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Abstract: With the advantages of convenient access and free parking, urban dockless shared bikes
are favored by the public. However, the irregular flow of dockless shared bikes poses a challenge
for the research of flow pattern. In this paper, the flow characteristics of dockless shared bikes are
expounded through the analysis of the time series location data of ofo and mobike shared bikes in
Beijing. Based on the analysis, a model called DestiFlow is proposed to describe the spatio-temporal
flow of urban dockless shared bikes based on points of interest (POIs) clustering. The results show
that the DestiFlow model can find the aggregation areas of dockless shared bikes and describe the
structural characteristics of the flow network. Our model can not only predict the demand for
dockless shared bikes, but also help to grasp the mobility characteristics of citizens and improve the
urban traffic management system.
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1. Introduction

Shared bikes are the products of the shared economy and the development of the Internet of things.
As a supplement to the urban traffic network, shared bikes not only solve the problem of “the first/last
kilometer” for citizens to travel but also effectively alleviate traffic congestion and environmental
pollution [1,2]. The development of shared bikes has experienced a process from docked shared bikes
to dockless shared bikes. The docked shared bike is a means of transportation, which can only be
rented and returned at certain fixed docked stations. Citizens need to concern about the limitation of
docks when they want to use or return the bikes. Different from the docked shared bikes, the dockless
shared bikes, such as ofo and mobike, have developed rapidly in China because the advantages of
convenient access and free parking. Since the dockless shared bikes can be accessed and parked at any
valid place, their trajectories can more truly reflect the behaviors of citizens on short trips. However,
it becomes more difficult to study the flow rules of the dockless shared bikes. More accurate description
and advance prediction of the flow can not only predict the demand for dockless shared bikes, but also
help to grasp the mobility characteristics of citizens and improve the urban traffic management system.

Most of the existing works focus on the research of docked shared bikes, which mainly include
the distribution rebalancing [3–6], station optimization [7,8], demand prediction [9–12], and flow
prediction [13]. However, there are only few studies on dockless shared bikes. Pan et al. used the deep
reinforcement learning framework to motivate users materially and achieve the goal of rebalancing
the distribution of dockless shared bikes [14]. Liu et al. used the method of deep learning to infer
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the distribution of dockless shared bikes in a new city [15]. These studies are based on the regular
geographic grid, and the dockless shared bikes are assigned to corresponding grids according to their
locations. Although this method is easy to operate, there are the following problems: the method
using regular geographic grid damages the integrity of geographical space and splits the clustered
shared bikes; the flow of dockless shared bikes are not constrained by the regular geographic grid;
the behavior of citizens is complex; and the regular geographic grid greatly simplifies this complex
behavior. Therefore, the method using regular geographic grid may affect the accuracy of data analysis.

The flow model of shared bikes is mainly used to describe the flow rules of shared bikes in time
and space. The flow characteristics of shared bikes are easy to be affected by the climate, terrain,
infrastructure, and other objective factors. Meanwhile, the subjective factors of citizens, such as safety
perceptions, convenience, time valuation, exercise valuation and habits, will also affect the demand for
shared bikes [16,17]. These objective and subjective factors add difficulty to the construction of flow
model of shared bikes. However, there are some interesting rules found by the studies of shared bikes.
In the short term, the flow of shared bikes is periodic [10,18], and the weekly flow pattern is similar.
In addition to obvious differences between weekdays and weekends, the daily flow pattern is similar
on the weekdays or weekends. Distance is an important factor that limits the usage and destination
selection of shared bikes. Therefore, many destination selection models [19,20] take distance as the
first-choice factor. The existing flow models [21,22] focus on the abstract patterns of human mobility
behavior. Although the flow of shared bikes is created by human mobility, it is a special mobility
behavior. As a result, these models are not suitable for describing the flow of shared bikes with specific
characteristics. Although Hoang et al. combined the mobile data of dockless shared bikes with weather
data and network data to study the citywide crowd flow of docked shared bikes by dividing the city
into several regions [13]. This method describes the flow of shared bikes from a macroscopic view,
and it cannot describe the flow situation of shared bikes in detail.

