servers with

Spark
HDFS

Based on the Spark_original model,
MBR filtering and a Hilbert

partitioning operation are added.

0

20000

40000

60000

80000

100000

120000

< 10 < 20 < 30 < 40 < 50 < 100 < 500 < 1000 < 2000 < 3000 < 4000 < 5000 < 6000

N
um

be
r o

f p
ol

yg
on

s

Number of vertices

Figure 7. Polygons distribution with different number of vertices.

In parallel computing, data are organized into GeoJson format and uploaded to HDFS. HDFS
data blocks are three copies, each of which is 64 MB.

4.1.3. Experimental Scene

Before describing the experimental scenario design, we first define several different modes for
comparison and explain the differences of each mode (Table 2).

Table 2. Explanation of the experimental mode.

Mode Abbreviation Equipment
Data

Storage
Mode

Notes

ArcMap 1 portable computer
with ArcMap

Local File
System

Use the clip tool of Toolbox to perform
overlay analysis on the portable computer

Spark_original Multiple X86 servers
with Spark HDFS

Directly partition the data randomly and do
parallel overlay analysis without any

improvement.

Spark_improved Multiple X86 servers
with Spark HDFS

Completely implement parallel overlay
analysis according to the process of

Section 3.3.
Hilbert partitioning method considering

graph complexity

Spark_NoComlexity Multiple X86 servers
with Spark HDFS

Except that the complexity of polygon
graphics is not considered, all of them are
the same as the Spark_improved mode.

Spark_MBR Multiple X86 servers
with Spark HDFS

Based on the Spark_original model, MBR
filtering is performed first, and then parallel

overlay analysis is performed.

Spark_MBR_Hilbert Multiple X86 servers
with Spark HDFS

Based on the Spark_original model, MBR
filtering and a Hilbert partitioning

operation are added.

Spark_MBR_Hilbert_R-tree Multiple X86 servers
with Spark HDFS

Based on the Spark_original model, MBR
filtering, Hilbert partitioning and R-tree

index creation operation are added.

Among them, the ArcMap mode is a typical method used in geographic data processing.
The purpose of comparing Spark_original, Spark_improved and Spark_NoComlexity modes is to
determine how much the performance has been improved. The purpose of comparing Spark_MBR,

ISPRS Int. J. Geo-Inf. 2019, 8, 290 13 of 19

Spark_MBR_Hilbert and Spark_MBR_Hilbert_R-tree modes is to determine how much the three
improved methods can improve the efficiency of parallel overlay analysis.

(1) Scene 1: Compare the performance differences of four modes: ArcMap, Spark_original,
Spark_improved and Spark_NoComlexity.

Ten groups of polygons with different numbers were used for overlay analysis in four modes. We
will record the completion time of the overlay analysis process and draw time-consumption curves.
This experimental scenario can answer the following questions:

• How much better will Spark parallel computing improve the performance of overlay analysis
compared to desktop software?

• How much better is the performance of the parallel overlay analysis algorithm proposed in this
paper compared with the direct use of the spark computing paradigm?

• How much influence does the complexity difference of a geographic polygon have on parallel
overlay analysis?

(2) Scene 2: Compare the performance differences of four modes: Spark_original, Spark_MBR,
Spark_MBR_Hilbert and Spark_MBR_Hilbert_R-tree.

Ten groups of polygons with different numbers were used for overlay analysis in three modes.
We will record the completion time of the overlay analysis process and draw time-consumption curves.

In addition to considering the influence of the shape complexity difference of a geographic
polygon, three important improvements are used in our algorithm flow: (1) MBR filtering, (2) Hilbert
partitioning, (3) R-tree establishment. This experimental scenario can answer: How much do the above
three improvements affect the efficiency of parallel computing?

(3) Scene 3: Cluster acceleration performance testing of the proposed algorithm.

The experimental data are fixed to 10 million geographic polygons. One to six servers are used to
perform overlay analysis and record the time-consumption changes of the overlay analysis algorithm
in this paper. In this experimental scenario, we can see the acceleration ratio and parallel efficiency of
the proposed algorithm in the Spark cluster.

4.2. Test Process and Results

4.2.1. Compare the Performance Differences of Four Modes: ArcMap, Spark_original,
Spark_NoComlexity and Spark_improved

The parallel computing mode uses six computing nodes to calculate the flow before and after
optimization. The experimental data are collected from 50,000, 100,000, 250,000, 500,000, 1 million,
2 million, 4 million, 6 million, 8 million, and 10 million recorded data sets. The time consumption
statistics of different computing modes are illustrated in Figure 8.

