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Abstract: With the development of autonomous driving, lane-level maps have attracted significant
attention. Since the lane-level road network is an important part of the lane-level map, the efficient,
low-cost, and automatic generation of lane-level road networks has become increasingly important.
We propose a new method here that generates lane-level road networks using only position information
based on an autonomous vehicle and the existing lane-level road networks from the existing road-level
professionally surveyed without lane details. This method uses the parallel relationship between the
centerline of a lane and the centerline of the corresponding segment. Since the direct point-by-point
computation is huge, we propose a method based on a trajectory-similarity-join pruning strategy
(TSJ-PS). This method uses a filter-and-verify search framework. First, it performs quick segmentation
based on the minimum distance and then uses the similarity of two trajectories to prune the trajectory
similarity join. Next, it calculates the centerline trajectory for lanes using the simulation transformation
model by the unpruned trajectory points. Finally, we demonstrate the efficiency of the algorithm and
generate a lane-level road network via experiments on a real road.

Keywords: intelligent driving; lane-level road network; trajectory-similarity-join pruning strategy
(TSJ-PS)

1. Introduction

Intelligent driving technology is developing rapidly in both industry and academia. Digital maps
can help with advanced driver-assistance systems and autonomous driving. For example, driving
applications such as positioning [1,2], driving path planning [3], and decision-making [4] benefit
from the auxiliary information in digital maps. Digital maps are used to provide the surrounding
information of a vehicle, which facilitates perception applications [5,6] for intelligent driving systems.

An electronic navigation map is a road-level map, used mainly by drivers, that provides basic
road navigation functions based on a common map. Due to a lack of lane details, existing electronic
navigation maps are not widely used in the development of autonomous driving functions. Thus,
research interest has been increasing in lane-level maps with precise lane-level details. In China, 19
companies have conducted investigations in lane-level mapping since 2019. Compared with road-level
maps, lane-level maps contain rich lane data [7], with accuracy ranging from a few meters to the
decimeter or even centimeter level under various autonomous vehicle functions [8]. The road network
is an important aspect of maps and plays an important role in intelligent driving projects [9]. As a key
enabling technology, the generation of lane-level road networks is a topic of research interest.
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1.1. Lane-Level Data Acquisition of Road Geometry

Whereas boundary lines are used to provide an abstract road network [10], the centerline of the
road is also an important descriptor in lane-level road networks [11]. In general, a mobile mapping
system (MMS) is often used to acquire precise road data. The mobile measurement system integrates
a dedicated laser scanner, panoramic camera, and a high-precision position-and-orientation unit on
the vehicle. Although this approach can extract highly accurate lane-level road networks, the sensor
components are expensive, and implementing large-scale real-time calculations with this system is
difficult [12].

With the development of intelligent transportation, floating vehicle trajectories have become a
new source of road network data [13]. The floating car data (FCD) system refers mainly to the global
positioning system (GPS) equipped on commercial vehicles such as taxis or buses [14,15]. Attracted by
the low cost of floating car data, researchers are using floating cars to extract road network data [16–18].
Methods based on floating cars acquire road network and intersection information mainly by mining
large amounts of trajectory data for positions and directions [19]. Even though floating cars have been
used in research and their accuracy in extracting intersections has improved [20], insufficient accuracy
remains a major problem in FCD systems.

Other researchers used a probe vehicle as the data source [21,22]. Autonomous vehicles, which are
a type of probe vehicle, have received increasing attention. Several hundred autonomous vehicles exist
in China. Autonomous vehicles, also known as self-driving vehicles, driverless vehicles, equipped
with advanced sensors, controllers, and actuators compared to regular vehicles, have intelligent
environment-aware capabilities that enable them to drive autonomously. An autonomous vehicle is an
intelligent agent of group perception in the Internet of Vehicles environment [23] and fifth-generation
(5G) cellular networks ensure reliable communications [24]. To quickly generate and update maps
based on the group perceptions of connected vehicle networks is the new trend [25]. In the Internet of
Intelligent Vehicles environment, a single autonomous vehicle is a new source of road network data.
Therefore, we must first solve the problem of road network generation using an autonomous vehicle.