In this paper, a novel method is presented to describe the flow of the urban dockless shared
bikes. The dockless shared bikes have no station restrictions, making it difficult to characterize their
flow. However, the spatial distribution of dockless shared bikes presents aggregation effect, and the
aggregation areas can be found to study the flow of dockless shared bikes. In this paper, the flow
characteristics of dockless shared bikes are expounded through the analysis of the time series location
data of ofo and mobike shared bikes in Beijing. Based on the analysis, a model called DestiFlow
is proposed to describe the spatio-temporal flow of urban dockless shared bikes. The model can
be divided into three parts: the POI-based clustering, spatial flow distribution model, and time
distribution model. The POI-based clustering is used to find the aggregation areas of dockless shared
bikes, this method avoids the problems of regular geographic grid method effectively. On the basis of
the aggregation areas, the spatial distribution model of dockless shared bikes is constructed according
to the characteristics of flow distance and the activity of each aggregation area. The spatial flow
distribution model determines the departure and arrival aggregation areas of each flow. According
to the records of the flow of dockless shared bikes, the probability model is used to describe the time
distribution of flow. The time distribution model schedules the number of dockless shared bikes within
a certain period.

The rest of this paper is organized as follows: The second section introduces the data set
and analyzes the flow characteristics of dockless shared bikes. The third section proposes the
spatio-temporal flow model of urban dockless shared bikes based on POIs clustering called DestiFlow.
The fourth section evaluates the POI-based clustering and the DestiFlow method. The fifth section
carries on a case analysis and the sixth section gives the summarization of the paper.



ISPRS Int. J. Geo-Inf. 2019, 8, 345 3 of 17

2. Data Description and Analysis

2.1. Dataset Description

We collect the time series location data of ofo and mobike shared bikes in Beijing (longitude range
[116.178603739, 116.56741803], latitude range [39.756344012, 40.034994274]) through the application
program interface (API) of WeChat applet. The time span of ofo dataset is six days from 5 December
2017 to 10 December 2017, containing 16 million records and five hundred thousand ofo shared bikes.
The weather of Beijing in these six days were clear and cloudy with an average maximum temperature
of 6.0 °C and an average minimum temperature of −4.3 °C. The time span of mobike dataset is six
days from 22 May 2018 to 27 May 2018, containing 20 million records and four hundred thousand
mobike shared bikes. The weather of Beijing in these six days were clear and cloudy with an average
maximum temperature of 29.7 °C and an average minimum temperature of 17.0 °C. The ofo dataset is
denoted as D1, and the mobike dataset is denoted as D2. The two datasets have the same structure,
including the unique identification of the dockless shared bikes, the latitude and longitude, and the
time in that latitude and longitude.

The locations of a dockless shared bike change at different times, and every two adjacent locations
are considered to constitute a flow. The time series location data of dockless shared bikes can be
affected by various external factors, such as GPS drift, truck haulage, etc., all of which will cause the
location errors. To eliminate the influence of these factors on data quality, the flow distance, flow
time and average flow speed are constrained according to the flow characteristics of dockless shared
bikes. The range of flow distance, flow time and average flow speed is [0.4 km, 20 km], [2 min, ∞],
and [5 km/h, 25 km/h], respectively. Since what we have obtained are the static positions of dockless
shared bikes, the actual routes created by the bikes are unknown. This paper uses Manhattan distance
as the actual distance. In urban traffic, the Manhattan distance between two points is close to their real
distance [23].

2.2. Flow Characteristics of Dockless Shared Bikes

The distance characteristics of the dockless shared bikes are analyzed firstly. The development of
dockless shared bikes solves the problem of “the first/last kilometer” for citizens to travel. Therefore,
the flow distance of dockless shared bikes is different from other transportation. Figure 1 shows the
distribution of the flow distance. The black line is the fitting line of the distance distribution with the
lognormal distribution, and the goodness of fit for D1 and D2 is 0.924 and 0.931, respectively. The flow
distance distribution of dockless shared bikes can be described by a lognormal distribution. Figure 1
indicates that the dockless shared bike is a short-distance transportation. Its travel distance is mainly
within 5 km, and about 1 km is the high-frequency distance. The average flow distance in winter is
obviously lower than that in summer, which is consistent with the results of Reference [24]. The flow
distance distribution of docked shared bikes, such as France Vélo’v [18], is segmented, because the
distance has a close relationship with the charge. However, dockless shared bikes do not show this
characteristic obviously.

