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Abstract: Ubiquitous trajectory data provides new opportunities for production and update of the
road network. A number of methods have been proposed for road network construction and update
based on trajectory data. However, existing methods were mainly focused on reconstruction of the
existing road network, and the update of newly added roads was not given much attention. Besides,
most of existing methods were designed for high sampling rate trajectory data, while the commonly
available GPS trajectory data are usually low-quality data with noise, low sampling rates, and uneven
spatial distributions. In this paper, we present an automatic method for detection and update of
newly added roads based on the common low-quality trajectory data. First, additive changes (i.e.,
newly added roads) are detected using a point-to-segment matching algorithm. Then, the geometric
structures of new roads are constructed based on a newly developed decomposition-combination
map generation algorithm. Finally, the detected new roads are refined and combined with the original
road network. Seven trajectory data were used to test the proposed method. Experiments show
that the proposed method can successfully detect the additive changes and generate a road network
which updates efficiently.

Keywords: map construction; road update; GPS trajectory; decomposition-combination

1. Introduction

The up-to-date road network is important for intelligent transportation applications such as car
navigation and route planning. With the development of urban transportation, more and more roads
are being built, especially in the newly developed urban regions. Traditional methods for the updating
of road networks, such as field surveying and satellite image digitizing, are time-consuming and
costly [1]. In the age of autonomous vehicles, many commercial companies such as Google, TomTom,
HERE, and DeepMap employ employees to update road maps using high instrumented vehicles
driving around. That uses significant human and financial resources to update the road maps over
time. Public vehicles such as taxis or buses are natural sensors of road network information [2]. With
more and more public vehicles are being equipped with GPS devices, a large amount of GPS trajectory
data are now available. This new data resource contains abundant road network information and it
provides new opportunities for real-time production and updating of the road network. Compared
with remote sensing images and high-quality GPS data collected by professional survey vehicles, GPS
trajectory data collected by public vehicles are relatively cheap and can be acquired in real-time with
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comprehensive coverage. These advantages have attracted many scholars to use this new data resource
to extract and update road network information, such as road centerlines, average travel time, speed
limit, number of lanes, and turning rules [3–12]. However, the commonly available GPS trajectory data
are usually low-quality data with noise, low sampling rates, and uneven spatial distributions. This
presents big challenges to existing road network generation and updating methods [13,14]. In this
paper, we focus on the automatic generation and update of a road network based on low-quality GPS
trajectory data. The proposed method takes the low-quality GPS trajectories and the original road
network as the raw input data and the output is a road network with new additive road updates.

The rest of the paper is organized as follows. Section 2 presents the related studies for road
network generation and updating. In Section 3, the framework of this study and the details of the
proposed method are described. Section 4 presents the experimental results and comparison analysis.
Finally, the conclusion and future work are given in Section 5.

2. Related Work

Existing methods for the update of the road network using GPS trajectory data can be classified
into two categories: (1) global reconstruction methods, and (2) local additive update methods.

In global reconstruction methods, the whole road network is reconstructed based on raw GPS
trajectory data and then the road changes are detected and updated by comparing the reconstructed
road network with the original existing road maps [15]. Global reconstruction methods can be further
classified into four subclasses [16]; i.e., density image skeleton extraction, point clustering, incremental
track insertion, and intersection linking. Density image skeleton extraction methods first convert the
raw GPS trajectories or points into a density image and then use the skeleton extraction algorithms,
such as Voronoi partitioning [4], mathematical morphology [7,17,18], and Morse theory [19], to extract
the road centerlines from the density image. These methods are efficient, but some important local
information of the road network may be lost during the transformation from GPS trajectory data
into raster images. Point clustering methods use clustering algorithms (such as k-means) to partition
the GPS sample points into different clusters, and the cluster centers are then connected to form a
complete road network [3,15,20,21]. The cluster number is a critical parameter for these methods and it
is usually hard to set in practice because of the noise and uneven spatial distribution of GPS trajectory
data. Incremental track insertion methods assume that the road network is a graph and incrementally
merge new GPS trajectories to construct a road network. Representative algorithms include the work
of Cao and Krumm [5], Ahmed and Wenk [6], Tang et al. [2], and Zhang et al. [1]. These methods
can reconstruct the complex structure of a road network; however, they may generate incorrect paths
due to noise in GPS trajectories. Intersection linking methods first identify the intersections of the
road network and then extract the road segments that link these intersections to form a complete road
network [8,22]. Recently, Mariescu-Istodor and Fränti proposed a representative intersection linking
algorithm called CellNet for constructing road networks from raw GPS trajectories [23]. The road
network generated by these methods is consistent with the real road network in topology, but the
identification of road intersections is still a challenging problem that needs to be solved further [12].
Most of the global road network reconstruction methods are designed based on the high sampling
GPS trajectory data, but in practice, the common available trajectory data contains a lot of noise due
to positioning errors and has a relatively low time resolution [2]. In addition, the reconstruction of
a number of already existing road segments in the road network is not necessary and it reduces the
efficiency of these methods for the update of the road network in a large region [24].