1.2. Lane-Level Road Network Generation with a Probe Vehicle

A probe vehicle can provide a wealth of information for generating road networks. Many
methods are available to extract lane-level road networks from the information collected by a probe
vehicle. One method involves combining sensory data and position data. For example, a method
based on laser point cloud data and GPS data can combine sensor and position data to extract a road
network. Gwon et al. extracted road information from a three-dimensional (3D) laser radar and
presented a road-map-generation system that simultaneously considers accuracy, storage efficiency,
and usability [26]. Another example is combining image and GPS data to extract road networks.
Guo et al. used orthographic road image generation and lane graph construction methods to develop
a low-cost approach to automatic generation [27]. This method performs well when clear signs or
boundaries exist, but does not work well with unobvious boundaries. Another method involves using
only position data. Zhang et al. and Zheng et al. proposed a road network model for constructing a
high-precision road network [28,29]. However, these methods based on point trajectories require a
large amount of data collection and calculation.

1.3. Spatial Metrics of Trajectory Similarity

The geometric information of a road network can be obtained by collecting trajectories. Trajectory
similarity join is often used to represent a pair of similar trajectories. The similarity of trajectories is
often gauged using angular and distance relationships in space. The distance similarity of trajectories
can be gauged using a number of metric functions [30,31], of which the Euclidean distance is the
most commonly used. To measure the distance between the road trajectory and the trajectory in
space, Mao et al. adopted the point–segment distance, predicted the distance, and measured the
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segment–segment distances; this approach improved trajectory similarity. However, the algorithm
was inaccurate, highly sensitive to sampling methods, exhibited low robustness to noisy data, and was
computationally intensive [32]. Wang et al. and Wu et al. used the orthophoto distance to measure
line-to-line distance [33,34]. The orthographic projection was not sensitive to the density of the sample
points, and many calculations were required. To solve this problem, Na et al. proposed a grid-pruning
method to reduce the amount of calculation in measuring trajectory point distance [35]. Based on
their research, we selected orthographic projection distance as a measure of spatial distance. The
difference between our method and that of Na et al. [35] is that they had to select similar trajectory pairs
from multiple trajectories, whereas we only needed to choose similar segments from two trajectories.
Therefore, instead of using a grid-based approach, we used angular relationships to further extract
similar trajectory pairs.

Here, we propose a method for generating a lane-level road network. We used the acquisition
trajectory from an autonomous vehicle and the road network data from existing professionally surveyed
road-level maps. A trajectory-similarity-join pruning strategy (TSJ-PS) method was used to reduce
point-to-point trajectory calculations. The main contributions of this study can be summarized as
follows: (1) A method was developed for generating a lane-level road network employing existing
road-level maps as a source, using only position information for a single trajectory; and (2) we propose
a segmentation strategy and TSJ-PS, which can quickly generate a lane-level road network.

The remainder of this paper is organized as follows. Section 2 presents the preliminaries. Section 3
provides an overview of the proposed method. In Section 4, we present the TSJ-pruning-based
algorithm and then describe the experiments in Section 5. Finally, Sections 6 and 7 present the
discussion and conclusion, respectively.

2. Preliminaries

2.1. Definitions

2.1.1. Trajectory Points and Segments

Definition (trajectory points): In a given Euclidean space, continuous discrete sampling points are
used to abstract the continuous trajectory of a mobile object.

Definition (trajectory segments): Continuous polylines are connected in order by trajectory points.
T = {t1, t2, . . . , tm} represents the GPS acquisition trajectories and S = {s1, s2, . . . , sn} represents

the segment centerline. For the convenience of description, the trajectories of the road centerline are
used to express the shape points of the centerline.