As shown in Figure 9, blue, red, yellow and grey represent the time consumed by ArcMap,
Spark_original, Spark_NoComlexity and Spark_improved modes. With the increase in the data
volume, the four time-consumption curves show an upward trend. The changes in these curves answer
three questions related to the design of the experimental scenario.

(1) When the number of polygons is less than 10 million, the efficiency of Spark_original mode
is even lower than that of ArcMap mode. When the number of polygons is more than 50,000,
the time-consumption of the Spark_improved mode is less than that of the ArcMap mode. When
the number of polygons exceeds 1 million, ArcMap mode consumes twice as much time as the
Spark_improved mode. As the amount of data increases, the time-consumption of the ArcMap
mode increases dramatically, and the time-consumption curve of Spark_improved mode is still
relatively flat.

ISPRS Int. J. Geo-Inf. 2019, 8, 290 14 of 19

(2) The efficiency of Spark_original mode is lower than that of Spark_improved mode, and the more
polygons there are, the more obvious it is. This shows that the efficiency of overlay analysis using
Spark directly is very low, and the algorithm optimization must be carried out according to the
characteristics of spatial data and geographical calculation.

(3) By comparing the time-consumption curves, Spark_improved takes almost half as much time as
Spark_NoComlexity, which is better than I thought. I think it may be related to my experimental
data: in Section 4.1.2, I have found that there are many polygons with high shape complexity in
the experimental data. Maybe many big polygons are partitioned into the same computational
partition, which leads to data skew.

ISPRS Int. J. Geo-Inf. 2019, 8, 290 14 of 19

Figure 8. Time consumption statistical graphs of different computing modes.

As shown in Figure 9, blue, red, yellow and grey represent the time consumed by ArcMap,
Spark_original, Spark_NoComlexity and Spark_improved modes. With the increase in the data
volume, the four time-consumption curves show an upward trend. The changes in these curves
answer three questions related to the design of the experimental scenario.

(1) When the number of polygons is less than 10 million, the efficiency of Spark_original mode
is even lower than that of ArcMap mode. When the number of polygons is more than 50,000, the
time-consumption of the Spark_improved mode is less than that of the ArcMap mode. When the
number of polygons exceeds 1 million, ArcMap mode consumes twice as much time as the
Spark_improved mode. As the amount of data increases, the time-consumption of the ArcMap mode
increases dramatically, and the time-consumption curve of Spark_improved mode is still relatively
flat.

(2) The efficiency of Spark_original mode is lower than that of Spark_improved mode, and the
more polygons there are, the more obvious it is. This shows that the efficiency of overlay analysis
using Spark directly is very low, and the algorithm optimization must be carried out according to the
characteristics of spatial data and geographical calculation.

(3) By comparing the time-consumption curves, Spark_improved takes almost half as much time
as Spark_NoComlexity, which is better than I thought. I think it may be related to my experimental
data: in Section 4.1.2, I have found that there are many polygons with high shape complexity in the
experimental data. Maybe many big polygons are partitioned into the same computational partition,
which leads to data skew.

4.2.2. Compare the Performance Differences of Four Modes: Spark_original, Spark_MBR,
Spark_MBR_Hilbert and Spark_MBR_Hilbert_R-tree

0

20

40

60

80

100

120

140

160

180

0.05 0.1 0.25 0.5 1 2 4 6 8 10

Ti
m

e
(m

in
)

Number of data records （million)

ArcMap Spark_original Spark_NoComlexity Spark_improved

Figure 8. Time consumption statistical graphs of different computing modes.ISPRS Int. J. Geo-Inf. 2019, 8, 290 15 of 19

Figure 9. Time consumption comparison of different optimization strategies.

As shown in Figure 9:
(1) After only adopting the MBR filtering strategy, the efficiency of overlay computation is

increased by two to four times. Therefore, this strategy filters a large number of invalid overlay
computations. Specific efficiency improvement is related to the size, shape, and spatial distribution
of polygons in the target and clipped layers.

(2) The Hilbert partitioning algorithm based on polygon graphic complexity is used to allocate
the data of each computing node. When the amount of data reaches millions, the computing
performance can be doubled. As the data amount increases, the computational performance
advantage becomes more evident. The experimental data verify that the spatial aggregation
characteristics of Hilbert partitioning that considers polygon complexity can considerably improve
spatial analysis algorithms.