Local additive update methods focus on the local update of an original road network. These
methods mainly detect additive changes in the original road network and reconstruct only the changed
parts. Zhao et al. [25] created buffers of the original road network and recognized GPS sampling points
that were not in the buffers as the additive changes of the original road network. Then, they transformed
the unmatched sampling points into a binary image and extracted the skeleton of the image as the
new roads. Fang et al. [26] presented a similar approach to update the road network. Tang et al. [27]
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detected changes in the original road network by employing traffic direction, topology, and geometry
relationship constraint rules, then they generated centerlines of new roads using a polynomial curve
fitting algorithm. As far as we know, currently two map updating systems, CrowdAtlas and COBWEB,
have been built by Wang et al. [28] and Shan et al. [29], respectively. CrowdAtlas matches the raw
GPS trajectories onto the original road network using the hidden Markov model (HMM) based map
matching algorithm, and then the unmatched trajectories are clustered together to extract the centerlines
of new roads. CrowdAtlas can perform well on high-quality GPS data; however, it performs poorly on
low-quality GPS data because the Hausdorff distance used for clustering the trajectories is sensitive
to noise. COBWEB takes unmatched trajectories as the input data and generates new road segments
through complex processing steps including ‘graph generalization,’ ‘merging,’ and ‘refinement’ [29].
Recently, Wu et al. [24] presented a local renewal method for road network generation and updating.
They used GPS sampling points as the input data and adopted a modified HMM-based map matching
algorithm to find the unmatched sampling points that were further clustered via PAM (Partition around
medoids) clustering algorithm. Cluster centers were finally connected to generate the centerlines of
new roads.

In this paper, an automatic method for generation and update of the road network based on
low-quality GPS trajectory data is proposed. Our method is most related to Wu et al.’s method.
Both methods first find additive changes (i.e., newly added roads) of the original road network
using map matching algorithms and then reconstruct the changed parts to generate a road network
with updates. However, there are three differences between these two methods: (1) Our method
uses an efficient partial map matching algorithm based on flexible spatial and direction constraint
rules, which has lower complexity than the HMM-based map matching algorithm used in Wu et al.’s
method. (2) Wu et al.’s method’s assumptions are that all input trajectories inside a changed area
follow a similar or unique path, which is not usually true in practice, whereas our method adopts
a decomposition-combination strategy that has no restrictions or assumptions on the road network
changes. (3) When clustering the unmatched sampling points to generate the geometry of new roads,
we use a newly developed adaptive graph-based clustering algorithm, while Wu et al.’s method uses
the PAM clustering algorithm that needs to set the cluster number. Details of the proposed method
will be described in the following section.

3. Methodology

In this paper, we mainly focus on detection and update of the additive changes of the original
road network and the removal, geometry, and topology changes of the road network are not discussed
in this study. The proposed method consists of three steps: detection of additive changes, construction
of new roads, and refinement of road topology. The workflow of the proposed method is shown in
Figure 1.
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3.1. Data Preprocessing

In this study, the input original road network, G, is a directed graph and it is represented by
straight road segments, {e1, e2, . . . , em}, as in many typical map sources, such as the OpenStreetMap
(OSM) project. Each road segment is created with a start node and an end node, and the direction of
the road segment is defined as the heading direction from its start node to its end node. The raw input
GPS trajectories are a sequence of sampling records where each record contains the vehicle ID, latitude,
longitude, timestamp, vehicle heading, and vehicle speed. For GPS trajectory data that only includes
locations and timestamps; the vehicle heading of a sampling point can be estimated by the direction
from the sampling point to its next sampling point, and the vehicle speed can be estimated by the ratio
of the distance to the time interval between two continuous sampling points.

Since human usually drive a vehicle with speed of between 5 km/h to 100 km/h in the urban city,
the stationary or error GPS sampling records are first removed according to the vehicle speed V < 5
km/h or V > 100 km/h. Furthermore, due to the loss of GPS satellite signals or the low sampling rate,
there may exist some long distance gaps between two continue sampling records in a GPS trajectory.
To obtain a set of relatively uniform sampling points, we transform the raw GPS trajectories (polylines)
into a set of dense sampling points {p1, p2, . . . , pn} by employing a piecewise-linear interpolation. Each
sampling point contains the latitude, longitude, and heading direction. In this paper, the sampling
distance for the interpolation is set to 50 meters. These dense sampling points are used as the input
data for the proposed method.