To further analyze the time characteristics of flow distance, the flow distance distributions in
different time windows are compared using JS divergence [25]. JS divergence is an improvement of KL
divergence [26] and makes up for the asymmetry of KL divergence. JS divergence is an indicator to
measure the difference between two distributions. The smaller the JS divergence is, the smaller the
difference between the two distributions will be. JS divergence is defined as follows:

JS(Dt||Dt+1) =
1
2

KL(Dt||D
t + Dt+1

2
) +

1
2

KL(Dt+1||D
t + Dt+1

2
). (1)

where,

KL(Dt||Dt+1) = ∑
i∈I

Dt(i)log
Dt(i)

Dt+1(i)
, (2)
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Dt is the flow distance distribution of dockless shared bikes in the time window [t, t + 1). The flow
distance is divided into 49 intervals, each of which is 400 m in length, I = [400 m, 800 m), [800 m,
1200 m), . . ., [19,600 m, 20,000 m]. Dt(i) represents the proportion of the distance within the range
i ∈ I in the time window [t, t + 1).
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Figure 1. The distribution of the flow distance of dockless shared bikes. The blue circle represents
the distance distribution obtained from D1, and the red triangle represents the distance distribution
obtained from D2. The black line is the fitting line of the distance distribution with the lognormal
distribution. The flow distance obtained from D1 obeys a lognormal distribution with the parameters
µ = 7.123, σ = 0.496, and the flow distance obtained from D2 obeys a lognormal distribution with the
parameters µ = 7.793, σ = 0.662.

Figure 2 shows the JS divergence of flow distance distribution at different times, the time window
of the blue line is one hour, and the time window of the red line is 12 h. When the time window
is one hour, the average JS divergence calculated from D1 and D2 is 0.0039 and 0.0093, respectively.
When the time window is 12 h, the average JS divergence calculated from D1 and D2 is 0.0023 and
0.0009, respectively. Although the values of JS divergence fluctuates with time, they are very small,
and the maximum value is 0.0478. The larger the time window is, the smaller the difference of flow
distance distribution is. Figure 2c shows the two distance distributions when JS divergence is the
maximum, indicating the flow distance distribution of dockless shared bikes does not change obviously
with time, it is time stable.

Figure 3 shows the change in the number of departures of dockless shared bikes. As can be seen
from the figure, the number of departures varies periodically, and there is a significant difference
between weekdays and weekends. There are two obvious peaks in daily departures, which are around
8:00 and 18:00, respectively, indicating that these two periods are the rush hours for citizens to travel.
The number of departures declines rapidly after the rush hours. Compared with changes in the number
of departures obtained from D1 and D2, D2 has more obvious peaks at about 8:00 and 18:00, but its
values from 10:00 to 16:00 are lower than D1. The reason is that the temperature around 8:00 and 18:00
in summer is comfortable and conducive to travel, while the temperature at noon in winter is more
comfortable. Therefore, the temperature has a great influence on the demand for dockless shared bikes,
and citizens tend to use the bikes when the temperature is comfortable.
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Figure 2. JS divergence of flow distance distribution at different times and the comparison between
two distance distributions when JS divergence is the maximum. (a) JS divergence calculated from D1.
(b) JS divergence calculated from D2. The time window of the blue line is 1 h, and the time window of
the red line is 12 h. Each data point is the JS divergence calculated by the flow distance distribution
in the current time window and that in the previous time window. (c) The comparison between two
distance distributions when JS divergence is the maximum. The times of the two distance distributions
are 04:00:00 and 05:00:00 on 27 May 2018 respectively.
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Figure 3. The change in the number of departures of dockless shared bikes. The horizontal axis
represents the time interval between the current time in the dataset and the start time. The ordinate
axis represents the number of departures within 30 min. The blue line represents the change in the
number of departures obtained from D1, and the red line represents the changes in the number of
departures obtained from D2.

Through the above analysis, we can conclude: (1) The flow distance distribution of dockless
shared bikes follows a lognormal distribution, and the flow distance distribution is time stable; (2) the
flow characteristics of weekdays and weekends are quite different. But in the short term, the flow is
periodic, and there are two peak periods every day, around 8:00 and 18:00; (3) the temperature has a
great influence on the demand for dockless shared bikes, and citizens tend to use the bikes when the
temperature is comfortable.