(3) Index construction can generally improve the efficiency of data access, but index construction
itself can result in a certain amount of computational overhead. After adding the R-tree index strategy
based on the first two steps, the overlay calculation time of each order of magnitude increases slightly
when the amount of data is less than 5 million. When the amount of data exceeds 5 million, the
overlay calculation time decreases compared with the case without the R-tree index. Therefore, the
data access time saved after the R-tree index is established offsets the time consumed by the index
itself.

4.2.3. Cluster Acceleration Performance Testing of the Proposed Algorithm

The experimental data are unified using 10 million polygons, and then one server is added at a
time. As the number of servers increases, the time consumed in parallel computing decreases
considerably (Figure 10). However, the trend of running time decreases as the number of nodes
increases.

0.05 0.1 0.25 0.5 1 2 4 6 8 10
Spark_original 2.6 4 12 20 36 66 119 166 230 300

Spark_MBR 1.9 2 6 8.9 14 22 46 62 80 108

Spark_MBR_Hilbert 1.3 1 7 6.3 7.5 9.9 15 27 36 47

Spark_MBR_Hilbert_R-tree 1.7 1 6 8.2 8.5 11 17 23 32 38

0

50

100

150

200

250

300

350

Ti
m

e
(m

in
)

Number of data records （million)

Figure 9. Time consumption comparison of different optimization strategies.

ISPRS Int. J. Geo-Inf. 2019, 8, 290 15 of 19

4.2.2. Compare the Performance Differences of Four Modes: Spark_original, Spark_MBR,
Spark_MBR_Hilbert and Spark_MBR_Hilbert_R-tree

As shown in Figure 9:

(1) After only adopting the MBR filtering strategy, the efficiency of overlay computation is increased
by two to four times. Therefore, this strategy filters a large number of invalid overlay computations.
Specific efficiency improvement is related to the size, shape, and spatial distribution of polygons
in the target and clipped layers.

(2) The Hilbert partitioning algorithm based on polygon graphic complexity is used to allocate
the data of each computing node. When the amount of data reaches millions, the computing
performance can be doubled. As the data amount increases, the computational performance
advantage becomes more evident. The experimental data verify that the spatial aggregation
characteristics of Hilbert partitioning that considers polygon complexity can considerably improve
spatial analysis algorithms.

(3) Index construction can generally improve the efficiency of data access, but index construction
itself can result in a certain amount of computational overhead. After adding the R-tree index
strategy based on the first two steps, the overlay calculation time of each order of magnitude
increases slightly when the amount of data is less than 5 million. When the amount of data
exceeds 5 million, the overlay calculation time decreases compared with the case without the
R-tree index. Therefore, the data access time saved after the R-tree index is established offsets the
time consumed by the index itself.

4.2.3. Cluster Acceleration Performance Testing of the Proposed Algorithm

The experimental data are unified using 10 million polygons, and then one server is added at a time.
As the number of servers increases, the time consumed in parallel computing decreases considerably
(Figure 10). However, the trend of running time decreases as the number of nodes increases.ISPRS Int. J. Geo-Inf. 2019, 8, 290 16 of 19

Figure 10. Average running time of different numbers of nodes.

As shown in Figure 11, as the number of servers increases, the acceleration ratio decreases
slightly but is nearly linear. In addition, Figure 12 illustrates that with the increase in the number of
servers, the parallel efficiency gradually decreases, and finally stabilizes to more than 90%. This is a
good result if we consider that the increase in the number of servers will increase the system
synchronization and network overhead.

Figure 11. Acceleration ratio of different numbers of nodes.

Figure 12. Parallel efficiency of different number of nodes.

4.3. Analysis of Experimental Results

Figure 9 shows that a single computer with ArcMap Soft achieves high efficiency in the overlay
analysis of small data volume by adopting a reasonable algorithm and excellent multithreading
processing technology. In addition, SDD also plays an important role. However, the performance of
ArcMap sharply declines when the number of data records reaches millions. Spark distributed

1 2 3 4 5 6
Time 204 102.7 69.5 54 44 36.8

0

50

100

150

200

250

Ti
m

e
(m

in
)

Number of nodes

0.00

2.00

4.00

6.00

8.00

1 2 3 4 5 6Ac
ce

le
ra

tio
n

ra
tio

Number of nodes

Experimental result

1 2 3 4 5 6
Parallel efficiency 1.000 0.993 0.978 0.944 0.927 0.924

0.880

0.900

0.920

0.940

0.960

0.980

1.000

1.020

PA
RA

LL
EL

 E
FF

IC
IE

N
CY

NUMBER OF NODES

Figure 10. Average running time of different numbers of nodes.

