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Abstract: Large-scale three-dimensional (3D) reconstruction from multi-view images is used to
generate 3D mesh surfaces, which are usually built for urban areas and are widely applied in many
research hotspots, such as smart cities. Their simplification is a significant step for 3D roaming,
pattern recognition, and other research fields. The simplification quality has been assessed in several
studies. On the one hand, almost all studies on surface simplification have measured simplification
errors using the surface comparison tool Metro, which does not preserve sufficient detail. On the other
hand, the reconstruction precision of urban surfaces varies as a result of homogeneity or heterogeneity.
Therefore, it is difficult to assess simplification quality without surface classification. These difficulties
are addressed in this study by first classifying urban surfaces into planar surfaces, detailed surfaces,
and urban frameworks according to the simplification errors of different types of surfaces and then
measuring these errors after sampling. A series of assessment indexes are also provided to contribute
to the advancement of simplification algorithms.
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1. Introduction

Mesh surfaces are used universally in computer graphics [1], virtual reality [2], and computer
aided design (CAD) [3]. A triangular mesh—in other words, an irregular triangular network (TIN)—is
practical because of its simplicity and stable geometry. Traditionally, surfaces have been simplified or
subdivided to meet the requirements of high precision for mainframes and low precision for mobile
terminals. Simplification is frequently applied in the domains of 3D reconstruction because of the large
data volume. Problems such as high power consumption and high cost are among the drawbacks of
other 3D modeling methods, such as the use of the bands of infrared spectra [4] or visible light, namely,
Light Detection and Ranging (LiDAR) [5]. Moreover, such methods lack transparency, so they are
easily detected and intercepted in military operations. The TIN in this study is generated by stereo
images photographed by oblique cameras that are on board of airplanes. Oblique photogrammetry can
be achieved by many methods, such as Structure-from-Motion (SfM) [6]. Of all the types of surfaces,
urban surfaces, which is the topic of this article, are widely used in marketing, disaster relief, and
urban planning, among other applications [7].

Surface simplification is of great significance in processing the products generated by 3D
reconstruction from stereo aerial photographs. First, it simplifies the large amount of data that
result from some methods. For example, the patch-based multi-view stereo algorithm [8] requires at
least 32 GB memory from 50 aerial photographs with a resolution of 4914× 3924 for 3D reconstruction.
Such data volume wastes storage facilities or bandwidth, and it places immense pressure on the
graphics processing unit (GPU). Second, simplified surfaces are applied in the domains of pattern
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recognition. The details of simplified urban surfaces are unique traits in pattern recognition, such as
saliency detection in Ref. [9]. Therefore, the preservation of traits in simplified surfaces is crucial.

The traits of urban surfaces are detailed, except for planar objects, such as roads and the sides of
buildings. Among characteristics of planar surfaces, urban frameworks, which are the sides of planar
surfaces such as building borders, are crucial for the semantic recognition of urban surfaces in 3D
reconstruction methods, such as plane-based regularization in Ref. [10]. Both of the above-mentioned
emphases of urban surfaces are heterogeneous, and their extraction and assessment for purposes such
as error measurement are of enormous significance. On the one hand, homogeneous portions such as
planar surfaces (eliminated through the extraction of detailed surfaces) and vegetation (eliminated
through extraction of urban frameworks) are difficult to reconstruct accurately. For example, a
specific study was done to discern the texture of asphalt pavement using a popular method, namely,
SIFT (Scale Invariant Feature Transform) [11], and it highlighted the difficulty of distinguishing
between objects with similar textures. Therefore, research efforts on the simplification of urban
surfaces tend to regard such surfaces above as absolutely planar [10] and focus on the precision of
heterogeneous details instead [12,13]. Vegetation is a component of detailed surfaces, potentially
making the assessment results lack heterogeneity, which emphasizes the necessity of extracting and
evaluating urban frameworks. On the other hand, detailed surfaces and urban frameworks are easily
recognized if distortion occurs. Additionally, urban frameworks are applied in many areas, such as
archeology [14] and urban planning [15]. They are entirely heterogeneous, so they have high precision.
Even corners and edges with similar or the same texture have a homogeneous appearance as a result
of different ambient light rejection characteristics, which are easily grasped by SIFT [11], plane-based
regularization [10], and other reconstruction methods using stereo images. In sum, detailed surfaces
and urban frameworks are key and need to be preserved after simplification, and they contribute to
the assessments performed after they are extracted.

Given the above-discussed phenomena of surface simplification, this article focuses on the
assessment of urban surfaces after simplification, which is a necessary process after extraction. This
article, which reports a method that was developed and performed for the numerical assessment of
simplified urban surfaces, is presented as follows. In Section 2, related works are briefly reviewed.
Section 3 presents the approach developed in this study for dividing urban surfaces. Section 4 illustrates
the sampling techniques used for distance calculations for the measurement of errors. Section 5 describes
numerical indexes that are based on surface classification and used in the surface assessment procedure.
Section 6 details the experiments performed to assess the quality of simplification algorithms. The aim
of these experiments is to further improve the algorithms introduced in Section 2 and to choose the
optimal variable parameters for the improved algorithm.

2. Related Work

2.1. Current Surface Assessment Methods

The 3D reconstruction of surfaces is performed using a large-scale reconstruction algorithm—namely,
multi-photo geometrically constrained least-squares matching (MPGC) [16], which is already embedded
in the MVE software [17]—with the aid of cluster segmentation based on luminosity similarity [18].
Therefore, a scene consists of numerous tiles. After hole-filling [19], surface tessellation is completed.
The resulting tiles are the basic material studied in this research.

The assessment of simplified surfaces can be roughly classified into three categories:

1. Almost all the research in the literature on surface simplification has focused on describing the
effects after limited exhibition of simplified results. However, this approach is too subjective.
As illustrated in Figure 1, even without consideration of the uneven precision of 3D reconstruction,
the interpretation of results using traditional methods often faces this challenge.

2. Another type of assessment is the measurement of comprehensive error, including Hausdorff error,
mean error, and RMS error, using a tool called Metro [20], which is lacking in the demonstration
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of the error of important details, as shown in Figure 2. The series of indexes applied in our work
aims to solve this weakness.

