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Abstract: Urban underground pipelines are known as “urban blood vessels”. To detect changes
in integrated pipelines and professional pipelines, the matching of same-name spatial objects is
critical. Existing algorithms used for vector network matching were analyzed to develop an improved
matching algorithm that can adapt to underground pipeline networks. Our algorithm improves
the holistic matching of pipeline strokes, and also a partial matching algorithm is provided. In this
study, appropriate geometric measures were selected to calculate the geometric similarity between
pipeline strokes in their holistic matching. Existing methods for evaluating similarities in spatial
scene structures in partial underground pipeline networks were improved. A method of partial
matching of strokes was additionally investigated, and it compensates for the deficiencies of holistic
stroke matching. Experiments showed that the matching performance was good, and the operation
efficiency was high.
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1. Introduction

Urban underground pipelines, which are known as “urban blood vessels”, consist of a series of
pipelines for water supply, drainage, gas, heat, electricity, communications, television transmission,
and other industries [1]. Underground pipeline data play a key role in smart cities, disaster evaluation,
and so on [2–4]. For different applications, there are differences in the data model, location accuracy,
and attribute information, especially between integrated underground pipeline data and professional
underground pipeline data, which are collected by different departments. Integrated underground
pipeline data are accurate and general, while professional underground pipeline data express and
contain detailed attribute information [5]. As a result, there are two sets of data and two systems. This
management model has seriously affected the integration and sharing of pipeline data between different
departments. The intention of this work is to achieve a matching algorithm for urban underground
pipelines that can be widely applied and used to promote data sharing.

Previous studies on vector data matching have provided sound ideas and useful methods for
urban underground pipeline matching [6–11]. However, the spatial data are usually organized by the
traditional “node–segment” method, which has some obvious defects. First, it is difficult to analyze
and apply the characteristics of linear elements as a whole. Second, it is not easy to express the change
and distribution of geographical phenomena along the linear elements. Therefore, the spatial data
organization of urban underground pipelines using the “node–segment” approach excludes several
discrete segments from the set of basic matching units, even though they represent the same real-world
pipeline. Thus, it is difficult to match integrated pipelines and professional pipelines. For these
reasons, the “good continuity” principle, proposed by Gestalt, is often used as a guide to establish
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geometric connection rules [5,12]. This principle was combined with the characteristics of road and
water network spatial data to propose the stroke concept [12,13]. From a local indicator, two road
segments can be connected on the condition that their deflection angle is less than a specified threshold.
The deflection angle, which ranges from 0◦ to 180◦ represents the degree of deviation formed by two
linked road segments [14], as shown in Figure 1. Figure 1a shows the pipeline spatial data organized in
the traditional “node–segment” manner, and Figure 1b shows the data processed by stroke connection.
There are four strokes: stroke1<a, b, c, d>, stroke2<e, f>, stroke3<g>, and stroke4<h>. “Good
continuation” usually refers to an approximately level angle (180◦) between segments. The geometric
morphology of a stroke is characterized by a smooth and continuous distribution in space, which
maintains the integrity of urban underground pipelines. Therefore, the stroke can be used as the basic
unit for matching and analyzing urban underground pipelines.
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Figure 1. (a) Segments of pipelines; (b) strokes of pipelines. 

In the process of matching, measures of similarity are particularly important. Xavier et al. 
organized matching measures according to the nature of the measured quantity: geometry, topology, 
attributes, context, and semantics. Geometric measures refer to the locations of features, as well as 
their area overlap, geometric properties (size, area, etc.), and shape (e.g., elongation). Topological 
measures assess the relationships between two nearby features. Attribute measures evaluate the non-
geometric properties of a spatial object (e.g., name), and context measures reveal the geographic 
context of a feature relative to its neighborhood. Finally, semantic measures compare the similarity 
between different concepts [15]. For network matching, Walter and Fritsch proposed using the 
topological relation connection as part of their matching method. The connected approach counts the 
number of features that are connected to another one [16]. Olteanu-Raimond and Mustière proposed 
the neighborhood criterion as a topological measure. This criterion is based on the assumption that if 
two edges are similar, then their neighbors should also be similar [17]. Underground pipelines form 
an organic network as a whole. Each stroke (each basic matching unit) in the network has a certain 
topological connection with its neighboring strokes, and thus, is not an independent entity. 

In the data of underground pipelines with different current situations, an entity often varies as 
a result of human activities or social development. There are two specific forms of variation: 
morphological differences and topological differences. A morphological difference mainly manifests 
as a change in the individual itself, including pipeline growth, shortening, appearance, and 
disappearance. Differences in the topological structure caused by the present situation mainly 
manifest as pipeline splitting, merging, and structural changes. In this case, the topological 
relationship between pipelines changes because of the rectification of underground pipelines. In the 
face of performance differences in the above-mentioned underground pipelines, it is impossible to 
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The matching algorithm proposed in this paper applies the stroke concept. The production of
a stroke from discrete segments, includes the principles of attribute information and included angle
coherence. If the urban underground pipeline data contain inconsistent or are missing attribute
information (for example, an integrated pipeline that only retains the basic information of the pipeline,
such as the spatial location, pipe diameter, material, and burial depth), then the main and branch
pipes are not recorded. In the absence of the recorded correlation relationship, the principle of angle
coherence is adopted in this paper to process the connection of the pipeline segment into a stroke.