As shown in Figure 11, as the number of servers increases, the acceleration ratio decreases slightly
but is nearly linear. In addition, Figure 12 illustrates that with the increase in the number of servers,
the parallel efficiency gradually decreases, and finally stabilizes to more than 90%. This is a good result
if we consider that the increase in the number of servers will increase the system synchronization and
network overhead.

ISPRS Int. J. Geo-Inf. 2019, 8, 290 16 of 19

ISPRS Int. J. Geo-Inf. 2019, 8, 290 16 of 19

Figure 10. Average running time of different numbers of nodes.

As shown in Figure 11, as the number of servers increases, the acceleration ratio decreases
slightly but is nearly linear. In addition, Figure 12 illustrates that with the increase in the number of
servers, the parallel efficiency gradually decreases, and finally stabilizes to more than 90%. This is a
good result if we consider that the increase in the number of servers will increase the system
synchronization and network overhead.

Figure 11. Acceleration ratio of different numbers of nodes.

Figure 12. Parallel efficiency of different number of nodes.

4.3. Analysis of Experimental Results

Figure 9 shows that a single computer with ArcMap Soft achieves high efficiency in the overlay
analysis of small data volume by adopting a reasonable algorithm and excellent multithreading
processing technology. In addition, SDD also plays an important role. However, the performance of
ArcMap sharply declines when the number of data records reaches millions. Spark distributed

1 2 3 4 5 6
Time 204 102.7 69.5 54 44 36.8

0

50

100

150

200

250

Ti
m

e
(m

in
)

Number of nodes

0.00

2.00

4.00

6.00

8.00

1 2 3 4 5 6Ac
ce

le
ra

tio
n

ra
tio

Number of nodes

Experimental result

1 2 3 4 5 6
Parallel efficiency 1.000 0.993 0.978 0.944 0.927 0.924

0.880

0.900

0.920

0.940

0.960

0.980

1.000

1.020

PA
RA

LL
EL

 E
FF

IC
IE

N
CY

NUMBER OF NODES

Figure 11. Acceleration ratio of different numbers of nodes.

ISPRS Int. J. Geo-Inf. 2019, 8, 290 16 of 19

Figure 10. Average running time of different numbers of nodes.

As shown in Figure 11, as the number of servers increases, the acceleration ratio decreases
slightly but is nearly linear. In addition, Figure 12 illustrates that with the increase in the number of
servers, the parallel efficiency gradually decreases, and finally stabilizes to more than 90%. This is a
good result if we consider that the increase in the number of servers will increase the system
synchronization and network overhead.

Figure 11. Acceleration ratio of different numbers of nodes.

Figure 12. Parallel efficiency of different number of nodes.

4.3. Analysis of Experimental Results

Figure 9 shows that a single computer with ArcMap Soft achieves high efficiency in the overlay
analysis of small data volume by adopting a reasonable algorithm and excellent multithreading
processing technology. In addition, SDD also plays an important role. However, the performance of
ArcMap sharply declines when the number of data records reaches millions. Spark distributed

1 2 3 4 5 6
Time 204 102.7 69.5 54 44 36.8

0

50

100

150

200

250

Ti
m

e
(m

in
)

Number of nodes

0.00

2.00

4.00

6.00

8.00

1 2 3 4 5 6Ac
ce

le
ra

tio
n

ra
tio

Number of nodes

Experimental result

1 2 3 4 5 6
Parallel efficiency 1.000 0.993 0.978 0.944 0.927 0.924

0.880

0.900

0.920

0.940

0.960

0.980

1.000

1.020

PA
RA

LL
EL

 E
FF

IC
IE

N
CY

NUMBER OF NODES

Figure 12. Parallel efficiency of different number of nodes.