3. The third method relies on indexes that are related to the simplification algorithms, which can be
prone to circular arguments. They also lack robustness, so it is extremely difficult to compare
them with other algorithms according to these quantified indexes.
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studied, and only the Bones model was used for error measurement. Only Hausdorff error was 

Figure 1. The surface representation of the Greater Wild Goose Pagoda: (a) original surface with
texture; simplified surface at level 0 simplified by (b) aQSlim and (c) mDVDC (λ = 1.8) (all explained in
Section 2.3). The parts in the red rectangles perform better, so choosing which one is better is a dilemma.
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Figure 2. Effect of color mapping, a function of Metro [20]. It is clearly seen that major error is located
on nonplanar surfaces for sharp features, such as the edges and corners of buildings. However, these
urban frameworks are essential for the applications of urban surfaces, as mentioned above. (a) Input
surfaces with texture; (b) Simplified surfaces after error mapping.

Even the recent studies on surface simplification have performed assessments that mainly rely on
Metro. There have been many evaluations of surface simplification [21–28] that measure comprehensive
errors, but the results of different studies are contradictory. Some reports on surface simplification
have regarded numerical errors as supplementary rather than strict rulers in the case of exaggerated
errors, and some have even ignored this procedure. In Ref. [21], three surfaces were studied, and
only the Bones model was used for error measurement. Only Hausdorff error was considered in
Refs. [22,23], and assessing the overall error using the square volume error is not robust enough for the
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assessment of details. Of all the simplification algorithms used as references for comparison, Garland’s
QSlim [24] is the most popular because of its comparably small value when measured by Metro, but
it was ignored in Ref. [25]. The surface Stanford bunny is assumed to possess triangular faces at a
number of 35 k (e.g., Ref. [26]), but they were processed into ones with more vertices (219 k) in Ref. [25].
In addition, the algorithm related to centroidal Voronoi tessellation (CVT) [27] is seemingly ineffective
for the results of mean error and RMS error, as shown in Ref. [27], so the error comparison results
measured by Metro in Ref. [25] are probably erroneous. In Ref. [28], urban surfaces were the research
object, but the simplification rate was over 99%.

Indexes related to simplification algorithms are used not only to indicate the superiority of their
simplification but also to verify the effectiveness of the algorithms themselves. For example, the
authors in Ref. [22] introduced a method of error measurement that was based on square volume error,
but the simplification algorithm was the edge collapse algorithm, which uses minimal square volume.
Simplification algorithms related to quadric error metrics (QEM) (e.g., Refs. [23,24]) probably introduce
accumulated metric cost, but such simplification algorithms are edge collapse based on modification
of QEM. The study in Ref. [28] introduced error measurement based on mean proxy distance, but
the simplification algorithm was edge collapse based on minimal proxy distance. It is probable that
they are all optimal in consideration of such assessment indexes. The methods mentioned above are
favorable for elaborate simplification algorithms, but they are less convincing for assessment.

Another index that has been used to evaluate the quality of simplified surfaces is the geometric
quality of triangles [29], which can be refined through post-processing techniques, such as Laplacian
Mesh Optimization [30]. Because urban surfaces are unpredictable or unsmooth, assessment methods
that disagree with the sharp turns of curvature, as elaborated in Ref. [31], are unadaptable.

2.2. Current Surface Classification Methods

Basic strategies for assessment aim to assess the disparity between the input and the simplified
surfaces. This also applies to their related indexes that are used to indicate the traits of simplified surfaces
on the basis of urban surface classification (detailed traits, urban frameworks, and planar traits).

Since the objective of an assessment method is based on surface classification, before our
multifaceted error measurement, this section provides a brief overview of surface classification methods.
The methods for classifying surfaces include random sample consensus, Hough transform [32], and
setting eigenvalue thresholds for neighbor matrices [33]. They are typically used for pattern recognition.
The former two insert recognition into the classification process, which fails to meet our requirements.
The eigenvalue threshold, which extracts the planar part of surfaces, is suitable for our needs, and
pattern recognition can be realized after this process. In other words, this method can be used for
classification without consideration of complex pattern recognition.

2.3. Tested Simplification Algorithms

Examples of algorithms include QSlim [24] and one with modifications called ACVD [27]. Another
approach is remeshing through discrete Voronoi diagrams using a curvature indicator (DVDC) [34].

QSlim is a classic simplification algorithm that collapses an edge into a vertex by using the quadric
error metrics (QEM). The QEM is modified by

Q′ =
∑

p∈ f ace(v)

ppT
·
Sp

S
(1)

where Sp is the area of a face adjacent to the vertex v, and S is the area sum of all faces adjacent to v.
The error of edge collapse was defined in Ref. [6] as:

4

(
¯
v
)
=

¯
v

T(
Qi
′ + Qj

′
) ¯
v (2)
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where Qi and Q j represent the two vertices of the corresponding edge. This modification of QSlim is
named aQSlim. By modifying Q into Q

′

, it is clear that aQSlim involves the projected area into QEM.
ACVD and DVDC both rely on the Voronoi diagram. ACVD is implemented by remeshing by the

approximated discrete centroidal Voronoi diagram. DVDC is also performed in a similar manner but
considers a variable parameter, namely, the curvature indicator λ. Therefore, a variable parameter
is included in the following experiments. λ places a great impact on the percentage of oversampled
redistributed vertices, which substantially affects the distribution of vertices and the accuracy of
simplification. The initial distribution is found in accordance with the curvature of surfaces, while the
redistribution is determined in accordance with the accumulated metric cost [23].

The simplification of the outdoor urban surfaces studied in this article is responsible for
LOD1–LOD3 (LOD: level of details) in the CityGML standard [35]. The larger the LOD level,
the more concrete or faces the surfaces possess. In the experiments reported in this article, the
simplified surfaces that correspond to a lower level were simplified at a rate of 0.4. In other words,
level n possesses 60% of the faces or vertices of those at level n + 1. Simplification in this study started
at level 8 with a simplification rate of 0.4 relative to the input surfaces, so level n (n ≤ 8) corresponds to
a simplification rate of

(
1− 0.69−n

)
.