In the process of matching, measures of similarity are particularly important. Xavier et al.
organized matching measures according to the nature of the measured quantity: geometry, topology,
attributes, context, and semantics. Geometric measures refer to the locations of features, as well as their
area overlap, geometric properties (size, area, etc.), and shape (e.g., elongation). Topological measures
assess the relationships between two nearby features. Attribute measures evaluate the non-geometric
properties of a spatial object (e.g., name), and context measures reveal the geographic context of
a feature relative to its neighborhood. Finally, semantic measures compare the similarity between
different concepts [15]. For network matching, Walter and Fritsch proposed using the topological
relation connection as part of their matching method. The connected approach counts the number
of features that are connected to another one [16]. Olteanu-Raimond and Mustière proposed the
neighborhood criterion as a topological measure. This criterion is based on the assumption that if
two edges are similar, then their neighbors should also be similar [17]. Underground pipelines form
an organic network as a whole. Each stroke (each basic matching unit) in the network has a certain
topological connection with its neighboring strokes, and thus, is not an independent entity.

In the data of underground pipelines with different current situations, an entity often varies
as a result of human activities or social development. There are two specific forms of variation:
morphological differences and topological differences. A morphological difference mainly manifests as
a change in the individual itself, including pipeline growth, shortening, appearance, and disappearance.
Differences in the topological structure caused by the present situation mainly manifest as pipeline
splitting, merging, and structural changes. In this case, the topological relationship between pipelines
changes because of the rectification of underground pipelines. In the face of performance differences
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in the above-mentioned underground pipelines, it is impossible to implement the entire matching
algorithm by using strokes, because the topological structure of underground pipelines is inconsistent,
so the stroke cannot find a matching object in geometric form.

This paper focuses on the geometry matching of underground pipeline data, and the goal is to
select appropriate geometric measures for calculating the geometric similarity between pipeline strokes.
Existing methods for evaluating similarities in spatial scene structures in partial underground pipeline
networks are improved in this work. By calculating the geometric similarity and structural similarity
of the network (neighborhood space) where a stroke is located, the matching results are more reliable.
For morphological differences and topological differences in pipeline strokes, a method for the partial
matching of strokes was additionally investigated, and it compensates for the deficiency of holistic
stroke matching. In both the holistic and partial data matching, stroke-based methods are applied.

The remainder of this paper is organized as follows. Section 2 introduces some previous vector
matching studies. Section 3 explains the holistic matching of strokes, and Section 4 presents the partial
matching of strokes. Section 5 reports the design of a pipeline matching experiment and evaluates the
results. Section 6 presents the conclusions of this research.

2. Related Work

Data matching is a relevant research topic in the geographic information system (GIS) field, with
many direct and indirect applications. Among them are data integration, conflation, quality evaluation,
and data management [15]. One of the initial matching approaches was developed by Saalfeld [11].
Saalfeld proposed a road network matching method based on buffer growth. The method uses the buffer
of the to-be-matched segment to determine a candidate matching set; then, the candidate segments are
assessed. Since then, many efforts have been made to develop object-matching methods. In general,
the existing predominant matching algorithms address two issues: the type of similarity measure used
to determine corresponding objects, and the data matching strategies for decision-making.

To address the first issue (determining the type of similarity measures), Chehreghan [18] studied
methods for evaluating the spatial similarity in aspects such as distance, angle, area, and shape.
Distance is the most widely used geometric measure for evaluating the matching degree of two spatial
targets [19,20]. In the matching process, the distance between a point and a polyline [16] or the
Hausdorff distance between two polylines can be used [7,8]. In addition to using distance to evaluate
the geometric similarity between two spatial line elements, one or more measures—including the angle,
node topological relation [21–23], area, or shape [24]—must be combined to improve the reliability of
target matching [9,10,25,26]. Considering the spatial context as a broader concept beyond matching
pairs, Samal et al. applied landmarks for similarity assessment. By combining multiple metrics, such
as the position and an attribute, the authors proposed the use of landmarks to build a proximity graph,
which is a weighted directed graph that is defined to assess the similarity in geographical contexts on
the basis of the “proximity” relative to some pre-selected landmarks. The similarity is measured using
the total vector offset of the corresponding objects in both datasets [27].

In addition, many scholars have combined geometric characteristics with the spatial relationships
in the neighborhood space or the overall pattern [28,29]. Many studies have employed residential areas
in the surrounding neighborhood for constraint matching. Wang et al. [30] determined the residential
groups adjacent to the road by constructing a skeleton network. Then, the spatial relationship and
geometric similarity of the residential groups were calculated and used to determine the matching of
the corresponding roads. Fan et al. [31] employed the matching of polygons formed by roads (which
can be regarded as residential areas) to indirectly perform road matching. A road has both grades and
different levels of semantic features. Matching only the roads at the same level can reduce the search
range of the candidate matching set in the matching process. Hu et al. [32] divided road data into three
levels, including line segments, road sections, and paths. The buffer and topological relationships
were used during road matching at different levels. In their approach to classifying road strokes,
Liu et al. [33] first selected high-grade backbone roads as matching objects. Then, they performed
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stepwise iterations so that the matching information was transferred in the network model to obtain
the matching results.