3. Destiflow

In this section, we construct a spatio-temporal flow model of urban dockless shared bikes based on
POIs clustering called DestiFlow. The model can be divided into three parts: the POI-based clustering,
spatial flow distribution model, and time distribution model. The POI-based clustering is used to find
the aggregation areas of dockless shared bikes, the spatial flow distribution model determines the
departure and arrival aggregation areas of each flow, and the time distribution model schedules the
number of bikes within a certain period.
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The time series location data of dockless shared bikes can be expressed as:

X = (bid, lngB, latB, τ). (3)

where bid represents the unique identification of dockless shared bikes, lngB represents the longitude,
latB represents the latitude, and τ represents the time in that latitude and longitude. The aggregation
areas A(X) of dockless shared bikes can be extracted based on the POIs clustering. The aggregation
area set of X can be expressed as:

A(X) = (aid, lngA, latA, τ). (4)

where aid represents the unique identification of aggregation areas, lngA represents the central
longitude, latA represents the central latitude.

A single flow of dockless shared bikes can be represented by an aggregation area pair:

f = (Ad, Aa). (5)

where Ad represents the aggregation areas where dockless shared bikes depart and Aa represents
the aggregation areas where dockless shared bikes arrive, τAd < τAa . In a certain time interval T,
the spatio-temporal flow of dockless shared bikes can be described as:

f lowts = { f1, f2, . . . , fC}. (6)

τf1·Ad
6 τf2·Ad

6 . . . 6 τfC ·Ad
. (7)

where C represents the total number of flow, and formula 7 ensures the time-ordered of the flow.
Suppose that departure aggregation areas Ad and arrival aggregation areas Aa follow two different

distributions:
Ad ∼ Dep : P(Ad = i). (8)

Aa ∼ Arr : P(Aa = j|Ad = i). (9)

where Dep and Arr respectively represent two different distribution functions, i and j represent the
index of aggregation areas, i 6= j. Then the spatial flow distribution of dockless shared bikes can be
expressed as:

f lows ∼ Dep · Arr. (10)

The flow of dockless shared bikes is sequential, and a time window [t, t+∆t) is set. By constructing
the time distribution of flow, the spatial flow distribution of each time window f low∆t

s can
be established:

f low∆t
s = (Ad, Aa)|(τAd , τAa ∈ [t, t + ∆t)) ∧ (Ad, Aa ∈ f lows). (11)

All f low∆t
s in time interval T constitute the spatio-temporal flow f lowts. After that, the POI-based

clustering, spatial flow distribution model and the time distribution model are introduced in detail.

3.1. POI-Based Clustering

Although the dockless shared bikes have no station restrictions, their spatial distribution presents
aggregation effect. Therefore, the aggregation areas can be found to study the flow of dockless shared
bikes between aggregation areas. In the geographic information system, a POI is a specific location
that someone finds useful or interesting. A POI can be a house, a shopping mall, a subway station,
etc., and the aggregation areas of dockless shared bikes are also distributed around these locations.
A POI-based clustering method is proposed to find the aggregation areas.
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In a certain area Γ, the location sample data is expressed as G = {g1, g2, . . . , gK}, and K is the
number of samples. The set of POIs is expressed as P = {p1, p2, . . . , pH}, and H is the number of POIs.
The POI-based clustering is described as follows:

Step1: For each sample data gi, find the closest POIs:

p(gi) = arg min
pj∈P

(dgi ,pj). (12)

where dgi ,pj represents the distance between gi and pj. Each sample can be assigned to the POIs closest
to it.

However, many POIs are very close to each other, so the region of the sample cannot be determined
only by the distance between the sample location and the POIs. On the basis of the above, the POIs
that have been assigned to the sample are clustered, and the POIs close to each other are regarded as
the same cluster.

Step2: Use k-means clustering method to get the class of each POI A(pi);
Step3: Map the sample data to the class of POIs A(G).
For the time series location data of dockless shared bikes X, the clustering regions obtained by

the above method are regarded as aggregation areas of dockless shared bikes A(X).

3.2. Spatial Flow Distribution Model

There are two types of behaviors of dockless shared bikes, departure and arrival. Activity index
(AI) is defined based on the number of departures and arrivals. The activity of an aggregation area is
expressed as the sum of the number of departures and arrivals in the aggregation area in a time interval:

AI∆t
A = dep∆t

A + arr∆t
A . (13)

where dep∆t
A and arr∆t

A represent the number of departures and arrivals of aggregation area A in the
time interval ∆t, respectively. The activity index is the representation of the spatial characteristics,
which reflects the travel choice of citizens. The more active an aggregation area is, the more popular the
aggregation area is, and the greater the probability of departure and arrival from there is. In addition,
distance is an important factor affecting the usage of dockless shared bikes and the distribution of
arrival aggregation areas.