4.3. Analysis of Experimental Results

Figure 9 shows that a single computer with ArcMap Soft achieves high efficiency in the overlay
analysis of small data volume by adopting a reasonable algorithm and excellent multithreading
processing technology. In addition, SDD also plays an important role. However, the performance
of ArcMap sharply declines when the number of data records reaches millions. Spark distributed
parallel computing can effectively solve such problems, but the simple transplantation of the overlay
analysis algorithm into the Spark framework is not a reasonable solution. The actual geographic data
are often unevenly distributed, and the complexity of polygon graphics varies greatly, which will
lead to a serious data skew, and which will seriously affect the performance of parallel computing.
When the data volume reaches tens of millions, the performance of our algorithm improves by more
than 10 times via Hilbert partitioning based on the polygon graphic complexity and the R-tree index.
In addition, the performance advantage becomes more evident as the data volume increases.

When the amount of data is constant, the time-consumption of parallel overlay analysis decreases
with the increase in the number of servers. However, the decreasing trend of running time declines
as the number of nodes increases. Figure 11 shows that the acceleration ratio is nearly linear.
Figure 12 illustrates that parallel efficiency is still over 90% and remains stable when the number of
servers increases to six, which means that higher computing efficiency can be maintained when the
computing cluster expands. Therefore, it is an effective method to add physical nodes in massive data
overlay analysis.

In addition, the proposed overlay analysis algorithm also has some problems to be improved, such
as: (1) Big polygons will span multiple data partitions, which will lead to repeated participation of the

ISPRS Int. J. Geo-Inf. 2019, 8, 290 17 of 19

polygon in overlay analysis on multiple servers. (2) In the current algorithm process, the R-tree index
is created temporarily, which leads to the creation of the index repeatedly for each overlay analysis.

5. Conclusions

In high-performance parallel overlay analysis, the differences in shape complexity of a polygon
can lead to serious data skew. In this paper, we measure the shape complexity of polygons from
the perspective of geographic computing and design a high-performance parallel overlay analysis
algorithm considering the shape complexity of polygons. The analysis of the algorithm shows that
the algorithm reduces invalid overlay calculation by MBR filtering, achieves load balancing by use
of a Hilbert partition based on the polygon shape complexity, and improves data access speed using
the R-tree index. Experiments show that this is a high-performance method and can maintain high
speed-up and parallel efficiency in computing cluster expansion.

In future studies, we will study the impact of the spatial distribution of graphics, spatial data
storage and indexing methods on the efficiency of overlay analysis. We will also optimize spatial index
storage through distributed memory database technology to further improve the efficiency of parallel
overlay analysis.

Author Contributions: Kang Zhao proposed the research ideas and technical lines. Baoxuan Jin and Hong Fan
provided research guidance. Weiwei Song shared valuable opinions. Sunyu Zhou and Yuanyi Jiang helped
complete the programming. Zhao Kang completed the thesis.

Funding: This research was funded by Natural Science Foundation of China, grant number 41661086.

Acknowledgments: The authors are grateful to Fan Yang and Liying Li for providing their experimental data and
to Lifeng Hou for giving valuable suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, S.; Zhong, E.; Lu, H.; Guo, H.; Long, L. An effective algorithm for lines and polygons overlay analysis
using uniform spatial grid indexing. In Proceedings of the 2015 2nd IEEE International Conference on Spatial
Data Mining and Geographical Knowledge Services (ICSDM), Fuzhou, China, 8–10 July 2015; pp. 175–179.

2. Puri, S.; Prasad, S.K. Efficient parallel and distributed algorithms for GIS polygonal overlay processing.
In Proceedings of the 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops
and Phd Forum, Cambridge, MA, USA, 20–24 May 2013; pp. 2238–2241.

3. van Kreveld, M.; Nievergelt, J.; Roos, T.; Widmayer, P. Algorithmic Foundations of Geographic Information
Systems; Springer: New York, NY, USA, 1997; Volume 1340.

4. Li, Q.; Li, D. Big data GIS. Geomat. Inf. Sci. Wuhan Univ. 2014, 39, 641–644.
5. Li, D.R.; Cao, J.J.; Yuan, Y. Big data in smart cities. Sci. China Inf. Sci. 2015, 58, 108101. [CrossRef]
6. Yang, C.; Goodchild, M.; Huang, Q.; Nebert, D.; Raskin, R.; Xu, Y.; Bambacus, M.; Fay, D. Spatial cloud

computing: How can the geospatial sciences use and help shape cloud computing? Int. J. Digit. Earth 2011,
4, 305–329. [CrossRef]

7. Greiner, G.; Hormann, K. Efficient clipping of arbitrary polygons. ACM Trans. Graph. (TOG) 1998, 17, 71–83.
[CrossRef]

8. Rossignac, J. Shape complexity. Vis. Comput. 2005, 21, 985–996. [CrossRef]
9. Day, H. Evaluations of subjective complexity, pleasingness and interestingness for a series of random

polygons varying in complexity. Percept. Psychophys. 1967, 2, 281–286. [CrossRef]
10. Tilove, R.B. Line/polygon classification: A study of the complexity of geometric computation. IEEE Comput.