The second issue concerns the strategy of matching. Walter and Fritsch [10] proposed a mutual
information function for segment matching using the buffer algorithm, in which the mutual information
is not a cost function but a merit function. This means that matching is possible without the use of data
that depend on tuning factors. The buffer is used to search for potential matching objects, and then
the mutual information function is used to calculate the shape, position, topological relationship, and
other characteristics of the line objects. Finally, the maximum probability is taken as the final matching
result. Mantel [34] improved the search speed of the candidate matching set by adding semantic
information to the basis of the buffer growth method, and Zhang et al. [35] proposed an algorithm that
can dynamically adjust the buffer radius for matching street data. Additionally, probability relaxation
has been used to match road networks [36–40]. First, the initial matching matrix is established, and then
geometric measures, such as the length, angle, and shape, are calculated using the structural relations
of the target in the adjacent areas of the road. The matrix is iteratively updated to achieve the global
optimum. Logistic regression is another mathematical model that has been applied for road matching.
Tong et al. [41] first described the difference in roads through geometric feature information of the
roads. Then, initial matching results were obtained using the “opt method” algorithm. The missed
matching and incorrect matching are identified by the optimization and iterative logistic regression
matching (OILRM) algorithm. In addition, the regression model can be directly constructed using
the geometric feature information to predict the matching probability [42]. Alternatively, it can be
constructed by training the feature samples through a support vector machine (SVM). In the mesh
vector data composed of linear elements, the topological relationship between intersection and arcs
has important matching information. In [43] and [44], the authors used the matching between nodes
and the matching between lines to find 1:1 and 1:N matches, which can solve the problem of node
topological changes. Then, they divided the road matching into segment matching and node matching.

The previous research results of road network matching provide a very good baseline for pipeline
matching, but there are few reference studies on pipeline matching. Using semantic similarity, Gong et
al. [5] presented the pipeline-point ontology concept, and additionally introduced shape similarity
characterized by the shape of arcs between two pipeline points. However, semantic information is often
inconsistent or missing, and the accuracy of the matching results depends on whether the semantic
information is comprehensive. In addition, the problems (growth, shortening, topological changes,
etc.) in partial matching between line individuals cannot be solved with the “node–segment” spatial
data organization method, so a partial matching algorithm was developed in our study. The matching
of underground pipeline networks requires consideration of changes in pipeline morphology and
topology, as well as frequent N:M matching types. There are generally four cases of object-matching
relationships: one-to-one (1:1), one-to-none (1:0), one-to-many (1:N), and many-to-many (N:M) [16].
Figure 2 shows the possible instances of matching.
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In cases of data updates (growth, shortening, emergence, disappearance, etc.), there may be
changes in same-name objects between the integrated and professional underground pipeline networks.
For example, one pipeline in the integrated pipeline map may split into two pipelines in the professional
pipeline map, and part of the pipeline may disappear on account of the updates. In this case, a stroke
formed by connections based on angle differences may lead to stroke mismatching. This type of stroke
mismatching is due to changes in same-name objects, such as a significant difference in length. Thus,
we attempt to improve the matching methods of underground pipeline networks in order to deal with
these changes in pipelines. The approach developed here encompasses several steps. In the first phase,
the data are prepared to allow for an optimized matching process. Then, the matching is performed in
several iterations to achieve the final result, which is stored as explicit relations between corresponding
features. The resulting set also includes features for which no matching candidates could be found.

3. Holistic Stroke Matching

In the matching process, only the geometric properties of a stroke are of concern, and other
strokes with direct or indirect topological connections within the stroke’s neighborhood or even the
entire underground pipeline network are ignored. In this case, the reliability of the matching will
be lacking, and other strokes with topological relations will often have inconsistent matching results.
That is, the matching between strokes cannot take advantage of neighboring strokes or even the whole
underground pipeline network as constraint conditions. When a person reads a map and searches for
a pipeline, he or she not only identifies the geometry of the target pipeline but also refers to whether
other geographical elements around the pipeline are consistent with the real-world situation. Similarly,
in the matching of underground pipelines, in addition to calculating the geometric similarity between
strokes, matching references are required. The matching of strokes can only be judged as a whole
by checking the matching of surrounding underground pipelines, instead of relying on the local
judgment of independent geometric similarity between strokes. Therefore, in the process of matching
underground pipelines, the geometric similarity between stroke pipelines and the structural similarities
of the networks (neighborhood space) in which the pipelines are located should be calculated to obtain
more reliable matching results. This method is called holistic stroke matching.

3.1. Geometric Similarity

In holistic stroke matching, a stroke is used as the basic matching unit during pipeline network
matching between integrated pipelines and professional pipelines. By calculating the geometric
similarity between a stroke and a candidate matching object, a more accurate matching object can
be obtained. Geometric measures are used to quantify the magnitude of certain morphological
characteristics of the stroke in the geographical space. The main geometric measures are length, angle,
shape, area, and distance, among others. However, it is not necessary to include all of the geometric
measures for geometric similarity. To obtain an efficient measurement method of geometric similarity
while also ensuring effectiveness—that is, the quantified geometrical similarity conforms to human
spatial cognition rules—three geometric measures are proposed in this work: length, angle, and
spatial distance.

Since a stroke is composed of a number of discrete segments, there is a high degree of differentiation
in the lengths of different strokes. Many studies have used length as a matching geometric measure.
Furthermore, the angle between the two strokes to be matched is defined as the angle between the two
lines connecting the first and last nodes of the two strokes. Generally, the length of a stroke is not short.
Thus, for the cases where the lengths meet the required criteria, it is rare that the angle formed by the
lines connecting the first and last nodes also meets its required criteria. Hence, spatial distance is an
indispensable geometric measure in addition to length and angle; the higher the proximity of the two
strokes, the greater their association.

To characterize the spatial distance, typically the Hausdorff distance (HD) is employed, which is a
mathematical construct that measures the “closeness” of two sets of points that are subsets of a metric
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space. Given two point sets, pA = {pa1, pa2, . . . , pam} with size m and pB = {pb1, pb2, . . . , pbn} with size n,
the classical HD between the two point sets is given by:

HD(pA, pB) = max
{
h(pA, pB), h(pB, pA)

}
, (1)

where h(pA, pB) is the maximum of the minimum Euclidean distances from each point in point set pA
to point set pB, and vice versa for h(pB, pA).