3. Classification of Urban Surfaces

3.1. Extraction of Planar Vertices

After the extraction of planar geometric elements, including vertices, edges, and faces, their
complementary set consists of detailed surfaces. Dihedral angles formed by a pair of converging
adjacent faces are the basis for extracting planar surfaces, and each dihedral angle corresponds to one
edge. If the dihedral angles of a surface are close to or even equal to π, the surface is considered to be
planar. The classification of surfaces in this manner has already been applied in software packages,
such as Meshmixer [36].

However, this method does not perform well because of its sensitivity to outliers. In particular, if
the threshold of the angles is too large, then small pieces of so-called planar surfaces readily appear and
are usually located in vegetation. If the threshold is too small, then the planar surfaces are incomplete.
Moreover, both phenomena can occur at the same time. On the other hand, merely referencing dihedral
angles fails to guarantee the convergence of a plane, which was called a proxy plane in Ref. [28]. From
the analyses above, our classification method was developed as described below.

Suppose the coordinate of a vertex Vp is X0, and the coordinates of its adjacent vertices are{
Xi(i = 1...nv)

}
. When the dimension is reduced to 2D or a plane of 3D space, the problem of plane

convergence can be solved. The average coordinate of Vp, namely, X, is the average of the coordinates
of the above-mentioned (1 + nv) vertices. Adjacent vertices refer to all vertices directly linked to Vp

that constitute triangular edges. The sum of covariance matrices is calculated as

Σxx =

1+nv∑
i=0

(
Xi −X

)(
Xi −X

)T
(3)

Eigenvalues of matrix Σxx are λ1, λ2, λ3(λ1 ≤ λ2 ≤ λ3). The least one λ1 and their sum are
expressed as follows:

λsum = λ1 + λ2 + λ3 =

1+nv∑
i=1

(xi − x)2 + (yi − y)2 + (zi − z)2 (4)

λ1 =

nv∑
i=0

(xi − x̂i)
2 + (yi − ŷi)

2 + (zi − ẑi)
2 (5)
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where (x̂i, ŷi, ẑi) refers to least-squares plane projection of (xi, yi, zi), and (xi, yi, zi) is the center of
(1 + nv) vertices. The normalized eigenvalue φ = λ1/λsum represents the plane-fitting property of a
cluster of 3D points, as explained in Ref. [37].

Definition 1. Fluctuation parameter φ represents the extent of convergence of a cluster of 3D points to a plane.

The fluctuation parameter φ has a beneficial mathematical property. Consider a rectangle with
regular 3 × 3 points at a regular plane � (� is the assumed area of the standard rectangle consisting of 3
× 3 points), and λsum is 12�2. If each point possesses an equal fluctuation of 0.1 m, and the side length
of � is 1 m, then φ becomes 0.0075. When the fluctuation is doubled, φ becomes quadrupled, which is
satisfactory for compressing an angle range when the fluctuation is tiny. However, in contrast to models
generated from LiDAR [5], whose vertices are directly obtained from the phase interval of a laser wave,
the generation of 3D point clouds obtained from oblique photographs often have many uncertainties.
Therefore, the threshold of the fluctuation parameter εφ needs to be established experimentally.

Definition 2. All triangular faces in a consecutive surface cluster are directly or indirectly lined by edges.
The recognition of consecutive surface clusters has already been embedded in the OpenSource Meshlab [38],
which was adopted in our research.

After obtaining the threshold of the fluctuation parameter, confirmation of εφ is divided into
two steps. First, the relation between the corresponding vertices and φ is determined, with φ as the
independent variable, and its corresponding vertices are determined by their weights. The weight
of a vertex is calculated by the area sum of the triangular faces Sp, and the calculated vertex is the
convergence vertex. Each value of φ refers to the interval (φ,φ− ∆φ). Similar to the study in Ref. [33],
the interval ∆φ is defined as 0.001. Figure 3 displays the relation between the fluctuation parameter
and the weight of the vertices of the input surfaces of scenery 1 (vertices: 1,623,876; faces: 3,145,277)
and scenery 2 (vertices: 1,233,187; faces: 2,392,672).
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Figure 3. Two intervals with values of approximately zero appear. The first is located at the start,
indicating that an entirely planar surface does exist. The interval between the two quasi-zero intervals
represents a planar surface. Therefore, εφ is located in the second quasi-zero interval.

After the extraction of planar vertices, their adjacent faces and edges are recognized as planar.
From the relation between weighted vertices and the fluctuation parameter φ, the threshold of the
fluctuation parameter εφ is confined to the second quasi-zero interval.

Ascertaining εφ relies on the second step of this research, which is determining the relation
between the quantity of consecutive surface clusters Ncst of planar surfaces and φ. When εφ is less than
the proper value, consecutive surface clusters are divided within the planar surfaces. When εφ is larger
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than the proper value, occasional clusters appear that are mostly located at vegetation. However, the
surfaces adopted must be large enough to allow occasional clusters to appear. Otherwise, there will be
more than one φ that corresponds to the minimum Ncst, which is εφ. Figure 4 displays this relation for
the input surfaces of scenery 1 and scenery 2. Each value of φ is assumed to have the threshold εφ′ in
Figure 4 to find the corresponding Ncst.
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Figure 4. As expected, φ that corresponds to the minimum QC is located in the second quasi-zero
interval in Figure 3. This dual mechanism used to find εφ is conducive to identifying the outlier of the
judgment that εφ is not located in the second quasi-zero interval. (a) Scenery 1; (b) Scenery 2.

In theory, the second step is enough to Figure out εφ, but conformity between the two steps
guarantees the reliability of εφ. Supposing quasi-zero intervals are defined when the weight of
weighted vertices is εwv, it is not a parameter with strict standards, because the second step provides
dual verification. In the experiments of this article, εwv = 0.01. Figure 5 displays εφ of scenery 1 and
scenery 2 at all levels of simplification.
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Figure 5. In most cases, the threshold of the fluctuation parameter εφ decreases as the simplification
rate increases or the level of LOD decreases, initially indicating higher planarity of planar surfaces after
the simplification of urban surfaces. (a) Scenery 1; (b) Scenery 2.