Therefore, we assume that the distribution of departure aggregation areas and arrival aggregation
areas of dockless shared bikes can be constructed with the factors activity and distance:

Dep : P(Ad = i) =
(AIi)

α

∑j(AIj)α
. (14)

Arr : P(Aa = j|Ad = i) = Ψ(di,j) ·
(AIj)

β

∑k(AIk)
β

. (15)

where α and β are power exponents, di,j represents the Manhattan distance between aggregation area i
and aggregation area j, and Ψ(di,j) is a function of di,j. Based on the analysis of the flow distance of
dockless shared bikes, the distance distribution is time-stable, and can be described by a lognormal
distribution. Therefore, we assume that:

Ψ(di,j) =
1√

2πσdi,j
exp[−

(ln(di,j)− µ)2

2σ2 ]. (16)

where µ and σ are two parameters, which can be obtained through training.
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3.3. Time Distribution Model

The total number of flow C can be obtained through the number of dockless shared bikes Ω and
the usage rate λ:

C = λ ·Ω. (17)

We assume that the number of dockless shared bikes is constant for a long time. Figure 3 indicates
that the usage of dockless shared bikes is nearly constant in a short time (weekdays or weekends).

The number of flow in the time window [t, t + ∆t) is:

| f low∆t
s | = C ·Φ(t, t + ∆t). (18)

where Φ(t, t + ∆t) represents the flow probability in time window [t, t + ∆t).
Based on the observation of Figure 3, the flow probability is different at each time, and there

are two peaks in a day. A Gaussian mixture model is used to model the flow time distribution of
dockless shared bikes in a day. The Gaussian mixture model is a statistical model that quantifies the
distribution of variables accurately with multiple gaussian probability density functions. It is usually
used to approximate the data distribution [27–29]. The one-dimensional Gaussian mixture model can
be expressed as:

ϕ(t) =
K

∑
i=1

θi
1√

2πσi
exp[− (t− µi)

2

2σ2
i

]. (19)

where θi represents the coefficient of each Gaussian distribution component, and ∑K
i=1 θi = 1. µi is

the mean of the component i, σi is the standard deviation of the component i. Therefore, the flow
probability in the time window [t, t + ∆t) can be expressed as:

Φ(t, t + ∆t) =
∫ t+∆t

t
ϕ(x)dx. (20)

4. Model Evaluation

4.1. Evaluation of Clustering Model

To illustrate the effect of the POI-based clustering, we compare it with the method based on
regular geographic grid. We take the time series location data of ofo shared bikes on 5 December
2017 (a total of 437,059 locations) as sample data. The two methods are used to cluster the sample
data separately. The number of clusters are set to 100, 500, 1000, 5000, 10,000, 20,000. The clustering
verification methods are used to evaluate the clustering results of aggregation areas. The commonly
used clustering verification methods are Calinski–Harabasz index (CH) [30], Davies–Bouldin index
(DB) [31] and I index (I) [32], which are defined as:
Calinski–Harabasz index:

CH =
∑i nid2 (ci, c) /(NC− 1)

∑i ∑x∈Ci
d2 (x, ci) /(n− NC)

. (21)

Davies–Bouldin index:

DB =
1

NC ∑
i

max
j,j 6=i


 1

ni
∑

x∈Ci

d (x, ci) +
1
nj

∑
x∈Cj

d
(
x, cj

) /d
(
ci, cj

) . (22)

I index:

I =

(
1

NC
· ∑x∈D d(x, c)

∑i ∑x∈Ci
d (x, ci)

·max
i,j

d
(
ci, cj

))P

. (23)

where D represents sample data, c represents the center of sample data, P represents the dimension
of sample data, NC represents the number of clusters, Ci represents the ith cluster, ni represents the
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number of objects in Ci, ci represents the center of Ci, and d(x, y) represents the distance between x
and y. These three methods reflect the degree of tightness within and between clusters from different
perspectives. The higher the CH and I are, the better the clustering effect will be. The smaller the DB
is, the better the clustering effect will be.