In this paper, the spatial distance between strokes is calculated using a modified Hausdorff
distance (MHD) algorithm, which is insensitive to noise [45]. The MHD algorithm is calculated as:

MHD(pA, pB) = max(h(pA, pB), h(pB, pA))

h(pA, pB) =
1
m
∑

pai∈pA
min

pbj∈pB
‖pai − pbj‖

h(pB, pA) =
1
n
∑

pbj∈pB
min

pai∈pA
‖pbj − pai‖

, (2)

where h(pA, pB) is the average value of the minimum Euclidean distances from each point in point set
pA to point set pB, and vice versa for h(pB, pA), ||pai − pbj|| is the Euclidean distance between pai and pbj.
MHD(∗) is the MHD algorithm.

The range of geometric similarity between strokes is [0, 1]. The measurement process is shown in:
SI(s1, s2) = ω1 ∗

HT−H(s1,s2)
HT +ω2 ∗ LR(s1, s2) +ω3 ∗

AT−A(s1,s2)
AT

i f H(s1, s2) > HT then H(s1, s2) = HT
i f A(s1, s2) > AT then A(s1, s2) = AT

, (3)

where the three experience weight parameters, ω1, ω2, and ω3 are positive numbers, and ω1 + ω2 + ω3

= 1. Here, s1 and s2 represent two strokes, SI(∗) is the geometric similarity between s1 and s2, and H(∗)
is the MHD algorithm. In addition, HT(∗)denotes the Hausdorff distance threshold; LR(∗) represents
the length ratio between two strokes; A(∗) is the angle between the two strokes (the angle formed by
the two lines connecting the first and last nodes); and AT(∗) is the angle threshold.

Discrete segments are handled by stroke connection. The resulting strokes are typically long and
thus, length is a key geometric measure. In the experiments below, the value of ω1 was selected to be
0.5. The Hausdorff distance is not only able to measure the spatial distance between strokes but also
indirectly measures the geometric similarity, which is a relatively comprehensive measure. Thus, the
value of ω2 was selected to be 0.35. Finally, the angle is a geometric measure that indicates direction,
and the value of ω3 was selected to be 0.15. In the measures of geometric similarity, if the calculated
Hausdorff distance between the two strokes is higher than a threshold, then we interpret this to mean
that there is no partial matching relationship in spatial distance similarity. Similarly, if the calculated
results of the angles of the two strokes are higher than the threshold, then we infer that there is no
partial matching relationship in angle similarity.

After calculating the geometric similarity, candidate matching pairs are identified as the pipeline
pairs with a geometric similarity that exceeds a given threshold, and then their structural similarity is
calculated to further assure that the matching is correct.

3.2. Structural Similarity

Geometric characteristics between strokes often lack consideration of the overall underground
pipeline networks. Moreover, many studies have heavily depended on the geometric similarity
between line individuals [6–11]. In fact, each stroke within a pipeline network has a certain topological
relationship with the surrounding strokes. The stroke’s spatial scene is a local network formed by
strokes in the neighborhood that have a direct relationship with the given stroke. Figure 3 shows that
stroke pipeline a (red) directly connects with several strokes; b, c, d, e; and thus they have a direct
topological relation. They constitute the spatial scene of a. A spatial scene comprises a collection of
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spatial objects and their particular arrangement. People construe such spatial scenes in terms of objects
and relations [46].ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 7 of 23 
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Figure 3. Spatial scene of the stroke a (red).

The stroke type in a spatial scene can be further categorized. Discrete segments are handled
by stroke connections, and the resulting strokes are typically long. Strokes with adjacent topologies
can be divided into two categories: (1) Type A, which refer to strokes connected to the start and end
nodes, and (2) Type B, which refer to strokes connected to the inner region. For example, Figure 4a is a
schematic diagram of stroke pipeline S and its spatial scene; Figure 4b shows the Type A strokes in the
spatial scene; and Figure 4c shows the Type B strokes in the spatial scene. These two types of pipelines
together constitute the spatial scene of S.
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Let us suppose that a certain stroke is denoted as S in the integrated pipeline map, which has two
types of neighboring stroke datasets with a direct topological relationship, namely Type A and Type B.
Similarly, a candidate stroke matching S in the professional pipeline map is denoted S′ and Type A′

and Type B′ strokes in the spatial scene of S′ are characterized. The strokes in the spatial scenes of
from S and S′ can be classified as matching or non-matching pairs, respectively, by calculating their
geometric similarity using Equation (3). The structural similarity between the spatial scene of S and S′

is then calculated by:

SIM(S, S′) = f ∗

n∑
i=1

len(i) ∗ SI(i) +
m∑

i=1
len(i) ∗ SI(i)

n∑
i=1

len(i) +
m∑

i=1
len(i)

, (4)
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where len(i) is the sum of the lengths of the two matching strokes in the i-th matching pair; and SI(i) is
the geometric similarity between the two matching strokes in the i-th matching pair. Furthermore, n is
the total number of matching pairs of Type A and A′, and m is the total number of matching pairs Type
B and B′.

The compensation function f is added to Equation (4), and it is defined as:

f =
(n + m) ∗ 2

T
, (5)

where T is the total number of strokes in the two spatial scenes of S and S′, and n + m is the number
of successfully matched stroke pairs between the two spatial scenes. The effect of the compensation
function is that the higher the number of strokes matched in the two spatial scenes, the higher the
structural similarity of the two spatial scenes.