2.1.2. Closest Distance between Two Trajectories

Definition (closest point-to-trajectory distance): Given a trajectory T = {t1, t2, . . . , tm}, where ti is a
sample point, the closest point-to-trajectory distance s′ti (which may not be the orthographic projection
distance) from ti to another trajectory S = {s1, s2, . . . , sn} is the shortest Euclidean distance from any
point on S to ti.

Definition (closest trajectory-to-trajectory distance): The closest trajectory-to-trajectory distance
{s′t1, s′t2, . . . , s′tm} from trajectory T = {t1, t2, . . . , tm} to S = {s1, s2, . . . , sn} is the set of all the shortest
Euclidean distances for each ti in T.

2.1.3. Trajectory Similarity

Definition (trajectory similarity join): Given two trajectories, a similarity join aims to find all
similar trajectory segment pairs in the two trajectories.

In this study, two parameters were mainly considered to determine the similarity of the trajectory
pair: Distance similarity and angle similarity of the trajectory pair.
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Definition (the similarity of two trajectory pairs): Given trajectories A = {a1, a2, . . . , an} and B =

{b1, b2, . . . , bm}, the similarity trajectories pair is defined by

SimD = 1−

∑n
i=1|Di− Dlw|

n×Dlw
(1)

SimAng = 1−

∑n
i=1 min{θi, π− θi}

n× π
( θi = max{θi1,θi2, . . . ,θik}) (2)

where SimD is distance similarity, Di is the closest distance between A and B, and Dlw is a fixed distance
threshold. The value of SimD is [0, 1]. The larger the value of SimD, the larger the distance similarity.
The value of SimD is small, and the two trajectories are not similar. In Equation (2), SimAng is the
angle similarity and θi is the maximum value of all angles. θi1,θi2, . . . ,θik are the maximum values of
the angles between the trajectory segment at which two trajectory points are located on A and all the
trajectory segments at which the closest points are located on B. The smaller the value of SimAng, the
closer the direction of the two trajectories. The larger the value of SimAng, the larger the parallelism.

Figure 1 depicts a schematic of the closest trajectory-to-trajectory distance.
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2.2. Data Acquisition

In this study, we needed to acquire two types of trajectory data.
Type 1 includes the trajectory data of the road centerline. These data were obtained from an

existing large-scale map with segment centerlines and without lane details. For example, professionally
surveyed topographical maps of China at scales of 1:500 and 1:1000, as well as the National Geographic
Information Survey of China, provide geographic information data that are expensive but high quality.
The accuracy of the road network is relatively high and stable for a certain period of time. The accuracy
of the road network in the map determines the final accuracy of the extracted lane-level road network.
For example, if 0.5 m accuracy is assumed, the map would be at least 1:500. For this study, we used an
existing road network data source with road centerline data accuracy greater than 0.5 m; the map was
produced by professional surveying and mapping [29].

Type 2 includes the centerline of a specific lane in the direction of the road. These data were
obtained from an autonomous vehicle. The autonomous vehicle drove along the centerline of any lane
of the road with good accuracy by itself without previous centerline trajectory input and recorded the
trajectory data. For calculation convenience, we took the centerline of the rightmost lane as an example.
In this work, the positioning system of the autonomous vehicle combined GPS and high-precision
inertial navigation system (INS). When collecting lane centerline trajectories, the vehicle traveled
according to the lane centerline of the rightmost lane in the road traffic direction and completed
the road network acquisition according to the Chinese map standard [36]. The coordinates of the
acquisition trajectories and centerline trajectories of the road segments were geodetic coordinates,
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which are required for Gaussian projection when further processing data. Then, the plane coordinates
were used in subsequent calculations.