Figure 4 shows the comparison of the POI-based clustering and regular geographic grid. Figure 4a
shows the result that the sample data is divided into 100 clusters using the method using regular
geographic grid, and Figure 4b shows the result that the sample data is divided into 100 clusters
using the POI-based clustering method. It is found that the POI-based clustering is more flexible and
reasonable in the division of geographic space. Figure 4c–e show the evaluation of the POI-based
clustering and regular geographic grid by CH, DB, and I, respectively. The results show that the
POI-based clustering is better to the method based on geographic grid, which suggests that the
POI-based clustering is more effective to find the aggregation areas of dockless shared bikes.
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Figure 4. The comparison of the points of interest (POI)-based clustering and regular geographic
grid. (a) The sample data is divided into 100 clusters using the method using regular geographic
grid. The horizontal axis represents longitude and the ordinate axis represents latitude. Different
colors in the figure represent different clusters. (b) The sample data are divided into 100 clusters
using the POI-based clustering method. (c) The Calinski–Harabasz index at different clusters. (d) The
Davies–Bouldin index at different clusters. (e) The I index at different clusters.

4.2. Evaluation of DestiFlow

According to the analysis in the second section, the flow characteristics of dockless shared bikes on
the weekdays are different from those on the weekends, so the weekdays and weekends are considered
separately. In this section, the empirical data on 5 December (Tuesday) and 10 December (Sunday)
are selected to evaluate the spatio-temporal flow model of urban dockless shared bikes based on
POIs clustering.
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4.2.1. Setup

The model parameters are obtained through empirical data. The input of the model includes the
spatial distribution of the aggregation areas, the activity of the aggregation areas, the time distribution
parameters and the distance distribution parameters. Although Figure 4 shows that the smaller the
number of clusters, the better the clustering effect, there will be more dockless shared bikes flowing
in the same aggregation areas. In order to make the flow of dockless shared bikes more in different
aggregation areas, the number of aggregation areas is set to 10,000, so that only 0.1% of the flow is
in the same aggregation area. The activity of each aggregation area can be obtained from the data.
Figure 5 shows the fitting results of the time distribution on 5 December and 10 December respectively
using the one-dimensional Gaussian mixture model. The model parameters are shown in the upper
left corner of each subfigure. The lognormal distribution is used to fit the distance distribution
on 5 December and 10 December (the fitting result is similar to that in Figure 1), and the distance
distribution parameters could be obtained. The distance distribution on 5 December and 10 December
is subject to lognormal(7.053, 0.496) and lognormal (7.303, 0.424) respectively.
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Figure 5. The time distribution of flow on 5 December and 10 December. (a) time distribution of flow
on 5 December (b) time distribution of flow on 10 December. The blue dots in the figure represent the
proportion of flow per minute, and the time distribution is fitted by the 3rd-order Gaussian mixture
model in the one-dimensional space. The goodness of fit for December 05 is 0.7687, and the goodness
of fit for 10 December is 0.7684. The green lines represent components of the Gaussian mixture model.
The model parameters are shown in the upper left corner of each subfigure.

The α and β are variable parameters. It is necessary to select the best parameters for subsequent
experiments. The maximum likelihood approach is used to select the optimal parameters of the
model. The maximum likelihood approach is usually used to compare a series of models numerically
and select the best parameters to interpret the data. It has been widely used in estimating model
parameters [33–35].

Estimating the likelihood of the DestiFlow method in this paper involves considering the possibility
P( fi) of each flow fi in real data according to the model. The likelihood function can be expressed as:

P( f ) = ∏
i

P ( fi) . (24)

To obtain better numerical accuracy, log-likelihood is used in this paper:

log

(
∏

i
P ( fi)

)
= ∑

i
log (P ( fi)) . (25)

Figure 6 shows the relationship between the log-likelihood of DestiFlow and parameters α and
β. The log-likelihoods of the DestiFlow method are a convex function of model parameters α and
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β, so the maximum likelihood can be found to estimate the best parameters of the model. It can be
found from the figure that, for weekdays and weekends, the likelihood is the maximum when α = 1.0
and β = 1.0. Therefore, this pair of parameters is selected for subsequent experiments. The model
parameters are loaded into the model for the experiments. To simulate the activity of shared bikes in
one day, the experiments start at 00:00, end at 24:00, and the time window is 30 min.
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Figure 6. The relationship between log-likelihood of DestiFlow and parameters α and β. (a) The relationship
between log-likelihood of DestiFlow and parameters α and β on weekday. (b) The relationship between
log-likelihood of DestiFlow and parameters α and β on weekend.

4.2.2. Evaluation Method

In the context of network theory, a complex network is a network with non-trivial topological
features, the features often occur in networks modelling of real systems. The complex network is often
used to analyze the properties and relationships between entities in the real world. The spatio-temporal
flow model establishes the connection between the aggregation areas in time and space through the
flow of dockless shared bikes. Therefore, the flow can be described by a network, which is not only
used by many studies [3,36,37], but also provides a perspective to view the flow characteristics of
dockless shared bikes.