3.2. Detection of Additive Changes

Since vehicles move on roads, vehicle trajectories are usually restricted to the road network.
Therefore, vehicle trajectories that are not matched with the original road network can be used to find
additive new roads in the road network. Various map matching algorithms are available for matching
the trajectory data and the road network [6,30–32]. Among them, the matching method based on road
buffers and the HMM-based map matching algorithm are commonly used in road network changes’
detection [24–28]. The matching algorithm based on road buffers is efficient and straightforward, in
which GPS trajectories or sampling points are identified as unmatched if are they located outside
the buffer zone of the original road network. The matching result of this algorithm may be wrong
because only the proximity relation between the trajectory and the road network is considered. The
HMM-based map matching algorithm aims to find the most likely path of a GPS trajectory from one
candidate position to the next, based on multiple constraints (e.g., spatial proximity, direction, and
speed), and it can obtain a global optimal matching result; however, it shows low efficiency on massive
GPS trajectories. In this paper, we choose a point-to-segment map matching algorithm in Brakatsoulas
et al. [30] to match the input sampling points and the original road network by considering both the
efficiency and the accuracy of the matching algorithms. Given a sampling point and the original road
network (represented by straight road segments), the road segment matching the sampling point is
identified according to the following steps:

(a) First, the spatial distances from the sampling point to all the road segments are computed, and
road segments are filtered if the distances between the road segments and the sampling point are
larger than a distance threshold; e.g., 50 meters.

(b) Second, for the remaining road segments, a road segment is recognized as a candidate road
segment if the angle between the heading direction of the sampling point and the direction of the
road segment is smaller than an angle threshold; e.g., 15 degrees.

(c) In all the candidate road segments, the road segment with the smallest spatial distance to the
sampling point is finally recognized as the road segment matching the sampling point. If there
is not a road segment matching the sampling point, the sampling point is recognized as an
unmatched sampling point.
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As shown in Figure 2, e1, e2, e3, e4, e5, e6 are road segments in the original road network, and {p1,
p2, p3, p4, p5} and pm are the input sampling points from raw GPS trajectory data, in which {p1, p2,
p3, p4, p5} are sampling points on a new road. According to the point-to-segment matching algorithm,
e3 is the matching road segment of pm, and {p1, p2, p3, p4, p5} have no matching road segments, thus
they are identified as unmatched sampling points.
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Figure 2. The point-to-segment matching (arrows indicate the heading directions of the sampling
points).

The point-to-segment matching algorithm has two parameters: the distance threshold and the
angle threshold. In this study, the distance threshold is used to filter the road segments that may not
match the sampling points and it is set to 50 m according to the maximum value of road widths and GPS
positioning errors. The angle threshold is used to determine whether two directions are approximately
parallel, and the angle threshold is set to 15 degrees according to previous studies [33,34].

3.3. Construction of New Roads: A Decomposition-Combination Map Generation Algorithm

Based on the point-to-segment matching algorithm, the unmatched sampling points are detected.
These unmatched sampling points indicate the newly added roads of the original road network. The
next step is to construct the geometry of the newly added roads.

As in many typical map sources, such as the OSM, the road network is represented by straight
road segments, and the arbitrarily complex curved roads can also be decomposed into a combination of
some straight road segments. Based on this thought, we adopt a decomposition-combination strategy
to reconstruct the geometry of new roads. First, the unmatched sampling points on a new road are
partitioned into different clusters of a linear shape (corresponding to the straight road segments). Then,
the centerlines of new road segments are extracted from these point clusters by employing piecewise
linear curve fitting. Finally, the generated new road segments are merged together to form a relatively
complete road network. Based on the decomposition-combination strategy, we could generate a road
network with an arbitrary, complex shape.

3.3.1. Decomposition of Complex New Roads

Various point clustering algorithms, such as k-means, PAM, and DBSCAN [35], are available
for clustering the unmatched sampling points. However, most of these methods are sensitive to
clustering parameters, such as the cluster number and the neighborhood size. Moreover, the k-means
and PAM algorithms are only suitable for detecting spherical clusters, and the density-based clustering
algorithm—DBSCAN (Density Based Spatial Clustering of Applications with Noise)—can find arbitrary
shaped clusters, but DBSCAN may lose some important low-density clusters due to the uneven spatial
distribution of the sampling points (e.g., the cluster C11, C14, and C16 shown in Figure 3c. In this paper,
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a newly developed graph-based clustering algorithm is used to cluster the unmatched sampling points
into different linear clusters, and the overview of the clustering algorithm is shown in Figure 3.ISPRS Int. J. Geo-Inf. 2019, 8, 411 6 of 20 
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In the algorithm, Delaunay triangulation (DT) is used to construct the spatial neighborhood graph
of the sampling points, because the DT graph adapts to the uneven density distribution of spatial
points and it requires no parameters. Figure 3a shows the DT graph of some unmatched sampling
points. However, some inconsistent long edges (linking two distant points) may exist in the DT graph;
e.g., edges in the red box in Figure 3a. To prune the inconsistent long edges, a statistical method
adapted from [36] is implemented:

Let GT be the DT graph of the unmatched sampling points (denoted as {p1, p2, p3, . . . , pK}),
global_mean(GT) be the mean value of the length of all edges in GT, and global_std(GT) be the standard
deviation of the length of all edges in GT. Let local_mean(pi) be the mean value of the length of edges
linking to the vertex pi directly; then, the cut-off value for long edges linking to pi is calculated as:

cut_off_value(p)i = global_mean(GT) +
global_mean(GT)

local_mean(p i

) ∗ global_std(GT) (1)

The cut-off value is adaptive to the uneven density distribution of sample points by using the
ratio of global_mean(GT) to local_mean(pi) as a factor of the standard deviation, global_std(GT). For
a sampling point pi (or a vertex) of GT, cut_off_value(pi) is computed, and the edge linking to pi is
pruned if its length is longer than cut_off_value(pi). Figure 3b illustrates the pruned DT graph. The
spatial neighbors of a sampling point pi are defined as a set of sampling points linking to point pi
directly by an edge of the pruned DT graph.

Through the above steps, the neighborhood graph of the sampling points is obtained. As the
vehicle usually moves on the road with a vehicle heading consistent with the direction of the road.
Thus, the heading directions of the sampling points on the same road segment should be similar. Based
on this thought, the sample points are clustered according to the following steps:
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Step 1: According to the number of spatial neighbors, the sampling points are sorted and denoted
as L = {p(1), p(2), p(3), . . . , p(K)}, in which N(p(1)) ≥ N(p(2)) ≥ N(p(K)), where n is the number of
sampling points and N(•) is the number of spatial neighbors of a sampling point.

Step 2: The sampling point p(1) is first chosen and initialized as a new point cluster, denoted as
C = {p(1)}. Then, the neighboring sampling points of p(1) are gradually added into the cluster C if the
neighboring sampling point (say p(k)) satisfies the two criteria: (1) p(k) connects to a sampling point in
C by a path of three or fewer edges of the pruned DT graph, and (2) the angle between the heading
direction of p(k) and the direction of cluster C is less than a threshold Λ (Λ = 15◦), where the direction
of cluster C is defined as the median value of the heading directions of all the sampling points in C.

Step 3: The point cluster C grows until no neighboring points can be combined. For the remaining
GPS points that have not been included in any clusters, the point with the maximum number of spatial
neighbors is selected and initialized as a new point cluster. Repeat the above step to merge sampling
points into a bigger cluster until all sampling points are visited. Finally, small clusters of five or fewer
points are deleted and the remaining clusters are the output results.

There is one parameter that needs to be set for the graph-based clustering algorithm. The threshold
Λ ensures the consistency of the heading directions of sampling points in a cluster. Meanwhile, this
parameter controls the generation of the linear clusters. The smaller the value of Λ is, the straighter the
shape of the point cluster is, but it may also generate more fragmental clusters. In this paper, Λ is set to
15 degrees.

3.3.2. Road Centerline Extraction

The next step is to generate road centerlines from the above-detected clusters. Since the shape
of the cluster detected by the proposed clustering algorithm tends to be linear, a piecewise linear
fitting algorithm is applied to generate the road centerlines. In this paper, the piecewise linear curve
fitting algorithm rather than a straight segment fitting algorithm is chosen, because of the reasons
that the shape of the cluster found by the clustering algorithm may not be strictly straight and the
piecewise linear curve fitting algorithm is more powerful than the simple straight segment fitting. In
this paper, we adopt a piecewise linear curve fitting algorithm in Pittman and Murthy [37] to extract
the centerlines of road segments based on the sampling point clusters.

The piecewise linear curve fitting algorithm identifies a continuous piecewise linear function f(x)
to fit input data such that fitting error (least-squares error) is minimized. Pittman and Murthy [37]
used genetic algorithms to find line segment ends and to identify the optimal piecewise linear curve
(i.e., the centerline) of the two-dimensional input point data. The implementation of the algorithm can
be found at https://github.com/cjekel/piecewise_linear_fit_py. Figure 3d shows the centerlines of new
roads generated using the piecewise linear fitting algorithm.