3. Geometric-Based Approach for Inferring Lane-Level Road Networks

3.1. Overview

Once we finished data acquisition, we proceeded to lane graph processing. In this study, we
used the centerline of the road to abstractly represent the lane-level road network. The geometric
similarity between two roads is indicated by the similarity in geometric features that describe the two
candidate roads, such as position, shape, and length [34]. In the same travel direction, the centerlines
of multiple lanes are similar in shape and parallel to each other, with consistent separation between
them. Generally, the widths of the lanes are the same in a given region. Therefore, the centerlines of
the lanes and the centerline of the road are also similar in shape and parallel to each other. Based on
prior studies, we mainly used the consistency of the direction and distance of the centerline of the road
and the centerlines of the lanes to calculate the centerlines of other lanes in the same traffic direction.
The entire lane-level road network generation process involved three steps, as shown in Figure 2: Data
acquisition, lane graph processing, and intersection graph construction. In the following section, we
describe these steps in detail.
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3.2. Lane Graph Processing

The geometric representation of the road network may be divided into inferences of geometric
shape and topographical connection. The lane graph processing proposed in this study has three
steps: (1) Calculating the nearest estimated distance between the lane centerline trajectory and the
road centerline trajectory, (2) calculating the centerline trajectory for other lanes using the simulation
transformation model, and (3) generating the topological connection of the lane graph.

To calculate the closest trajectory to the trajectory distance between the outermost lane centerline
trajectories and the road segment centerline trajectories in the same traffic direction, we first need to
calculate the corresponding closest point on the road segment centerline trajectory segments. The
road widths of the main roads of the city are relatively stable. Therefore, we can find the closest
trajectory to a trajectory point aligned on the road segment centerline trajectories from the outermost
lane centerline trajectories to the corresponding road segment centerline trajectories, which satisfies
the spatial characteristic that the distance between the two lines of the segment should be consistent
within a specific interval. Given the trajectory T = {t1, t2, . . . , tm}, where ti is a sample point, the
calculated closest point to the trajectory distance from ti to another trajectory S = {s1, s2, . . . , sn} is s′ti,
and neardisti is the closest point-to-trajectory distance. The lane width is defined as LaneWid. We use
PhaseHW to represent the number of half lane width metrics, as shown in Figure 3. According to the
principle that road width is relatively stable within a certain range, PhaseHW satisfies Equation (3).
The number of lanes in a road segment can be estimated using Equation (4):
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 PhaseHW = int (para) + 1

para =
neardisti−(1−SimD)×LaneWid

LaneWid
2

. (3)

LaneNum = PhaseHW + 1 . (4)
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To calculate the shape point of each lane center radiation transformation, we used a fixed-point
formula. For the centerline lanes AllLine on the road segment, we used the segment centerline SegMid
in the traffic direction as a boundary. The left-hand side of the road segment centerline is LLane, and
the right-hand side of the road segment centerline is RLane. If the number of lanes is LaneNum, AllLine
conforms to Equation (5). Since SegMid is known, we can calculate LLane and RLane separately:

AllLine =

{ {
LLane, SegMid, RLane

}
, i f LaneNum is odd

{LLane, RLane}, i f LaneNum is even
. (5)

When LLane is equal to 1, the acquisition trajectory by an autonomous vehicle is LLane. If LLane
is more than 1, we need to calculate the remaining lane lines, except for the right-most lane, which
is the acquisition trajectory. In Step 2, given the coordinates ti(xti, yti, ) and sti(xsti, ysti, ), and using
the parallel feature between the lane centerlines, the coordinates of the other lane trajectories in the
vertical direction of the lane are sequentially obtained using the fixed-point formula. The fixed-point
formula is expressed in Equations (6) and (7):

λ j =
2× j

LaneNum− 1− j
, ( j = {1, . . . , PhaseH }), (6)

 x j =
xti +λ j×xsti

1+λ j

y j =
yti+λ j×ysti

1+ λ j

. (7)

We sequentially and symmetrically transformed the trajectories of LLane according to the sequence
perpendicular to the direction of the road segment, which represents the trajectories of RLane.

In the topological lane connection step, we used linear segmentation to organize the data and
connect the generated road network topologically, as conducted in our previous research [29]. We first
established the correspondence relationship between the lane and the road section, found the linear
event point, and then established the topological connection of the lane graph.