In Figure 5, strokes A, B, and C are two strokes from one dataset, while A1, B1, and C1 are from the
other dataset. Without calculating the structural similarity, we may mistakenly identify B and A1 as a
matching pair. This type of error can be prevented by calculating the structural similarity.
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Both the geometric and structural similarity are indispensable for achieving an accurate and
robust result. Based on the fact that the calculating methods for structural similarity are complex and
time-consuming, it is impossible to calculate the structural similarity of all the pipelines in the dataset.
Therefore, we calculate the geometric similarity first, and structural similarity is only calculated for the
objects whose geometric similarity is higher than the threshold. As the numbers of links in strokes
are different, a stroke may contain one or several links. In Figure 6a, AC and A1C1 are the matched
strokes, and AC has two links—AB and AC—while A1C1 has only one link, which is a one-to-many
matching type. If A1C1 were composed of three or more links (as shown in Figure 6b), our algorithm
could also find a many-to-many matching type. After holistic matching, the one-to-one, one-to-many,
and many-to-many matching types (1:1, 1:n, n:m) can all be identified.
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4. Partial Stroke Matching

4.1. Stroke Partial Matching Algorithm Based on Segment Decomposition (SPMA-S)

After holistic stroke matching, a partial pipeline in a stroke could be matched with pipelines in
another map. Thus, we need a method to deal with these pipelines. The data processing for such a
scenario is shown in Figure 7.
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The map data of one pipeline (such as an integrated pipeline) are denoted as the set Str and
the map data of the other pipeline (such as a professional pipeline) are denoted as set CanStr. Str is
composed of N pipelines, i.e., Str = {Str1, Str2, ...... StrN}, and CanStr consists of NC pipelines, i.e.,
CanStr = {CanStr1, CanStr2, ...... CanStrNC}. In the calculation process, we need to specify the Hausdorff
distance threshold HT. In our experiment, the algorithm proposed in [8] is particularly suitable for
calculating the spatial distance between two linear features with large differences in length. After
we obtain the spatial distance HD between each pipeline of Stri and CanStrj, we determine whether
each segment of Stri can find the corresponding part in CanStrj, If HD is greater than HT, then the
spatial distance attribute value HAtti of Stri is FALSE, which means that there is no partial matching
between the pipeline of Stri and CanStrj. Otherwise, HAtti is TRUE. After calculation, the Boolean
spatial distance attribute values of each pipeline of Str form a set, PStri:

PStri = {HAtt1,HAtt2, · · · · · · , HAttN}. (6)
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Similarly, the spatial distance HD from CanStrj (where j = 0, 1, ......, NC) to Str is calculated, and
HAttj can be obtained accordingly. This forms the Boolean set PCanStrj:

PCanStr j = {HAtt1,HAtt2, · · · · · · , HAttNC}. (7)

The values of the elements of PStr and PCanStr are compared and analyzed. If the element values
of some continuous pipelines are always TRUE from left to right, then a matching body is formed.
A so-called matching body means that the matching object of a certain part of the stroke has been
found in another pipeline map. These parts of strokes in Str or CanStr are then connected to form a
new stroke. At this point, preliminary results of the partially matched internal sub-strokes in Str and
CanStr are obtained.

Finally, the length ratio and angle between newly-generated strokes are calculated. If both the
length ratio and the angle meet the threshold conditions, then the partial matching is considered
successful. All the pipelines with successful partial matching are marked as matched. If one of the
length ratios or the angle does not meet the threshold conditions, then one pipeline of the longer stroke
is removed in accordance with the order (from first to last). The remaining pipelines form a new stroke.
Then, the length ratio and the angle with the shorter stroke in the matching pair are calculated, until
the threshold conditions are met or all the pipelines are completely removed.

4.2. Stroke Partial Matching Algorithm Based on Vertex Decomposition (SPMA-V)

The matching pipelines are connected by red arrows in Figure 8. With the urban underground
pipeline transformation, the topology of the pipelines may change for different survey purposes and
dates of formation and measurement of the integrated and professional pipelines.
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data, and the matching direction is stroke to stroke’. The arrows that match the result are marked stroke
with stroke’.

In Figure 9a, one pipeline map is S = {a1, a2, a3} and another is S′ = {b1, b2, b3, b4}. In the algorithm,
to retain the original data as much as possible, we first performed partial stroke matching based on
segment decomposition (SPMA-S). Thus, we obtained a partial match between a2 and b2, b3, as shown
in Figure 9b. A partial matching relationship in the spatial distance and approximate shape exists for a3

and b4, as well as for a1 and b1. However, they cannot be completely considered to be a partial matching
relationship according to SPMA-S. In order to solve the problem in Figure 9b, we decomposed the
strokes by vertices (red dots in Figure 9c). Then, we entered the stroke partial matching algorithm based
on vertex decomposition (SPMA-V) to search for the relation of partial pipeline matching to a greater
extent. The basic unit of the SPMA-S algorithm is the pipeline segment. The decomposition algorithm
is very good by splitting edges by transferring nodes from one representation to the other [25]. In our
algorithm, we considered simplifying the complexity of the algorithm, and we chose the average
interpolation method with fixed length. In the partial stroke matching SPMA-V algorithm, every
unmatched stroke is decomposed by inserting vertices according to a certain vertex density. The basic
matching unit is thus refined to the vertex of the stroke. As shown in Figure 9c, the matching result of
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the vertex is used to obtain a partial matching result. In reality, the growth, shortening, appearance, and
disappearance of pipelines often occur, and the SPMA-V is more effective than the SPMA-S algorithm
when such changes occur. Furthermore, the problems (growth, shortening, topology changes, etc.) in
partial matching between individual lines can be solved.
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Figure 9. Complementary relationship between two partial stroke matching algorithms: (a) shows
two initially unmatched strokes; (b) shows the result of the SPMA-S algorithm (red arrows represent
the matching relationship); (c) shows the result of the SPMA-V algorithm (green arrows represent the
matching relationship, and red dots are the inserted vertices according to a certain density).