3.4. Topology Refinement of the Road Network

The identified new road segments (or curves) should be further combined and merged into
the original road network to form a complete road network with updates. To generate a routable
road network, the gaps between the new road segments (or curves) and the topology errors between
additive new roads and the original road network should be refined, as shown in Figure 4.
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intersections’ and ‘connection,’ to extend road segments to ensure their topology and connectivity.
Kuntzsch et al. [22] used a reversible jump MCMC (Markov Chain Monte Carlo) sampler to refine
the geometry of road junctions. These methods are based on predefined rules and perform well for
certain types of topology errors; however, there are still many other topology errors that cannot be
modeled in advance. Biagioni and Eriksson [7] have developed a topology refinement method based
on raw GPS trajectories, in which operations, such as spurious edge pruning and map matching, are
applied repeatedly to determine whether the transitions between two road segments are allowable.
This method can perform well, but for massive trajectories, it becomes time-consuming. In this paper,
for simplicity and efficiency, we use a mathematical morphology based method to refine the topology
of the road network, as shown in Figure 5.
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The mathematical morphology based topology refinement method mainly consists of four steps,
as follows:

(a) First, each road segment (or road curve) is virtually extended outward at both the beginning and
ending points along the direction of the road (specially, along the direction of the line segments
where the beginning and ending points are on). We then check if the extended road segments (or
curves) are intersected with each. If a road segment intersects with others, then this road segment
is extended to its nearest intersecting road segment, as the roads in red circles shown in Figure 5b.
The extension distance is set to 30 m in this paper, according to GPS positioning errors.

(b) Then, the buffer zones of the above road segments are created and converted into a binary image
as shown in Figure 5c. It can be seen that the gaps between the road segments that should be
connected are filled. The buffer size is set to 20 m according to the road width.

(c) Third, the centerlines of the refined road network are extracted from the binary image (in Figure 5c)
based on the mathematical thinning operations in Lam et al. [38]; see Figure 5d.

(d) Finally, the above-generated road skeleton centerlines are divided into different road segments at
the junction points (see Figure 5e). The junction points are detected by checking whether this
point connects three or more road segments. The Douglas–Peucker algorithm [39] is further
applied to remove the unnecessary intermediate points in the road segments, and the distance
parameter for the Douglas–Peucker algorithm is set to 3 m in our experiments. The allowable
transitions between two road segments are determined according to whether there exists at least
one trajectory matching both these two road segments. Figure 5e shows the refined road network.
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4. Experimental Results

In this paper, we designed two experiments to evaluate the effectiveness of the proposed method.
The first experiment (experiment I) was designed to test the power the proposed method for construction
of new complex roads, and seven state-of-the-art global reconstruction methods were compared. The
second experiment (experiment II) was designed to evaluate the effectiveness of the proposed method
for the detection and local update of the additive changes of the original road network, and two related
local update methods were also compared.

4.1. Experiment I: Performance on the Construction of New Roads

In the first experiment, seven real-world GPS trajectory data sets from different cities were used
(see Figure 6). These GPS trajectory data were used as unmatched GPS sampling points for the
construct of new roads. The experimental data sets include four public GPS trajectory datasets from
http://mapconstruction.org and http://cs.uef.fi/mopsi/routes/network, and three low-quality taxi GPS
trajectory datasets from Wuhan, China. The statistics for the seven trajectory data sets are shown in
Table 1. To evaluate the efficiency of the proposed method, seven state-of-the-art global reconstruction
algorithms (in Table 2) were also compared (implementations of the first six algorithms are available
from http://mapconstruction.org). To quantitatively evaluate the performance of the proposed method,
recall, precision, and F-score measures adapted from Biagioni and Erikson [7] are used:

recall = length(TP)/length(ground_trurh_map) (2)

precision = length(TP)/length(reconstructed_map) (3)

F− score =
2(recall•precision)
recall + precision

(4)

where TP is a set of constructed roads that match the underlying ground-truth roads with related to a
matching distance threshold, and length(TP) is the total length of all the roads in TP.
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Table 1. Statistics for datasets used in experiment I.

ID Dataset Country Number of
Trajectories

Average Sampling
Rate (s)

Trajectory
Length (km)

1 Athens small Greece 129 34.07 443
2 Berlin Germany 26,831 41.98 41,116
3 Chicago USA 889 3.61 2869
4 Wuhan-D1 China 5843 49.24 4107
5 Wuhan-D2 China 9584 49.24 5471
6 Wuhan-D3 China 2706 49.24 3253
7 Joensuu Finland 108 2.00 250

Table 2. Seven state-of-the-art map generation algorithms.