3.3. Intersection Graph Construction

Virtual lanes are often used to express the traffic details of intersections in lane-level road maps [37].
Popular functions for describing lanes include the circular arc curve [38], clothoid curve [39], cubic
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Hermite curve [40], and B-spline curve [41]. We first determined the road sections that are included in
the intersection and pass through a point adjacent to the road terminal. For a given traffic direction of a
lane, we connected the centerlines of the lanes according to the rules for turning traffic. For topological
expression, we used circular arc curves to describe the virtual lanes connected to the intersection [37].

4. TSJ Pruning-Based Algorithm for Inferring Lane Geometry

Given an acquisition trajectory T and the road segment centerline trajectory S of the centerline of
the road, when calculating the trajectory of the remaining lane lines, the main operation is identifying
the closest trajectory-to-trajectory point and the distance to the corresponding symmetrical point. The
most critical factor is the need to quickly identify the closest trajectory-to-trajectory point between
trajectories T and S. However, directly calculating the nearest trajectory-to-the trajectory point
for every two trajectories is rather expensive. Therefore, we propose an algorithm that solves the
problem of quickly identifying the nearest trajectory-to-trajectory point and the nearest distance.
Our goal was to design a good filtering measure, find as many similar trajectory pairs as possible,
and reduce the trajectory-to-trajectory distance-calculation candidate points. Figure 4 depicts the
TSJ-pruning-based algorithm.
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4.1. Algorithm Framework

The TSJ-PS method uses a filter-and-validation framework. We did not directly calculate each
closest point to the trajectory distance. Instead of forming a rough candidate set-point pair through
rough minimum distance, we obtained the PhaseHW corresponding to the candidate set-point pair for
points with similar distances in the same interval. Further angle similarity judgment was conducted
for point pairs with similar distances in the same interval, and similar points in the same interval
were pruned. The point pairs in the coarse filtering candidate set were filtered to improve calculation
efficiency. The true closest trajectory to the trajectory distance was then calculated, a new candidate
set-point pair was formed, the new candidate set was subjected to PhaseHW division to check whether a
new similarity point exists in the same interval, and the new candidate point pair was filtered again by
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trajectory similarity. Finally, the remaining result points that were not pruned were further calculated.
The pseudo-code of the algorithm is provided in Algorithm 1.

Algorithm 1 TSJ Pruning Based Framework

Input: lane centerline trajectory: T, road segment centerline trajectory: S, lane width: LaneWid, distance
similarity: SimD, angle similarity: SimAng
Output: all lane centerline trajectory points
1: compute AngT, AngS
2: for each point in T do
3: compute CandSetpd
4: end for
5: compute CandSubSetpd
6: for point in CandSubSetpd and T do
7: compute CandSubSetpp

8: end for
9: repeat filter in CandSubSetpp

10: until CandSubSetpp

11: compute LLane, RLane
12: return all lane centerline trajectory points

As shown in Algorithm 1, the TSJ-PS-based method first obtains the coarse filter candidate set
by coarse filtering distance and then the coarse filter candidate set is filtered by trajectory similarity.
This process is different from the original method presented in Section 2. Steps 2 and 5 filter pairs
of trajectories with high similarity but little influence on the final accuracy, which prevents many
redundant calculations in calculating the point-to-trajectory distance. In steps 9 and 10, the accurate
candidate set-point pairs are updated, and the candidate set is subjected to secondary filtering. The
candidate dataset is further filtered, which reduces the number of candidate datasets as well as the
number of calculations in the affine transformation for the calculated lane centerline trajectories.