To formalize the SPMA-V, approach, assume a certain stroke pipeline is composed of k segments
and denoted as S = {s1, s2, ......, sk}. Furthermore, assure there are n vertices in the stroke, such that the
set of ordered vertices of the stroke is SN = {p1, p2, ......, pn}. Similarly, the candidate matching pipeline
stroke on another pipeline map is denoted as S′ = {S′1, S′2, ......, S′k,}. There are m vertices in this stroke,
and the ordered vertex set is SN′ = {p′1, p′2, ......, p′m}. Each vertex in S and S′ has a Boolean spatial
distance attribute value (similar to the SPMA-S algorithm).

First, the shortest distance from each vertex pi (where 1 ≤ i ≤ n) in S to S′ is obtained, and the
spatial distance attribute attri of the vertex pi is determined according to the shortest distance via:

attri =

 TRUE i f min (
∣∣∣∣∣∣∣∣pi − p′ j

∣∣∣∣∣∣∣∣) ≤ HT

FALSE i f min (
∣∣∣∣∣∣∣∣pi − p′ j

∣∣∣∣∣∣∣∣)>HT
p′ j ∈ SN′, (8)

where || . . . || represents the Euclidean distance between two points, and HT is the spatial distance
threshold. Thus, the Boolean spatial distance attribute value set for SN is obtained and can be expressed
as:

SNAttr = {attr1,attr2, · · · · · · , attrn}. (9)

Similarly, the shortest distance is obtained for each node p′j (where 1 ≤ j ≤ m) of S′, and the
Boolean spatial distance attribute value is obtained by:

attr′ j =

 TRUE i f min (
∣∣∣∣∣∣∣∣p′ j − pi

∣∣∣∣∣∣∣∣) ≤ HT

FALSE i f min (
∣∣∣∣∣∣∣∣p′ j − pi

∣∣∣∣∣∣∣∣) > HT
pi ∈ SN. (10)
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Finally, the Boolean spatial distance attribute value set for SN′ is obtained and is:

SNAttr′ =
{
attr′1,attr′2, · · · · · · , attr′m

}
. (11)

The elements of SNAttr and SNAttr′ are combined to form a matching body. If the indices of
the elements continuously vary from small to large, and the corresponding spatial distance attribute
values are TRUE, these continuous ordered vertices form a matching body. Matching bodies with the
same index in SNAttr and SNAttr′ are combined to form a matching pair. The corresponding ordered
vertexes in the matching pair are then combined into the stroke, and partial matching results of the
stroke are obtained.

5. Experiment

5.1. Experimental Data and Matching Process

As an experimental test of our approach, we collected gas pipeline data from a location in the city
of Wuhan, in the Hubei province of China. The integrated pipeline data and professional pipeline
data are respectively from the municipal surveying and mapping department and the gas company.
The integrated pipeline (gas) and professional pipeline (gas) data are summarized in Table 1. In our
experiments, Visual Studio 2010 (C#) was chosen to design and implement the algorithm. The matching
algorithm was used to find the relationship between entities with the same name between the integrated
pipeline (gas) data and the professional pipeline (gas) data. If data are captured repeatedly systematic
errors and local differences will arise through digitization. Systematic errors were introduced, for
example, by inaccurate transformation between digitizing tablet and model coordinate system. Local
differences are the result of capturing data in different data models, as well as incorrect coordinates,
topology errors, or missing elements. A transformation has to be computed to minimize the global error.
The parameters of the transformation were calculated by measuring control points interactively on the
screen. A further automation is possible by finding corresponding points in two data sets automatically.

Table 1. Summary of the experimental data from the integrated and professional pipelines.

Study Data Data Sources Data Format Number of
Pipelines Total Length (m)

Integrated pipeline (gas)
Institute of

surveying and
mapping

MDB 1138 11,255.573

Professional pipeline (gas) The gas company MDB 1274 11,966.123

Figure 10a shows the integrated pipeline (gas) map, Figure 10b shows the professional pipeline
(gas) map, and Figure 11 shows the superposition of the two data sets. As can be seen from the
superposition map, although the data of the two pipelines basically overlap, there are still obvious
differences in the details. The differences are mainly due to the various matching relationships, such
as 1:1, n:1, and n:m, that exist between the two types of pipeline data in pipe segment matching.
Statistics for some matching types are shown in Table 2. Given this data, it is difficult to perform
accurate matching by using only the spatial similarity method, and it is further difficult to distinguish
multiple similar pipeline entities using the uniform method. Thus, we added structural similarity in
addition to spatial similarity in order to more effectively match dissimilar entities in a similar region.
For unmatched pipelines, we executed partial matching methods which include both the stroke partial
matching algorithm based on segment decomposition (SPMA-S) and stroke partial matching algorithm
based on vertex decomposition (SPMA-V).
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In Table 2 and Figure 11, points 661, 662, 906, 905, 421, and 117 are integrated pipe points and
points TR412, TR413, TR679, TR680, 1TR2003, and 1TR1108 are professional pipe points. In both types
of pipeline data, pipe segments are represented by start-stop pipe points, and pipelines are composed
of multiple pipe segments. The results show the different matching types (1:1, n:1, n:m) of the two
pipelines with the same named objects.

The data need to be standardized before algorithm execution. The matching data standards
are as follows: (a) the storage format of the two experimental datasets is consistent, and matching
experiments can be carried out on a unified platform; (b) the two experimental datasets are matched in
a unified coordinate system; (c) both types of experimental data are from pipeline entities within the
same range; (d) in the same experimental data, the distance between the starting and stopping points
of a pipe segment and the adjacent pipe points are within a certain tolerance.