Graph. Appl. 1981, 1, 75–88. [CrossRef]
11. Chen, Y.; Sundaram, H. Estimating complexity of 2D shapes. In Proceedings of the 2005 IEEE 7th Workshop

on Multimedia Signal Processing, Shanghai, China, 30 October–2 November 2005; pp. 1–4.
12. Huang, C.-W.; Shih, T.-Y. On the complexity of point-in-polygon algorithms. Comput. Geosci. 1997, 23,

109–118. [CrossRef]
13. Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1982; Volume 1.

http://dx.doi.org/10.1007/s11432-015-5396-5
http://dx.doi.org/10.1080/17538947.2011.587547
http://dx.doi.org/10.1145/274363.274364
http://dx.doi.org/10.1007/s00371-005-0362-7
http://dx.doi.org/10.3758/BF03211042
http://dx.doi.org/10.1109/MCG.1981.1673886
http://dx.doi.org/10.1016/S0098-3004(96)00071-4

ISPRS Int. J. Geo-Inf. 2019, 8, 290 18 of 19

14. Peitgen, H.-O.; Jürgens, H.; Saupe, D. Chaos and Fractals: New Frontiers of Science; Springer Science & Business
Media: New York, NY, USA, 1992.

15. Faloutsos, C.; Kamel, I. Beyond uniformity and independence: Analysis of R-trees using the concept of fractal
dimension. In Proceedings of the Thirteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, Minneapolis, MN, USA, 24–27 May 1994; pp. 4–13.

16. Brinkhoff, T.; Kriegel, H.-P.; Schneider, R.; Braun, A. Measuring the Complexity of Polygonal Objects.
In Proceedings of the ACM-GIS, Baltimore, MD, USA, 1–2 December 1995; p. 109.

17. Bryson, N.; Mobolurin, A. Towards modeling the query processing relevant shape complexity of 2D polygonal
spatial objects. Inf. Softw. Technol. 2000, 42, 357–365. [CrossRef]

18. Ying, F.; Mooney, P.; Corcoran, P.; Winstanley, A.C. A model for progressive transmission of spatial data
based on shape complexity. Sigspat. Spec. 2010, 2, 25–30. [CrossRef]

19. Weiler, K.; Atherton, P. Hidden surface removal using polygon area sorting. ACM SIGGRAPH Comput. Graph.
1977, 11, 214–222. [CrossRef]

20. Vatti, B.R. A generic solution to polygon clipping. Commun. ACM 1992, 35, 56–63. [CrossRef]
21. Wang, H.; Chong, S. A high efficient polygon clipping algorithm for dealing with intersection degradation.

J. Southeast Univ. 2016, 4, 702–707.
22. Zhang, S.Q.; Zhang, C.; Yang, D.H.; Zhang, J.Y.; Pan, X.; Jiang, C.L. Overlay of Polygon Objects and Its

Parallel Computational Strategies Using Simple Data Model. Geogr. Geo-Inf. Sci. 2013, 29, 43–46.
23. Chen, Z.; Ma, L.; Liang, W. Polygon Overlay Analysis Algorithm Based on Monotone Chain and STR Tree

in the Simple Feature Model. In Proceedings of the 2010 International Conference on Electrical & Control
Engineering, Wuhan, China, 25–27 June 2010.

24. Wang, J. An Efficient Algorithm for Complex Polygon Clipping. Geomat. Inf. Sci. Wuhan Univ. 2010, 35,
369–372.

25. Guest, M. An overview of vector and parallel processors in scientific computation. J. Comput. Phys. Commun.
1989, 57, 560. [CrossRef]

26. Wang, Y.; Liu, Z.; Liao, H.; Li, C. Improving the performance of GIS polygon overlay computation with
MapReduce for spatial big data processing. Clust. Comput. 2015, 18, 507–516. [CrossRef]

27. Zheng, Z.; Luo, C.; Ye, W.; Ning, J. Spark-Based Iterative Spatial Overlay Analysis Method. In Proceedings of
the 2017 International Conference on Electronic Industry and Automation (EIA 2017), Suzhou, China, 23–25
June 2017.