4.2. TSJ Pruning Strategy

4.2.1. Candidate Pair Fast Searching

To obtain all the lane centerlines of the road segment, we must first find the trajectory-to-trajectory
distance between the rightmost lane centerline and the road segment centerline. This means that we
must calculate each closest rightmost lane trajectory to the road centerline trajectory distance and the
shortest distance points. We note that computing the minimal distance is expensive. According to the
characteristics of Lemma 1, we first calculated the nearest point to the Euclidean distance between
points in the rightmost lane centerline trajectory and in the road segment centerline trajectory instead
of obtaining the nearest point-to-trajectory distance between them. This closest-point distance must
pass the trajectory segment with the point closest to the trajectory distance.

Considering acquisition trajectory T = {t1, t2, . . . , tm} and road segment centerline trajectory S =

{s1, s2, . . . , sn}, we must find a corresponding S j with the minimum Euclidean distance in S for each ti,
generating a set of nearest point distance candidate pairs CandSetpd =

{
〈t1, si〉,

〈
t2, s j

〉
, . . . , 〈tm, sk〉

}
(i ≤ j ≤ k ≤ n). S j should be sequenced, with no intersections in the spatiotemporal sequence.

Lemma 1. The trajectory segment with the closest point-to-trajectory distance passes through the nearest
Euclidean distance point to the trajectory sample point [35]. As shown in Figure 5, point B2 is on the trajectory
segment B2B3, which passes through the closest point-to-trajectory distance point from A3 to trajectory B.
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4.2.2. TSJ Pruning Based on Different Distances

After the closest distance point pair is found, two adjacent trajectory segments exist. The vertical
points on the two straight lines have to be calculated. Since this calculation is complicated, we needed
to further streamline the calculations. Given the distance similarity threshold, THSimD, if the trajectory
pair satisfies Equation (8), the estimated pair distance is similar. According to Equation (3), we can
obtain PhaseHW. In other words, consecutive segments with the same PhaseHW value are trajectory
segments whose trajectories are similar in distance. Thus, for a given consecutive interval, the distances
of the same PhaseHW in successive intervals are similar in distance.

SimD ≤ THSimD (8)

SimAng ≤ THSimAng (9)

If the trajectory pair satisfies Equations (8) and (9), the estimated pair is similar. The centerlines
of the plurality of roads in the same traffic direction are similar in shape and have a segment-like
relationship with the centerline of the road segment. When describing the shape of the road network,
if the trajectory pairs are similar, we can use the first and last points of the trajectory pair to simplify
the two trajectory pairs, as expressed in Equation (10):

{〈t1u, s1v〉, 〈t2u, s2v〉, . . . , 〈twu, swv〉} = {〈t1u, s1v〉, 〈twu, swv〉}. (10)

According to Lemma 2 below, Dispp ≥ Disps , where Dispp is the point-to-point distance and Disps

is the nearest point-to-segment distance on the segment. From Equation (4), we can obtain PhaseHwpp ≥

PhaseHwps . If the same PhaseHwpp constitutes a continuous interval and the point pairs in the interval
satisfy trajectory similarity, the interval composed of PhaseHwps in the same interval is not necessarily
continuous; however, the interval must satisfy the similarity of the region. Therefore, we can use the
interval of the same value of PhaseHwps for the similarity with which to assess the candidate interval
of pruning. Given the nearest point distance candidate pairs CandSetpd =

{
〈t1, si〉,

〈
t2, s j

〉
, . . . , 〈tm, sk〉

}
of trajectory T and S, we calculate the set of PhaseHwpp by Dispp . In the same PhaseHwpp continuous
interval, we perform similarity pruning and filter out track points smaller than the angle threshold.
The candidate set after pruning is CandSubSetpd{〈t1u, s1v〉, 〈t2u, s2v〉, . . . , 〈twu, swv〉}. The pseudo-code of
the algorithm is provided in Algorithm 2.