Number Source Method

1 Edelkamp & Schrödl (2003) Point clustering
2 Davies et al. (2006) Density image skeleton extraction
3 Cao & Krumm (2009) Incremental track insertion
4 Biagioni & Eriksson (2012) Density image skeleton extraction
5 Ahmed & Wenk (2012) Incremental track insertion
6 Karagiorgou & Pfoser (2012) Intersection linking
7 Mariescu-Istodor & Fränti (2018) Intersection linking

For the four public trajectory data sets of Athens small, Berlin, Chicago, and Joensuu, the
ground-truth road networks were obtained from http://mapconstruction.org, and http://cs.uef.fi/mopsi/
routes/network. For the datasets Wuhan-D1, Wuhan-D2, and Wuhan-D3, the ground-truth road
networks were downloaded from the OSM website (www.openstreetmap.org). To avoid the bias in
recall computing, a subset rather than the whole underlying road network was used as a ground-truth
map in the performance evaluation because the raw trajectory data only covered parts of the underlying
road network. We overlapped the raw trajectory data and the underlying road network together
and manually selected the underlying roads that were traversed by one or more trajectory as the
ground-truth map. The ‘reconstructed_map’ in Equation (3) was a set of constructed roads by the map
generation algorithm based on the input GPS trajectory data.

We first tested our method using the low sampling trajectory data sets of Athens small, Berlin,
Wuhan-D1, Wuhan-D2, and Wuhan-D3. The generated road networks by the proposed method and
the first six map construction algorithms in Table 2 are shown in Figures 7 and 8. Since the Chicago
data set was commonly used as benchmark data to evaluate the performance of map construction
algorithms in the literature, the results for the Chicago data set are also displayed for comparison. It
can be seen that most of the underlying roads were correctly constructed by the proposed method,
and roads traversed infrequently were also found by our method. In the experiments, the clustering
parameters for Ahmed and Wenk’s method were all set to 120 m for Wuhan-D1, Wuhan-D2, and
Wuhan-D3, and the parameters of these six algorithms (i.e., Ahmed and Wenk’s method, Edelkamp
and Schrödl’s method, Davies et al.’s method, Cao and Krumm’s method, Biagioni and Eriksson’s
method, and Karagiorgou and Pfoser’s method) were set according to Ahmed et al. [16]. By comparing
the generated road networks (in black) by visual inspection with the underlying road maps (in grey), it
can be seen that the proposed method generated better results than the other algorithms, followed by
Biagioni and Eriksson’s method, Karagiorgou and Pfoser’s method, and Ahmed and Wenk’s method.
Cao and Krumm’s method and Edelkamp and Schrödl’s method both performed poorly because they
failed to cluster trajectories together in regions where many trajectories exist, and they produced
multiple edges on a single road. Davies et al.’s method generated the smallest number of edges and
identified only those underlying roads that a large number of trajectories traveled. Biagioni and
Eriksson’s method, and Karagiorgou and Pfoser’s method produced the better results among the
six algorithms; however, these two methods may also lose some important roads where only a few

http://mapconstruction.org
http://cs.uef.fi/mopsi /routes/network
http://cs.uef.fi/mopsi /routes/network
www.openstreetmap.org
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trajectories passed through; for example, the roads at the bottom-left corner for the Chicago data.
Mariescu-Istodor and Fränti’s method was not compared because of the computing complexity of their
method for a large number of trajectories (such as the Berlin and Wuhan-D1 data sets).ISPRS Int. J. Geo-Inf. 2019, 8, 411 11 of 20 
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of Athens small, Berlin, and Chicago. 

Figure 7. Generated road networks (in black) and the ground-truth road maps (in grey) for data sets of
Athens small, Berlin, and Chicago.
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Figure 9 shows the F-scores of the results by Ahmed and Wenk’s method, Biagioni and Eriksson’s
method, Davies et al.’s method, Karagiorgou and Pfoser’s method, and our method, respectively.
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It can be seen that Ahmed and Wenk’s method performed best on Athens small data, followed by
our method, and Karagiorgou and Pfoser’s method. Among these methods, Davies et al.’s method
found only parts of the underlying roads and has relatively high precision, but its recall is lower than
other algorithms. For the Chicago data, our method generated a better result than the other algorithms.
For the Berlin data, Biagioni and Eriksson’s method performed slightly better than our method and
Karagiorgou and Pfoser’s method, and Ahmed and Wenk’s method performed worst and produced
numerous spurious roads due to the impact of noise. For low-quality taxi trajectory data in Wuhan
(i.e., Wuhan-D1, Wuhan-D2, and Wuhan-D3), Ahmed and Wenk’s method performed better than ours
on Wuhan-D3 data for small matching distances; and on other two datasets, our method produced
better results than the other algorithms.