A dynamic directed network G = (V, E(t), W) is used to describe the spatio-temporal flow of
dockless shared bikes. V is a set of nodes in the network and represents the aggregation areas of
dockless shared bikes. E(t) is a set of edges in the network, which is the directed edge from the
departure aggregation area to the arrival aggregation area. The connection of network changes with
time. W is a set of weights, indicating the number of edges between departure aggregation area and
arrival aggregation area.

In this paper, we evaluate the experimental results by using the topological features of the
spatio-temporal flow network of the dockless shared bikes. Due to the irregular flow of dockless
shared bikes, we concern more about whether the model can describe the topological features of the
flow network. The traffic and hot spots of dockless shared bike flow can be accurately grasped through
the topological features. Three metrics of network centrality, namely degree centrality, betweenness
centrality, and closeness centrality [38,39], are used to evaluate the experimental results:

Degree centrality: The degree centrality for a node u is the fraction of nodes connected to it:

D(u) =
k(u)

N − 1
. (26)

where k(u) represents the degree of node u, N represents the number of nodes. The higher degree
centrality of a node indicates that the node plays a more important role in connecting other nodes.
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Betweenness centrality: The betweenness centrality of a node u is the sum of the fraction of
all-pairs shortest paths that pass through u:

B(u) = ∑
s,t∈V

σ(s, t|u)
σ(s, t)

. (27)

where σ(s, t) is the number of shortest (s, t)-paths, and σ(s, t|u) is the number of those paths passing
through node v other than s, t. The higher the betweenness centrality of a node, the more obvious the
role of the node as a bridge connecting other nodes.

Closeness centrality: The closeness centrality of a node u is the reciprocal of the average shortest
path distance to u over all n− 1 reachable nodes:

C(u) =
n− 1

∑n−1
v=1 d(v, u)

. (28)

where d(v, u) is the shortest-path distance between v and u, and n is the number of nodes that can
reach u. The higher closeness centrality of a node indicates that the node is closer to other nodes.

These three centrality metrics show the importance of nodes in the network from different perspectives.

4.2.3. Results

The flow network of dockless shared bike extracted from the real data is called the real network,
and the flow network obtained from the experiment is called the generated network. Figure 7 shows
the comparison of the centrality distributions between the real network and the generated network.
In the figure, the degree centrality distribution, the betweenness centrality distribution and the
closeness centrality distribution of the real network and the generated network are compared. It can be
found that the tail of degree centrality distribution and betweenness centrality distribution follow the
power-law distribution, indicating that the degree centrality and betweenness centrality of most nodes
are very small and the importance of these nodes is also very small, only a small number of nodes are
important. There are two parts of the closeness centrality distribution, only a few nodes have a very
small closeness centrality, and most nodes have a very high closeness centrality. This indicates that the
average shortest-path distance is short, which conforms to the characteristics of dockless shared bikes
as a short-distance transportation. In addition, we compare the three centrality metrics of generated
network at different times. Figure 8 shows the comparison of the centrality distributions between
the generated network in 5 December 2017 and the generated network in 22 May 2018. In the figure,
there are more nodes with high degree centrality and closeness centrality in summer, indicating that
the aggregation areas with high activity will be more, and the connections between these aggregation
areas will be closer in the summer. In general, the centrality distributions of the real network and the
generated network is consistent. The spatio-temporal flow model can well reflect the importance of
aggregation areas and describe the structural characteristics of the flow network.
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Figure 7. The comparison of the centrality distributions between the real network and the generated
network. (a) Degree centrality distribution on weekdays. (b) Betweenness centrality distribution on
weekdays. (c) Closeness centrality distribution on weekdays. (d) Degree centrality distribution on weekends.
(e) Betweenness centrality distribution on weekends. (f) Closeness centrality distribution on weekends.
The red circle represents the real network, and the blue triangle represents the generated network.
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Figure 8. The comparison of the centrality distributions between the generated network in 5 December
2017 and the generated network in 22 May 2018. (a) Degree centrality distribution. (b) Betweenness
centrality distribution. (c) Closeness centrality distribution. The red circle represents the real network,
and the blue triangle represents the generated network.