3.2. Extraction of Planar Surfaces

In accordance with the above extraction of planar vertices, methods to extract planar surfaces are
as follows:

1. Dihedral angles of edges: This method is frequently applied when the edges directly link two
adjacent faces. When the dihedral angle of edges (maximum: π) is larger than the threshold of the
dihedral angle set, the two faces that share the corresponding edge are recognized as planar ones.
The calculation of the dot products of normal vectors determines the dihedral angles of edges.

2. Recognition of planar vertices: Planar vertices are recognized by using the threshold of fluctuation
parameter obtained above.

3. Recognition of planar vertices with extension: Building on the basis of the recognition of planar
vertices, the average dihedral angle of the edges of the recognized planar surfaces is calculated,
and the average angle is regarded as the threshold of dihedral angles. All sub-planar edges are
traversed until all the dihedral angles of sub-planar edges are larger than the threshold.

Definition 3. Sub-planar geometric elements are vertices and edges located at the borders of the consecutive
surface clusters of planar surfaces. A vertex is recognized as sub-planar when at least two of its directly linked
edges are recognized as sub-planar. They are renewed when implementing the extension.

Figure 6 displays the recognition effects resulting from three methods for extracting planar surfaces
from input surfaces. It is clear that extracting planar surfaces according to only dihedral angles causes
the division of consecutive surface clusters within the planar surfaces and the occasional clusters
located at vegetation simultaneously. Without extension, the narrow planar channels of planar surfaces
without planar vertices fail to be extracted. It is obvious that the recognition of planar vertices with
extension is an optimal choice for extracting planar surfaces. The threshold of dihedral angles is the
average of recognized edges’ dihedral angles through the recognition of planar vertices in Figure 6b,d.
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Figure 6. Different methods for detecting planar surfaces (in red). (a) Input 3D model with texture.
(b) Recognition of planar surfaces according to the dihedral angles of edges. (c) The planarity of vertices
without extension based on the threshold of dihedral angle. (d) The planarity of vertices with extension
(our method). It is apparent that (d) better matches the continuity of the playground.

For simplified surfaces, because of the decrease in the threshold εφ, the proportion of planar faces
determined through planar vertices decreases, so the faces of consecutive surface clusters without any
planar vertices appear much more often, as shown in Figure 7.
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Figure 7. Planar face extraction compared with simplified ones at level 6 (simplification rate: 0.784) by
DVDC (λ = 2). Recognition of planar surfaces on the basis of (a) recognition of planar vertices with
extension and (b) the dihedral angles of edges. It is evident that (b) better matches the continuity of
the playground.

Therefore, experiments are needed to determine the most suitable methods for planar surface
extraction. The number of consecutive surface clusters of planar surface extraction was compared
with the surfaces simplified by using the dihedral angles of edges as rulers. As shown in Figure 4,
extracted planar surfaces based on input surfaces, which is the most precise approach, contain 1329 and
375 consecutive surface clusters, respectively. The threshold of dihedral angles is also the average of
edges’ dihedral angles recognized through the identification of planar vertices. As shown in Figure 8,
when the simplification rate is higher or the LOD level is lower than the elbow points, method 1 is
adopted to extract planar surfaces.
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Figure 8. The number of consecutive surface clusters using the extraction of planar surface extraction
compared with simplified surfaces using dihedral angles of edges as rulers. It is seen that different
simplification algorithms and different input surfaces influence the appropriate simplification rate that
can use dihedral angles as rulers. For example, it is suitable for scenery 2 below level 4 with aQSlim as
the simplification algorithm. (a) Scenery 1; (b) Scenery 2.

In summary, method 3 is suitable for input surfaces and those with a comparably low simplification
rate, which can also be determined by the number of consecutive surface clusters. When the simplification
rate increases, method 1 is adopted using the average of dihedral angles as the threshold obtained from
method 2. Determining the threshold that will be used for identifying the method that ought to be used is
also solved in this subsection.

3.3. Extraction of Urban Frameworks

The purpose of the extraction is to measure the ability of simplification algorithms to maintain
urban frameworks. This goal can be realized by defining urban frameworks as sub-planar edges and
vertices after the extraction of planar surfaces. The extraction focuses on sub-planar edges, of which
the most significant are infrastructural borders, especially the borders of buildings. Therefore, the
borders of buildings should manifest as edges, rather than low-quality faces [39], but input surfaces
and surfaces with a low simplification rate usually manifest as low-quality faces [28]. Therefore, the
simplification rate is the basis of such extraction. Here, the concept of the visual face is introduced
before discussing the experiments.

In this stage of the extraction, some sub-planar edges may be linked to just one sub-planar vertex.
This phenomenon is an outlier, which is eliminated while extracting urban frameworks.

Definition 4. A Virtual face is not an actual triangular face. It is a portion of a sub-planar edge, thus adding a
condition that two faces sharing an edge belong to two different planar consecutive surface clusters. Because
such edges are regarded as a face with the sampling method described in Section 4, they are referred to as faces
rather than edges.

The proportion of virtual faces compared with all detailed surfaces SV% is assumed to be large and
stable enough that the borders of buildings can be sufficiently recognized. Figure 9 shows experiments
on SV% for scenery 1 and scenery 2. The extraction of urban frameworks is only valid when the
simplification rate is higher or the LOD level is lower than the turning points. Figure 10 exemplifies
the effect of extracted urban frameworks.
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Figure 10. (a) Input surfaces with texture; (b) sub-planar edges (red borders) extracted with
0.9 simplification by QSlim. Sub-planar edges are approximately consistent with our subjected
image of urban infrastructure.

4. Sampling

As in Metro, converting the surface distance measurements (infinite continuous data) into
point-to-plane distances (finite discrete data) is the basic approach to such measurements. The tool
used in our research is a new version of POV ray-tracer [40], providing an efficient method to measure
point-to-surface distances.

The weights of the sampling points are set to be equal for the error measurement of detailed surfaces,
while those for the error measurement of urban frameworks visually highlight the conspicuousness.
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The importance of the frameworks of detailed surface sampling is emphasized by introducing
virtual faces.