Both qualitative and quantitative analysis of the test data show that the proposed method generally
performed better than other algorithms, followed by Biagioni and Eriksson’s method, Karagiorgou
and Pfoser’s method, and Ahmed and Wenk’s method. Davies et al.’s method performed poorly
because of the uneven density distribution of GPS trajectory data, and this method is only suitable
for finding roads that are traversed frequently. Ahmed and Wenk’s method and Karagiorgou and
Pfoser’s method may generate some spurious edges due to noise. Biagioni and Eriksson’s method
is robust to noise, and it has high precision, but some important road segments (such as newly-built
roads) with sparse trajectories may be omitted. In order to find roads with sparse trajectories, our
method sacrifices some precision to ensure a higher recall rate and compromises the accuracy and the
completeness of the reconstructed road network. It should be noted that the F-scores in Figure 8 are
different from the results of Ahmed et al. [16], because the ground truth maps are different in these two
studies (Ahmed et al. used the whole original road network to compute the F-scores).

Further, two trajectory data sets with high sampling rates (i.e., the Chicago and Joensuu data
sets) were used to evaluate the performance of the proposed method. The recently developed
map construction algorithm by Mariescu-Istodor and Fränti [23] (called CellNet hereafter) was also
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compared. The generated road networks for the Chicago and Joensuu data sets by the proposed
method and CellNet are shown in Figure 10.
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The proposed method is implemented in Octave, and the implementations of the first six 
algorithms in Table 2 are available at http://mapconstruction.org. Due to these algorithms being 
implemented based on different coding languages (i.e., Java, Python, and MATLAB/Octave), the 
algorithms’ running times are not comparable in theory. However, to at least give an impression, 

Figure 10. Results of generated road networks (in black) by CellNet and the proposed method and the
ground-truth road maps (in grey) for data sets from Chicago and Joensuu.

By visual inspection, it can be seen that both CellNet and the proposed method can successfully
construct the road network from the input raw trajectories, even for roads with a few trajectories
traveled. The graph of F-scores for the proposed method and CellNet for several matching distances
on the two test data sets are shown in Figure 11. It can be seen that for both the Chicago data
and the Joensuu data, the F-scores of the proposed method are slightly higher than those of the
CellNet algorithm. The CellNet algorithm may also generate multiple paths for a single road since the
intersection could be identified as multiple parts due to the impact of noise. In the proposed method,
the noise sampling points will not be clustered and the road centerlines are generated through an
optimal piecewise linear curve fitting from the point clusters, which can also reduce the impact of noise
points. Thus, compared with existing methods, the proposed method shows more robustness against
noise. On the other hand, the proposed method generates roads from clusters of similar sampling
points (usually on the same road) instead of finding the high-density trajectories on the roads; therefore,
the proposed method can also find the roads with sparse trajectories.
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The proposed method is implemented in Octave, and the implementations of the first six algorithms
in Table 2 are available at http://mapconstruction.org. Due to these algorithms being implemented
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based on different coding languages (i.e., Java, Python, and MATLAB/Octave), the algorithms’ running
times are not comparable in theory. However, to at least give an impression, Table 3 shows the
respective running times of these algorithms on the test data sets for the construction of road networks.
All these algorithms were run on Intel Core i3 CPUs running at 3.0 GHz with 8 GB of RAM using a
Windows 7 operating system.

Table 3. Running times of various algorithms on the test datasets (min).

Dataset Ahmed
(Java)

Biagioni
(Python)

Cao
(Python)

Davies
(Python)

Edelkamap
(Python)

Karagiorgou
(MATLAB)

Ours
(Octave)

Athens small 0.087 16.19 4.73 0.41 1.47 6.95 0.56
Berlin 82.54 301.70 727.96 108.77 >20 h >48 h 13.14

Chicago 23.67 31.25 373.01 1.68 18.49 >20 h 3.64
Wuhan-D1 6.15 54.40 127.48 4.86 42.44 426.44 3.57
Wuhan-D2 13.48 44.21 162.43 10.67 84.64 451.28 4.06
Wuhan-D3 10.65 20.78 21.93 9.38 53.46 85.67 1.51

For the CellNet algorithm, the above-compared results of the Chicago data and the Joensuu data
were obtained from http://cs.uef.fi/mopsi/routes/network. As reported in [23], the running times of
the CellNet algorithm for the Chicago data and the Joensuu data were about 2 hours and 1 hour,
respectively. The proposed method required 48.18 seconds for the Joensuu data on the above system
platform (i.e., Intel Core i3 CPUs with 8 GB of RAM using a Windows 7 operating system).