5. Case Analysis

TheDestiFlow model studies the flow of dockless shared bikes from the perspective of aggregation
areas. The model can be used to predict the demand for dockless shared bikes in each aggregation
area and help solve the problem of unbalanced spatial distribution of dockless shared bikes. For this
purpose, a case study is carried out. Using the number of dockless shared bikes in each aggregation
area at 00:00 on 6 December 2017, the real-time number of dockless shared bikes in each aggregation
area can be predicted. Figure 9 shows the results of the case study. For better presentation of the results,
the results of a subspace (longitude range [116.310, 116.345], latitude range [39.910, 39.930]) are shown.
Figure 9a shows the change of the predicted number of dockless shared bikes in each aggregation area
over time. Different color lines represent different aggregation areas. By predicting the change of the
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number of dockless shared bikes in each aggregation area, the demand for dockless shared bikes can
be effectively grasped. At a certain time, the number of dockless shared bikes in each aggregation
area is different, with a maximum of over 200 and a minimum of 0. The difference in the number
in different aggregation areas reflects the unbalance spatial distribution of dockless shared bikes.
Figure 9b shows the number of dockless shared bikes in each aggregation area at 00:00 on 6 December
2017 in geographical space, and Figure 9c shows the change of the number of dockless shared bikes in
each aggregation area on 6 December 2017. The change of the number of dockless shared bikes in each
aggregation area within one day is defined as the difference between the number of dockless shared
bikes in a gathering area at 00:00 and the number of dockless shared bikes in the gathering area at
24:00. Three problems can be found from Figure 9: (1) some aggregation areas have a high number of
dockless shared bikes, but few bikes are used, which will cause a waste of bikes, such as aggregation
area 1; (2) the arrivals of dockless shared bikes in some aggregation areas is much higher than the
departures, which will lead to the accumulation of dockless shared bikes for a long time, such as
aggregation area 2; (3) the number of dockless shared bikes in some aggregation areas is not very large,
but the usage is very high, which will cause the shortage of dockless shared bikes, such as aggregation
area 3. The unbalanced spatial distribution of dockless shared bikes is not conducive to the reasonable
utilization of resources, so it is necessary to carry out a reasonable scheduling. Our model can predict
the short-term flow of dockless shared bikes in the future through historical data, so as to predict the
demand for dockless shared bikes, and guide the scheduling in advance.
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Figure 9. The results of case analysis. (a) The change of the predicted number of dockless shared
bikes in each aggregation area over time. Different color lines represent different aggregation areas.
(b) The number of dockless shared bikes in each aggregation area at 00:00 on 6 December 2017 in
geographical space. The value corresponding to the color is shown in the color bar. (c) The change of
the number of dockless shared bikes in each aggregation area within one day.

6. Discussion and Conclusions

In this paper, the flow characteristics of dockless shared bikes are expounded through the analysis
of the time series location data of ofo and mobike shared bikes in Beijing. Based on the analysis, a model
called DestiFlow is proposed to describe the spatio-temporal flow of urban dockless shared bikes.

Unlike previous work, which studies the crowd flow of shared bike from a macro perspective [13],
the DestiFlow method can describe in detail the flow of each dockless shared bike. In addition, the POI
clustering provides a new method for discovering the aggregation areas of dockless shared bikes,
which avoids the shortcomings of the method using a regular geographic grid [14,15].

It is found that the DestiFlow method can reflect the importance of aggregation areas and describe
the structural characteristics of the flow network. Through the case study, it is found that the spatial
distribution of dockless shared bikes is unbalanced. Our model can guide the scheduling in advance by
predicting the demand for dockless shared bikes in each aggregation area. The results can help to grasp
the mobility characteristics of citizens and improve the urban traffic management system. The flow of
dockless shared bikes is dominated by human mobility behavior. An in-depth understanding of the
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flow characteristics of dockless shared bikes can help us master the short-distance human movement
pattern, which is beneficial to the construction of intelligent transportation and intelligent city.

However, there are still some limitations in our work. (1) The usage mode of dockless shared
bikes needs to be further explored. This paper analyzes the characteristics of flow distance and time of
dockless shared bikes, but these are considered from a macro perspective. More detailed studies can be
considered, such as the flow characteristics of dockless shared bike in different locations. (2) The model
needs to be further improved. The purpose of our model is to study the flow of dockless shared bikes
in the short term. If multivariate data can be integrated and the influence of weather, temperature,
population, economy and other factors can be fully considered, the accuracy and practicability of the
model can be improved.
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