28. Xiao, Z.; Qiu, Q.; Fang, J.; Cui, S. A vector map overlay algorithm based on distributed queue. In Proceedings
of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA,
23–28 July 2017; pp. 6098–6101.

29. Eldawy, A.; Mokbel, M.F. A demonstration of spatialhadoop: An efficient mapreduce framework for spatial
data. Proc. VLDB Endow. 2013, 6, 1230–1233. [CrossRef]

30. Eldawy, A.; Alarabi, L.; Mokbel, M.F. Spatial partitioning techniques in SpatialHadoop. Proc. VLDB Endow.
2015, 8, 1602–1605. [CrossRef]

31. Eldawy, A.; Mokbel, M.F. Spatialhadoop: A mapreduce framework for spatial data. In Proceedings of the
2015 IEEE 31st International Conference on Data Engineering, Seoul, Korea, 13–17 April 2015; pp. 1352–1363.

32. Lenka, R.K.; Barik, R.K.; Gupta, N.; Ali, S.M.; Rath, A.; Dubey, H. Comparative analysis of SpatialHadoop
and GeoSpark for geospatial big data analytics. In Proceedings of the 2016 2nd International Conference on
Contemporary Computing and Informatics (IC3I), Noida, India, 14–17 December 2016; pp. 484–488.

33. Yu, J.; Wu, J.; Sarwat, M. GeoSpark: A cluster computing framework for processing large-scale spatial data.
In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information
Systems, Seattle, WA, USA, 3–6 November 2015; pp. 1–4.

34. Yu, J.; Wu, J.; Sarwat, M. A demonstration of GeoSpark: A cluster computing framework for processing big
spatial data. In Proceedings of the 2016 IEEE 32nd International Conference on Data Engineering (ICDE),
Helsinki, Finland, 16–20 May 2016; pp. 1410–1413.

35. Yu, J.; Zhang, Z.; Sarwat, M. Spatial data management in apache spark: The geospark perspective and
beyond. Geoinformatica 2019, 23, 37–78. [CrossRef]

http://dx.doi.org/10.1016/S0950-5849(99)00097-X
http://dx.doi.org/10.1145/1953102.1953107
http://dx.doi.org/10.1145/965141.563896
http://dx.doi.org/10.1145/129902.129906
http://dx.doi.org/10.1016/0010-4655(89)90285-3
http://dx.doi.org/10.1007/s10586-015-0428-x
http://dx.doi.org/10.14778/2536274.2536283
http://dx.doi.org/10.14778/2824032.2824057
http://dx.doi.org/10.1007/s10707-018-0330-9

ISPRS Int. J. Geo-Inf. 2019, 8, 290 19 of 19

36. Luitjens, J.; Berzins, M.; Henderson, T. Parallel space-filling curve generation through sorting: Research
Articles. Concurr. Comput. Pract. Exp. 2010, 19, 1387–1402. [CrossRef]

37. Kim, K.-C.; Yun, S.-W. MR-Tree: A cache-conscious main memory spatial index structure for mobile GIS.
In Proceedings of the International Workshop on Web and Wireless Geographical Information Systems,
Goyang, Korea, 26–27 November 2004; pp. 167–180.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/cpe.1179
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Relevant Work
	Shape Complexity
	Overlay Analysis

	Methodology
	Basic Overlay Analysis Algorithm Running on Each Computing Node.
	Hormann Algorithm and Improvement of Intersection Degeneration Problem.
	Effect of Shape Complexity on Parallel Clipping Efficiency

	Data Balancing and Partitioning Method that Considers Polygon Shape Complexity
	Data Partitioning and Loading Strategy
	R-tree Index Construction

	Process Design of Distributed Parallel Overlay Analysis
	Algorithmic Analysis

	Experimental Study
	Experimental Design
	Computing Equipment
	Experimental Data
	Experimental Scene

	Test Process and Results
	Compare the Performance Differences of Four Modes: ArcMap, Spark_original, Spark_NoComlexity and Spark_improved
	Compare the Performance Differences of Four Modes: Spark_original, Spark_MBR, Spark_MBR_Hilbert and Spark_MBR_Hilbert_R-tree
	Cluster Acceleration Performance Testing of the Proposed Algorithm

	Analysis of Experimental Results

	Conclusions
	References