4.1.2. Parameter Sensitivity

For our method, the accuracy of the construction of new roads is very related to the graph-based
clustering results. The developed graph-based clustering algorithm needs one parameter (Λ) to set. Λ
is an angle threshold to determine whether two directions are similar. In this paper, the angle threshold
Λ is set to 15◦ by default, in accordance to previous studies. To analyze the impact of the values of Λ
(i.e., the clustering parameter) on the performance of the construction of new roads, we conducted a
parameter sensitivity analysis using the Chicago data (high-quality GPS data) and the Wuhan-D3 data
(low-quality GPS data). Some results of this analysis are shown in Figure 12.
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As the figure illustrates, for the Chicago data, when the clustering parameter (Λ) is within the
range of 5◦ to 70◦, the F-scores are relatively stable and decrease slightly when Λ reaches 70◦. For the
Wuhan-D3 data, the F-score of the constructed roads decreases with increasing Λ. From both data
sets, it can be found that when Λ is within the range of 5◦ to 25◦, the F-score of the constructed roads
is relatively high and stable. This is consistent with the suggested value of the angle threshold as to
whether two directions are similar according to the previous studies [33,34]. Therefore, Λ is set to 15◦

in the proposed method.
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4.2. Experiment II: Application of the Proposed Method for the Update of the Road Network

In Experiment II, the proposed method was applied for the update of the OSM road network in
the Qingshan district of Wuhan, China. The OSM road network of this area in 2014 was used as the
original road network to be updated. The GPS trajectory data from 6150 taxis on May 1, 2015, were
used as the input trajectory data, which included 10,662 trajectories, and the sampling rate varied from
10 to 180 seconds. The original OSM road network and the GPS sampling points in the study area
are shown in Figure 13a. The clusters detected from the unmatched sampling points are shown in
Figure 13b.
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Figure 13. Study area and the clustering result: (a) the open street map (OSM) road network and the
GPS sampling points in the study area; (b) clustering result by our method and the clusters are shown
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Figure 14a shows the updated road network with newly added roads in the study area. By
overlapping the updated road network on the satellite image, it can be seen that the newly added
roads constructed by our method match the underlying ground-truth roads in the image well (see the
locally enlarged view of regions A, B, C, D, and E in Figure 14a). The newly added roads generated by
Zhao et al.’s method and Wu et al.’s method are shown in Figure 14b ad Figure 14c, respectively. Zhao
et al.’s method detected most of the additive roads in the study area, but some new roads with sparse
trajectories were not found. For Wu et al.’s method, H and T-shaped newly added roads were not well
constructed because of their assumptions (the unmatched trajectories inside a problem area follow a
unique path); for example, roads in the black boxes in Figure 14c where there are several newly added
roads in the same area that need to be updated.

We evaluated the updated road network in Figure 14a by using the updated OSM road network in
2018 as the ground-truth road map. The F-score was 0.725 when the matching distance threshold was
set to 20 m. When compared with the satellite image, we found some underlying newly added roads,
such as roads in region B and E, are still missing in the OSM road data in 2018, which may reduce the
F-score of our result.
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5. Conclusions

This paper proposes an automatic method for the detection and updating of the newly added
roads of the existing road network based on low-quality GPS trajectory data. Two experiments were
designed to evaluate the proposed method. Six real-world GPS trajectory data sets were used to test the
performance on the construction of new roads of the proposed method, and the taxi trajectory data in
Wuhan, China was used to test the ability of the proposed method for the update of the road network.
Experimental results demonstrated the validity, efficiency, and superiority of the proposed method.
Compared with six state-of-the-art map reconstruction algorithms and two local update algorithms, the
proposed method performed better on low-quality GPS data (see Figure 8). The proposed method can
recognize newly added roads that are traversed sparsely, which most state-of-the-art map generation
and update algorithms may fail to find (see Figure 7).

The proposed method still has some limitations. First, the developed graph-based clustering
algorithm tends to divide roads at the intersection, thus the detailed geometry of the intersection will not
be well reconstructed. In our future work, fine structures of the intersection will be generated and added
to the updated road network. Based on the updated road network, the location of road intersections
can be easily found by employing network analysis, and the fine geometry of the intersection can then
be further extracted. Second, removal, geometry, and topology changes of the road network are not
considered in this study. Those changes of road networks will be studied in our future work. In general,
the experiments demonstrated the ability and efficiency of the proposed method for detection and
updating of the newly added roads based on the commonly available low-quality trajectory data. In
the age of autonomous vehicles, the proposed method could be used to quickly find the new, additive
change-areas in the original road network. This may guide the professional surveying vehicles to
update the high-resolution road map of these change areas in time.
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