4.1. Detailed Surfaces

For input surfaces, the urban framework is likely to be TINs with low quality [21]. Detailed
surface assessment is assumed to highlight urban frameworks, so our sampling was based on the
perimeter of faces, with virtual ones supplemented as an extension.

Architectural borders are also more accurate compared with other objects with similar RGB values,
such as vegetation. Even if the RGB values are similar, as a result of partial spectral reflection, the
surfaces surrounding such surfaces are fairly accurate. Therefore, the framework is both significant
and accurate. Using the perimeter as a sampling index enables the upgrade of the weights of borders.

The balance of sampling was maintained by adopting a method based on the centroid of edges
and faces, as shown in Figure 11.
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Figure 11. Every line in this figure is a median of triangular faces. When the perimeter of a triangle
exceeds double, use the next sampling method. The lengths of the edges in this illustration are red >

green > blue. Triangle (3) is set as standardized sampling, which is the average perimeter of all faces on
surfaces, and triangle (4) represents a rearrangement of a triangular face into six individuals.

In this operation, sub-planar edges, which are common elements of different planar faces, are
of great significance for maintaining the urban framework. Therefore, such edges serve as edges
and virtual faces at the same time. The length of these edges is multiplied by a coefficient ∂ f as the
perimeter of virtual faces for face sampling. If the corresponding number of sampling points in a
virtual face is m, then the sampling points are located at (m + n + 1) quantiles. Setting ∂ f = 2 is similar
to the sampling of low-quality TINs along infrastructural borders. All vertices are part of the sampling,
so the decision to be made is the weight of the vertices when conducting error measurement.

A sampling indicator based on perimeters is optimal for detailed surfaces, while sampling planar
ones is not ideal because virtual faces are not under consideration. The area of triangular faces is
adopted in the sampling of planar surfaces, and this is the approach used in Metro. The error of planar
surfaces is not included in our assessment methods, but it highlights the logic of assessment indexes.

4.2. Urban Frameworks

In contrast to detailed surfaces, urban frameworks only consist of edges, and all vertices of urban
frameworks are sampled. The sampling points of edges are distributed according to their length, with
nu f standardized sampling points. The relation between sub-planar edge length and sampling points is

f loor
(
nu f ·`i/`avg

)
(6)

in which `i is the edge being sampled, and `avg is the average length of the edges of urban frameworks.
A sampling density similar to that in Metro is established by setting nu f to 8.
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However, different emphases are placed on different sampling points. More emphasis should be
placed on the borders of buildings, which are virtual faces. The larger the curvature of a sub-planar
edge, the more emphasized it should be. The weight of the sampling points on the edges is

Wedge =
2(π− θdh)

π
·Npty (7)

in which θdh is the dihedral angle of the corresponding edge, and Npty is a coefficient. If the
corresponding edge is a virtual face, then Npty is set to 2. Otherwise, it is set as 1. θdh and Npty represent
the two emphases mentioned above.

If a sampling point on a vertex is adjacent to just two sub-planar edges, the weight is the average
of those on the edges. If it is adjacent to more than two sub-planar edges, the weight is

Wvtex = ∂u f

∑
Wedge (8)

where the coefficient ∂u f is set to highlight the corners of buildings. It can be set according to the
subjective precision needed for the building corners. In the experiments of this article, ∂u f was set to 1.

5. Assessment Implementation

5.1. Assessment Indexes

In this context, the errors of planar surfaces, detailed surfaces, and urban frameworks can be
measured. In addition, numerical indexes were designed, as listed below.

• Mean error of planar surfaces: The sampled surface serves as the pivot (sampled) surface [20], and
the mean error is obtained by measuring the sampling points of different types of surfaces, which
are classified in Section 3. For measuring the mean error of detailed and planar surfaces, input
surfaces serve as the only pivot surfaces because the aim is to pick a larger error, and this mean
error is larger than that in Metro [20]. Metro adopts dual measurement to obtain the Hausdorff
distance, which was not used in our studies. For measuring the mean error of urban frameworks,
simplified surfaces are used as the pivot surfaces, as explained in Section 4.

• Planarity indicator =p: Most planar surfaces in urban models can be seen as entirely planar after
simplification because of the limited precision of 3D reconstruction [28]. This concept is expressed
numerically here. Specifically, the larger the value of =p, the more satisfactory the planar surfaces.

=p =
1

πUeLsum

Ue∑
i=1

Li·arcos(n1·n2) (9)

The length of the planar edge is Li, and the sum Lsum is added as a weight to calculate planarity.
n1 and n2 are unit normal vectors of the two adjacent faces of the edge being calculated, and Ue is the
number of planar edges.

• Proportion of faces among detailed surfaces SQ%: This index is the proportion of the faces among
detailed surfaces compared with all the surfaces. A larger value of SQ% implies that more geometric
elements are located on detailed surfaces, which is likely conducive to the preservation of surface
and indicating areas for improvement. A larger SQ% also implies fewer geometric elements for
planar surfaces, which corresponds to a larger =p in most cases because planarity is accurately
achieved with fewer faces, as illustrated in Figure A1c (Appendix A).

• Error disparity of detailed surfaces 4Eϑ: The error disparity is fundamental for exploring areas
for improving simplification algorithms, and it is independent of comprehensive errors. Larger
numerical errors of detailed surfaces are not equivalent to failures. When the error of detailed
surfaces is larger than its own comprehensive error, the simplification algorithm is worth further
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exploring. If the errors of detailed and planar surfaces are ϑ and ς, respectively, and the
comprehensive error measured by Metro is e, then

4 Eϑ =
1
e
(ϑ− e) (10)

If 4Eϑ is small, improvement can be realized by combining with other algorithms, such as aQSlim,
or it identifies and area for improvement that is worthy of in-depth studies. Fundamentally, it facilitates
an in-depth understanding through self-comparison.

• The gap between errors from different simplification algorithms 4Eα&β: This is for more precise
analyses when the disparity of different error measurements is too small to conduct accurate
analyses. In (8), ξ symbolizes the mean error of the type of surfaces classified at the same
simplification rate.