In addition, a number of matched samples were selected to calculate the distance threshold and
angle threshold by spatial statistical analysis. The selection of the sample points needs to ensure
that each connected region selects at least one sample point. The average value is determined as the
threshold value and is estimated by using the matched samples. The distance threshold is determined
to be 4 m, and the angle threshold is determined to be 20◦ based on the sample data shown in Figure 12.
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Our matching process employs the following approach and consists of the three steps detailed
below. The matching steps of underground pipeline network are shown in Figure 13.
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Step 1—Data preprocessing: First, the pipeline segments are connected into strokes using the
principle of included angle coherence. Since the vertices of the pipeline are too sparse for the matching
process, the calculated spatial distance will be too large to reflect the real differences between pipelines,
so the vertices of the pipelines should be encrypted. The average interpolation method with fixed
length of stroke is shown in Figure 14. For the purpose of enhancing the efficiency of selecting candidate
matching pipelines, spatial grid indexes of the datasets are built, the diagram of spatial grid indexes is
shown in Figure 15.
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Figure 15. The diagram of spatial grid indexes (the grid index numbers covered by stroke b are 1, N + 1,
N + 2, 2N + 2, 2N + 3, and 3N + 3).

Step 2—Holistic matching of the strokes: For each stroke S in one dataset, the candidate matching
strokes (denoted as set A) are first selected from the other dataset using the spatial index. Then, the
strokes in set A that fall inside the buffer of S are further selected as set B, the diagram of approximate
buffer is shown in Figure 16. For each stroke S1 in set B, the geometric similarity to S is calculated.
The geometric similarity is the weighted combination of length similarity, angle similarity, and distance
similarity, as shown in Equation (3). If the geometric similarity is higher than a given threshold, then
we calculate the structural similarity between S1 and S to check if their spatial scenes are matched,
as shown in Equation (4). Strokes with geometric similarity lower than the threshold are deemed
unmatched strokes, and their structural similarity does not need to be calculated. Only the objects
whose geometric and structural similarities are both higher than a given threshold are defined as
matching pipelines. Others enter the process for the partial matching of strokes.
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Step 3—Partial matching of strokes. After holistic matching, the overall matching results of
integrated and professional pipeline strokes can be obtained, and the unmatched strokes can also be
obtained. The partial stroke matching algorithm based on segment decomposition (SPMA-S) is designed
to maximize the retention of the two sets of original underground pipeline data. After matching with
this algorithm, all the pipeline objects that establish a matching relationship are composed of pipeline
segments in the original data. In the process of pipeline segment separation and reassembly, if a
suitable partial match of an object cannot be found, then the partial stroke matching algorithm based
on vertex decomposition (SPMA-V) is applied to find other partially matched pipeline segments.

The matching results are shown in Figure 17. Figure 17a shows the matching results for the
entire map. Figure 17b shows the results for a typical underground pipeline network, where parallel
double pipelines were correctly matched to the corresponding pipelines. Another example is shown in
Figure 17c. Here there are two strokes, stroke1<a, b> and stroke2<c, d>, in the integrated pipeline map
(see Figure 17c1 for details), and three strokes, stroke1<a’>, stroke2<b’>, and stroke3<c’, d’>, in the
professional pipeline map (see Figure 17c2 for details). In the holistic matching of strokes, stroke2<c,
d> and stroke3′<c’, d’> are matched to each other. In the partial matching of strokes based on segment
decomposition, segments a and a’ are matched, only segments b and b’ do not match because of
the large difference in their geometric morphology. Finally, in the partial matching based on vertex
decomposition (SPMA-V), a matching relationship was determined between the entire pipeline of b
and part of b’ (see Figure 17c3 for details). The results indicate that the algorithm described in this paper
is accurate and robust, and it identifies numerous matching relationships between different datasets.
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Figure 17. Matching results of the integrated and professional pipelines. The lines with arrowheads
represent matching relationship, the blue lines are integrated pipelines, and the pink lines are
professional pipelines; (a) Shows all the matching results; (b) shows the matching result of parallel
double line; (c), (c1), (c2), and (c3) explain the matching process.
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5.2. Comparative Experiments and Evaluation

We performed underground pipeline matching experiments to compare the performance of our
approach with other approaches, including the matching algorithm designed in [36]. The algorithm
for the comparison experiment is the matching method for the mesh data of “node–segment”, thus,
we call it the node–segment algorithm, and we call the algorithm proposed in this paper the stroke
algorithm. The results were assessed by the evaluation formula from [41], which is: P =

f (C)
f (C)+ f (W)

∗ 100%

R =
f (C)

f (C)+ f (U)
∗ 100%

, (12)

where P is the matching accuracy; R is the matching recall rate; f (C) denotes the number of correct
matches; f (W) denotes the number of incorrect matches; and f (U) denotes the number of missed
matches.

To evaluate the matching performance, we manually checked the matching results of the
experiments by evaluating the matched pairs one by one. Since the data matching approach of the
“stroke algorithm” is applied step by step, the statistics of the matching performance in each step are
shown in Table 3. Additionally, the statistics of the experiments for the two methods are shown in
Table 4.

Table 3. Statistics of the matching performance at each step of the “stroke algorithm”.

Algorithm Step f (C) f (W) f (U) P(%) R(%) Time
Consumed (s)

Holistic Stroke
Matching 578 0 379 100.0 60.4 2.94

SPMA-S
Matching 192 47 3 80.3 98.5 1.43

SPMA-V
Matching 187 25 8 88.2 95.9 1.16

Table 4. Comparison of the experimental results using two methods.