4 Eα&β =
1

min
(
ξα, ξβ

) (ξα − ξβ) (11)

All the numerical indexes above were calculated during the surface division process described in
Section 3 and the sampling process in Section 4. All of these indexes are calculated directly on the basis
of the length of the scenery. For example, the side length of the pedestal of the Greater Wild Goose
Pagoda in scenery 1 is 77.684 m, while the actual length is 25.500 m. Therefore, the unit of error of
details and frameworks is the virtual length.

5.2. Implementation

Before the implementation of surface classification, sampling, and the index measurement
proposed above, the proper format of 3D surfaces, including the position of vertices, unit normal of
every triangular face, and the edges and faces containing two and three vertices, needs to be ensured.
The format we adopted is .obj, which meets the demands mentioned above [41]. The implementation
is shown in Algorithm 1.

Determination of the method to use is based on Ncst and SV% (lines 6, 7), and users are then able
to identify the optimal means of extracting planar surfaces and whether to extract and measure the
error of urban frameworks (line 8). Lines 9–20 are responsible for obtaining the indexes correlated to
the classification of detailed and planar surfaces. The indexes for urban frameworks are implemented
in lines 21–24.
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Algorithm 1. Implementation of multifaceted geometric assessment for simplified urban
surfaces built by 3D reconstruction. The process determines the method to use for planar surface
extraction and whether to implement extraction and mean error measurement of urban
frameworks.

Assessment Based on Surface Classification
1 Insert (1x.obj, 2x.obj); bool fluct, frmk /*1x.obj is the input surface */
2 φ← 1x.obj, 2x.obj /*Obtain Fluctuation parameter */
3 Weight_vt← 1x.obj, 2x.obj /*Obtain weight of each vertex */

4
Ncst[φ<=εφ′]←1x.obj, 2x.obj /*Obtain number of consecutive surface clusters and εφ′ is the
independent variable */

5 εφ = findthresholdFluct (φ, Weight_vt, Ncst[φ<=εφ′])
6 Ncst(θdh < θdh)←2x.obj /*Test for choice of classification method */
7 Obtain proportion of virtual faces compared with all the detailed surfaces SV%

8
cin >> fluct; cin >> frmk /* Judge the best way to extract planar surfaces and whether to
extract urban frameworks, as illustrated in Figures 8 and 9 */

9
if fluct == true then /* Recognition of planar vertices with extension is adopted
*/

10 Planar_vt← φ ≤ εφ
11 Sub_planar_expand (θdh < θdh) /*Extraction using method 3 */
12 end
13 if fluct == false then /* Dihedral angles of edges are adopted */
14 Planar_extract (θdh < θdh) /* Extraction using method 1 */
15 end /* Sub-planar edges and virtual faces are also obtained */
16 Obtain planarity of planar surfaces =p

17 Obtain face share of detailed surfaces SQ%
18 Sample detailed surfaces (1x.obj)
19 Measure mean error of detailed surfaces
20 Obtain error disparity of detailed surfaces 4Eϑ

21
if frmk == true then /*Implement extraction and mean error measurement of urban
frameworks */

22 Sample sub-planar edges and calculate weight of sampling points (1x.obj)
23 Measure mean error of urban frameworks
24 end
25 return

6. Experiments and Discussions

Before the description of the experiments in our methods, the mean error measured by the
tool Metro for scenery 1 (a) and 2 (b) is shown in Figure 12. The value measured by Metro is the
comprehensive error of the whole surface, and the performance is not satisfactory.
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Figure 12. Comprehensive mean error measured by Metro. QSlim and aQSlim appear to perform 
much better than the other two simplification algorithms. The difference between QSlim and aQSlim 
fails to be represented in terms of comprehensive error. (a) Scenery 1; (b) Scenery 2. 

6.1. Error Measurement 
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preservation is the core of surface simplification. This viewpoint has been stressed in almost all 
reports on this subject. It is clear that the mean error of detailed surfaces is able to assess simplification 
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6.1. Error Measurement

Figure 13 displays the error of detailed and planar surfaces. It is noticeable that surface detail
preservation is the core of surface simplification. This viewpoint has been stressed in almost all reports on
this subject. It is clear that the mean error of detailed surfaces is able to assess simplification algorithms
in higher resolution. Logically, the error of planar surfaces is determined in a different manner.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 16 of 25 
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Figure 13. Mean error of detailed and planar surfaces. aQSlim clearly performs much better in terms 
of the mean error of detailed surfaces because aQSlim involves projecting the area into the QEM, 
which enhances the simplification rate for planar surfaces in urban surfaces. As expected, aQSlim 
performs worse in terms of the mean error of planar surfaces. ACVD and DVDC ( 2λ = ) still perform 
worse in terms of both aspects because of the much higher comprehensive error. (a) Scenery 1; (b) 
Scenery 2. 
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Figure 14. As expected, aQSlim also performs better than QSlim in terms of the planarity of planar 
surfaces. However, DVDC ( 2λ = ) unexpectedly makes planar surfaces more planar, even when the 
simplification rate is low (the level of LOD is high). (a) Scenery 1; (b) Scenery 2. 

From the comprehensive error, as well as errors of detailed and planar surfaces, it can be 
concluded that ACVD and DVDC ( 2λ = ) are inferior and not worth further studying. However, 

Figure 13. Mean error of detailed and planar surfaces. aQSlim clearly performs much better in terms
of the mean error of detailed surfaces because aQSlim involves projecting the area into the QEM, which
enhances the simplification rate for planar surfaces in urban surfaces. As expected, aQSlim performs
worse in terms of the mean error of planar surfaces. ACVD and DVDC (λ = 2) still perform worse in
terms of both aspects because of the much higher comprehensive error. (a) Scenery 1; (b) Scenery 2.
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However, as mentioned above, the planarity of planar surfaces represents the quality of our
assessment instead of its error relative to input surfaces. Therefore, the planarity of planar surfaces is
represented by =p, as shown in Figure 14.
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Figure 14. As expected, aQSlim also performs better than QSlim in terms of the planarity of planar 
surfaces. However, DVDC ( 2λ = ) unexpectedly makes planar surfaces more planar, even when the 
simplification rate is low (the level of LOD is high). (a) Scenery 1; (b) Scenery 2. 

From the comprehensive error, as well as errors of detailed and planar surfaces, it can be 
concluded that ACVD and DVDC ( 2λ = ) are inferior and not worth further studying. However, 

Figure 14. As expected, aQSlim also performs better than QSlim in terms of the planarity of planar
surfaces. However, DVDC (λ = 2) unexpectedly makes planar surfaces more planar, even when the
simplification rate is low (the level of LOD is high). (a) Scenery 1; (b) Scenery 2.

From the comprehensive error, as well as errors of detailed and planar surfaces, it can be concluded
that ACVD and DVDC (λ = 2) are inferior and not worth further studying. However, DVDC (λ = 2)
performs much better for the planarity of planar surfaces. The following explorations are based on
this observation.

6.2. Improvement through Combination

The planarity of planar surfaces is meaningful only if the errors of simplified surfaces are low.
The main considerations for assessing room for improvement of simplification algorithms are whether
more geometric elements are placed on detailed surfaces and whether the error of detailed surfaces
is low compared with its own comprehensive error. Therefore, the proportion of faces of detailed
surfaces SQ% and the error disparity of detailed surfaces 4Eϑ are incorporated to design a combination
of simplification algorithms.

As shown in Figure 15, when there is disagreement between the real value of the mean error and
the above two factors, especially the disparity of detailed surfaces, it indicates the area for improvement.
Specifically, a higher SQ% indicates that more geometric information (faces) is gathered to support
detailed surfaces, and lower 4Eϑ indicates better preservation of detailed surfaces compared with
its own comprehensive error. Both ACVD and DVDC implement the simplification of reorganized
surfaces, while the other two simply make modifications based on the input surfaces. The large changes
in =p, SQ%, and 4Eϑ when the simplification rate is low represent the characteristics of different surface
simplification algorithms. The indexes facilitate a more intuitive understanding of the simplification.
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Figure 15. Experiments on the proportion of faces of detailed surfaces Q%S  and the error disparity 

of detailed surfaces Eϑς . It is clear that DVDC ( 2λ = ) performs well in terms of Q%S  and Eϑς . It 

can also be concluded that aQSlim and QSlim perform stably in terms of Eϑς . (a) Scenery 1; (b) 

Scenery 2. 

It is also revealed that aQSlim and QSlim remain stable in terms of the disparity of detailed 
surfaces. Therefore, it is logical to assume that the combination of an excellent Eϑς  at a low 

Figure 15. Experiments on the proportion of faces of detailed surfaces SQ% and the error disparity of
detailed surfaces 4Eϑ. It is clear that DVDC (λ = 2) performs well in terms of SQ% and 4Eϑ. It can also
be concluded that aQSlim and QSlim perform stably in terms of 4Eϑ. (a) Scenery 1; (b) Scenery 2.

It is also revealed that aQSlim and QSlim remain stable in terms of the disparity of detailed surfaces.
Therefore, it is logical to assume that the combination of an excellent 4Eϑ at a low simplification rate
and a stable and relatively small 4Eϑ applied throughout the whole simplification rate. Therefore, an
improvement scheme is offered as follows:

1. Choose the lowest simplification rate at DVDC, which is the same number of vertices as the input
surfaces for so-called simplification. This procedure is also named remeshing [42].

2. Implement edge collapse through aQSlim.

The property of the modified DVDC (mDVDC) is measured in terms of the mean error of all
surfaces and detailed surfaces, as shown in Figure 16.

In all the experiments conducted, the error of urban frameworks is consistent with that of detailed
surfaces. However, when studying the optimal choice of the curvature indicator λ, they perform
slightly differently, which is explored in the following.
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Figure 16. Error measurement and comparison of the modified simplification algorithm. Given the 
weakness of Metro pointed out above, the mean errors of all surfaces and detailed surfaces are not 
consistent. A better property in terms of the error of detailed surfaces proves that mDVDC ( 2λ = ) 
better preserves details, which is the core target of surface simplification. (a) Scenery 1; (b) Scenery 2. 
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Figure 16. Error measurement and comparison of the modified simplification algorithm. Given the
weakness of Metro pointed out above, the mean errors of all surfaces and detailed surfaces are not
consistent. A better property in terms of the error of detailed surfaces proves that mDVDC (λ = 2)
better preserves details, which is the core target of surface simplification. (a) Scenery 1; (b) Scenery 2.

6.3. Choice of Optimal Parameter

As analyzed above, the extraction of urban frameworks is valid from level 4 to 0. Moreover, the
effects at a high simplification rate are of greater significance because it indicates that the correct choice
of variable parameters does not significantly influence the simplification effects. Experiments on the
optimal parameter are limited to levels 4–0. The experiment included the gap of errors for different
simplification algorithms 4Eα&β to test the errors of detailed surfaces and urban frameworks in terms of
selecting the optimal λ. The default α and β are mDVDC (optimal λ) and mDVDC (second optimal λ),
respectively. The second optimal λ corresponding to λ is the second lowest error of detailed surfaces
or urban frameworks. Tables 1 and 2 show the test results of tile A (Figure A2) and tile B (Figure A3)
respectively extracted from scenery 1 and 2.

Table 1. Optimal choice of curvature indicator of mDVDC for tile A.

Mean Error of Level Optimal λ (β) 2nd Optimalλ (α) 4Eα&β 4Eα&β (aQSlim as α)

Detailed
Surfaces

4 2.2 2.3 0.027 0.088
3 2.3 2.4 0.015 0.093
2 2.4 2.3 0.011 0.094
1 2.3 2.4 0.012 0.101
0 2.3 2.4 0.017 0.082

Urban
Frameworks

4 2.3 2.2 0.018 0.073
3 2.2 2.3 0.011 0.101
2 2.3 2.2 0.013 0.081
1 2.3 2.4 0.012 0.078
0 2.3 2.4 0.014 0.075
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Table 2. Optimal choice of curvature indicator of mDVDC for tile B.