Algorithm Type f (C) f (W) f (U) P(%) R(%) Time
Consumed (s)

Stroke algorithm 957 72 11 93.0 98.8 6.53
Node–segment algorithm 918 97 25 90.4 97.3 7.95

Table 4 shows that the matching accuracy P and recall rate R of the stroke algorithm are better
than those of the node–segment algorithm. The main reason for this improvement is that our algorithm
organizes data with the stroke as a matching unit. The node–segment spatial data organization method
has some obvious shortcomings: (1) it is difficult to analyze and operate the features of linear elements
as a whole, and (2) it is difficult to express the changes and distribution of geographical phenomena
along linear elements. The first deficiency mainly manifests in the lack of analysis and measurement
of the geometric characteristics of the entire pipeline in the matching process. In the underground
pipeline network, the matching subject should be the entire pipeline rather than matches formed after
analyzing the geometric characteristics of individual segments. The second deficiency is the difficulty
measuring the geometric characteristics of pipeline spatial targets. The matching of heterogeneous
pipeline data belongs to the category of linear object matching, and there may be matching types that
are 1:n, n:1, or n:m. If the segment is used as a matching unit, these cases will be difficult to match,
where our algorithm addresses the above problems.

Figure 18a is the visualization of the node–segment algorithm result on an example pipeline
network in which pipelines A1 (a1) and B2 (b3) are matched. Figure 18b is the visualization of the
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stroke algorithm result on the same network in which pipelines A1 (a1) and B1 (b1, b2) are matched,
and pipelines A2 (a2) and B2 (b3, b4) are matched. By human judgment, the node–segment algorithm
result is an incorrect match, and the stroke algorithm result is a correct match, indicating that the stroke
algorithm is more adaptable to topological changes.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 19 of 23 
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Figure 18. A case where the node–segment algorithm leads to an incorrect match, but the stroke
algorithm leads to a correct match. The lines with arrowheads represent a matching relationship,
(1) and (3) (blue lines) are integrated pipelines, and (2) and (4) (pink lines) are professional pipelines.
(a) Shows the node–segment algorithm result; (b) shows the stroke algorithm result.

Figure 19a is the visualization of the node–segment algorithm result for a different example
network, in which pipelines A1 (a1) and B2 (b3, b4) are matched. Figure 19b is the visualization of the
stroke algorithm result in which pipelines A1 (a1) and B1 (b1) are matched, and pipelines A2 (a2) and B2

(b2) are a partial match. By human judgment, the node–segment algorithm missed a match, and the
stroke algorithm missed a match as well, even though there are some partial matches.

Figure 20a,b is the visualization of the stroke algorithm result. Figures 19b and 20a are the same
diagram: pipelines A1 (a1) and B1 (b1) are matched, and pipelines A2 (a2) and B2 (b2) are partially
matched. Pipelines A2 (a2) and B2 (b2) are partially matched by increasing the distance threshold. This
indicates that the stroke algorithm can solve some matching problems that cannot be resolved by
changing the threshold value.
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Figure 19. The node–segment algorithm missed a match, while the stroke algorithm results in some
partial matches. The lines with arrowheads represent a matching relationship, (1) and (3) (blue lines) are
integrated pipelines, and (2) and (4) (pink lines) are professional pipelines. (a) Shows the node–segment
algorithm result. (b) Shows the stroke algorithm result.
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Figure 20. The missed match can be optimized to produce a correct match with the stroke algorithm.
The lines with arrowheads represent a matching relationship, (1) and (3) (blue lines) are integrated
pipelines, and (2) and (4) (pink lines) are professional pipelines. (a) Shows the stroke algorithm result
where the distance threshold is 4 m; (b) shows the stroke algorithm result where the distance threshold
is 6 m.

6. Conclusions

In this paper, we proposed a novel matching algorithm for integrated underground pipeline
data and professional underground pipeline data. This approach is a multi-step process, and we
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provide statistics on the performance for each step of our algorithm. Our algorithm takes the stroke
as the basic unit of matching to retain the characteristics of the smooth and continuous distribution
of the source data. In the holistic matching of strokes, we use the length, angle, and spatial distance
measures to calculate the geometric similarity, and we also assign different weights and thresholds.
In addition, the evaluation method was improved by combining the geometric characteristics with
the spatial topological relationships in the neighborhood space, in order to calculate the structural
similarity of the spatial scene. The holistic matching of strokes is able to not only solve the matching
problem in the conventional case but also better handle 1:n and n:m matching situations. As a result,
our algorithm overcomes partial failures with the individual similarity measure in the local matching
method and has a matching accuracy P of 100%. Since there might be unmatched strokes after holistic
stroke matching, a method for partially matching strokes is proposed. The partial stroke matching
algorithm based on segment decomposition (SPMA-S) is designed to maximize the retention of the
original two sets of underground pipeline data. After matching with this algorithm, all the pipeline
objects that establish a matching relationship are composed of pipeline segments in the original data.
Problems (such as growth, shortening, topology changes, etc.) in partial matching between individual
lines can be solved by using the partial stroke matching algorithm based on vertex decomposition
(SPMA-V). The experimental results show that the improved method has a high matching accuracy,
recall rate, and running efficiency.

In our approach, the parameters, including the thresholds and weights, are currently set by human
experience. Future research will explore a methodology to automatically set the thresholds and weights
according to specific data to further ensure the matching performance and quality. Due to the limited
research data, we only used gas pipeline data in a certain area as an example to conduct data matching
experiments and did not use other industry pipeline data to verify the pipeline matching method.
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