Mean Error of Level Optimal λ (β) 2nd Optimal λ (α) 4Eα&β 4Eα&β (aQSlim as α)

Detailed
Surfaces

4 1.9 1.7 0.014 0.164
3 2.0 1.8 0.013 0.137
2 1.7 1.8 0.016 0.147
1 1.8 2.0 0.020 0.187
0 1.7 1.8 0.012 0.186

Urban
Frameworks

4 1.8 1.7 0.017 0.142
3 1.8 1.9 0.015 0.161
2 1.7 1.8 0.013 0.139
1 1.9 1.8 0.018 0.118
0 1.8 1.9 0.016 0.158

The improved simplification algorithm mDVDC is still better at preserving detailed surfaces and
urban frameworks. Because reorganizing surfaces is much more time-consuming than performing
modifications on the basis of input surfaces, such as in edge collapse [43], it is necessary to choose
the optimal variable parameters for simplification algorithms using surface reorganization. From the
two tables above, although the choice of the optimal λ is mostly consistent, it can be clearly seen that
the mean error of urban frameworks is better at obtaining the optimal choice of λ. As a result of the
extremely small 4Eα&β, it is extremely difficult to obtain the optimal variable parameters without
numerical error measurement. Moreover, urban frameworks are usually more important for the
simplification of urban surfaces, as mentioned above. In sum, the mean error of urban frameworks is
more appropriate than that of detailed surfaces for obtaining the optimal variable parameters.

6.4. Time Property

All the results presented in this paper were conducted on a PC with Intel i5-4210M, 2.6 GHz
CPU, 8 GB memory, and a 64-bit Windows 7 operating system. This subsection compares the time
performance of our method with that of Metro without building a coherent coloring scheme, using
simplified surfaces at level 4. Because the error of the urban framework is not always applicable, the
time property tests involved measurement without (lines 1–20 of Algorithm 1) and with the error of
the urban framework (lines 1–25 of Algorithm 1). The tested surfaces include scenery 1 and 2, as well
as tile A and tile B. Time performance testing has been delivered as shown in Table 3.

Table 3. Comparison of time performance between Metro and our methods. From the Table, the time
performance is close to and even better than that of Metro.

Surface Face No Metro (/s) Without Framework
Measurement (/s)

With Framework
Measurement (/s)

Scenery 1 3145277 167.26 149.17 173.14
Scenery 2 2392672 141.51 127.99 145.63

Tile A 109936 7.2891 10.318 12.346
Tile B 160834 9.8672 13.911 14.713

7. Conclusions

With an aim to assess the common 3D structure of computer graphics of simplified triangular
surfaces built by 3D reconstruction using stereo aerial photographs, this article focuses on the quality
assessment of simplified surfaces based on the classification of urban surfaces. The basic objective
is to maintain the details of urban models, which are detailed surfaces and urban frameworks.
The conclusions are listed below.

• Classification was achieved by extracting planar surfaces. For input surfaces, this study adopted
weighted vertices and the number of consecutive surfaces, as well as their relations to fluctuation
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parameters, to determine the threshold of fluctuation parameters. Simplified surfaces based on
the estimated number of consecutive surfaces of input surfaces is the proper method selected
to extract planar surfaces. Given these comprehensive considerations, urban surfaces were
classified accurately.

• The results of sampling the pivot surfaces reveal that the mean errors of detailed surfaces and
urban frameworks were more capable of measuring the preservation capacity of simplified
surfaces than the commonly used tool Metro.

• This article proposes indexes that are based on classification and go beyond measuring mean errors.
Other indexes not only facilitate the in-depth understanding of simplification algorithms but also
support the improvement of the quality of simplified surfaces through the easy combination of
off-the-shelf simplification algorithms.

• The mean error of urban frameworks extracted from simplified surfaces not only meets the needs
of framework preservation but is also stable in its determination of the optimal variable parameter
of simplification algorithms for some urban surfaces.

In summary, this article reports the multifaceted geometric assessment for simplified urban
surfaces built by 3D reconstruction. Future explorations include an objective assessment of newly
developed simplification algorithms for simplifying urban models, as well as examining the almost
countless combinations of off-the-shelf algorithms to develop modified simplification methods for
urban models in a much easier manner.
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Appendix A

The appendix displays samples of experimental results using the simplification algorithms
mentioned above. It is shown to prove the surface simplification quality and to highlight the
significance of our work. All the content is referenced in the article.
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Figure A1. A tile extracted from scenery one. Simplified surfaces are both at level 7. DVDC ( 2λ = ) 
seems better than aQSlim for its high simplification rate and greater planarity at planar surfaces and 
detailed surfaces with more geometric elements. Therefore, there is an urgent need to create numerical 
analyses for such observations, based on which we launched the research in this article. (a) Input 
surface with texture; (b) aQSlim; (c) DVDC ( 2λ = ). 

Figure A1. A tile extracted from scenery one. Simplified surfaces are both at level 7. DVDC (λ = 2)
seems better than aQSlim for its high simplification rate and greater planarity at planar surfaces and
detailed surfaces with more geometric elements. Therefore, there is an urgent need to create numerical
analyses for such observations, based on which we launched the research in this article. (a) Input
surface with texture; (b) aQSlim; (c) DVDC (λ = 2).
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Figure A2. Simplification results at level 2 of tile A. Both regions circled in red in (a) are simplified, 
as shown in the others. There are some differences, similar to Figure 1: mDVDC ( 2 3.λ = ) performs 
better than (d), while DVDC ( 2 3.λ = ) performs better than (f). Therefore, this article helps solve the 
problem of deciding on the best algorithms through observation. (a) Input surface with texture; (b) 
aQSlim; (c) DVDC ( 2 3.λ = ); (d) mDVDC ( 2 3.λ = ); (e) aQSlim; (f) DVDC ( 2 3.λ = ); (g) mDVDC (
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Figure A2. Simplification results at level 2 of tile A. Both regions circled in red in (a) are simplified, as
shown in the others. There are some differences, similar to Figure 1: mDVDC (λ = 2.3) performs better
than (d), while DVDC (λ = 2.3) performs better than (f). Therefore, this article helps solve the problem
of deciding on the best algorithms through observation. (a) Input surface with texture; (b) aQSlim; (c)
DVDC (λ = 2.3); (d) mDVDC (λ = 2.3); (e) aQSlim; (f) DVDC (λ = 2.3); (g) mDVDC (λ = 2.3).
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