Lemma 2. The distance from a point to any point on the trajectory segment is larger than or equal to the closest
point-to-trajectory [35], as shown in Figure 6.
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Algorithm 2 TSJ Pruning Algorithm

Input: lane centerline trajectory: T, road segment centerline trajectory: S, lane width: LaneWid, the set of the
nearest point distance candidate pairs: CandSetpd, angle similarity: SimAng
Output: the candidate set after pruning: CandSubSetpd
1: computer PhaseHwpd
2: for each point in T do
3: if there are more than 2 consecutive same PhaseHwpd then
4: if trajectories are similar then
5: delete points in the same PhaseHwpd interval
6: update CandSetpd
7: end if
8: end if
9: end for
10: return CandSubSetpd

4.2.3. Validation, Refinement, and Calculation

Given CandSubSetpd of the trajectories T and S, for each filtered point in T, we find the trajectory
segment of trajectory S according to the corresponding nearest point distance point and then calculate
the nearest point-to-trajectory point. A new candidate pair CandSetpp is formed. The closest point
CandSetpp is the required point for finding the centerline of the lane.

To reduce the amount of radiation conversion calculations and improve the storage efficiency of
the road network, we further filter the candidate pair set CandSetpp without affecting accuracy. We
calculate the new PhaseHwpp by Dispp using the same rule in Equations (9) and (10) to obtain the
set of the closest point-to-trajectory distance points CandSubSetpp after pruning. The trajectory of the
remaining lane center points is calculated using the formula provided in Section 2 by the filtered
set CandSubSetpp. The pseudo-code of the algorithm is shown in Algorithm 3.
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Algorithm 3 Validation, Refinement, and Calculation

Input: angle similarity: SimAng, the candidate set after pruning: CandSubSetpd, distance similarity: SimD, lane
centerline trajectory: T, road segment centerline trajectory: S
Output: all lane centerline trajectory points
1: computer CandSetpp

2: computer PhaseHwpp

3: for each point in CandSetpp do
4: if there are more than 2 consecutive same PhaseHwpp then
5: if trajectories are similar then
6: delete points in the same PhaseHwpp interval
7: update CandSetpp

8: end if
9: end if
10: end for
11: CandSubSetpp ← CandSetpp

12: compute LLane, RLane
13: return all lane centerline trajectory points

4.3. Time Complexity Analysis of the Algorithm

The time complexity of the TSJ-pruning-based algorithm is the sum of the time complexities in
steps 1–10 of Algorithm 1 in Section 4.1. Among them, the time complexity of the fast search candidate
pairs in step 2 is m×O(logn) from Section 4.2.1, and the TSJ pruning is based on different distances
in step 5 O(m) + O(k) from Section 4.2.2; that of the validation, refinement, and calculation time
complexity in steps 6–10 is O

(
k2

)
+O( j) + O( j) from Section 4.2.3. Therefore, the total time complexity

is O(m) + O(n) + m ×O(logn) + O(k) + O
(
k 2

)
+ O( j), where m represents the number of sample

points of trajectory T, n is the number of sample points of trajectory S, k is the number of CandSubSetpd,
and j is the number of CandSubSetpp.

5. Experiments

5.1. Data and Experimental Setting

The experimental data were collected by an autonomous vehicle equipped with positioning
equipment to collect lane-level road network data. The configuration of the experimental car, acquisition
process, and map-digitization process were consistent with those of a previous study [29]. Figure 7
depicts the experimental car. The positioning system of the vehicle was a NovAtel SPAN-FSAS inertial
integrated navigation system (NovAtel Inc., Calgary, Canada). Its positioning accuracy can reach 2 cm.
The system provides a root mean square (RMS) of roll of 0.015◦, an RMS of the pitch angle of 0.015◦, an
RMS of the heading of 0.040◦, and was designed with 200 Hz frequency for raw data acquisition. In
this study, the data update frequency of the NovAtel SPAN-FSAS was 100 Hz.

The programming language chosen for the experiment was Python 3, and the computer used for
the experiment was a 3.60 GHz Intel Core CPU (Central Processing Unit) i7-7700 (Intel, California,
USA) with 8.00 GB of RAM (Random Access Memory) running Windows 7 (Microsoft Corporation,
Redmond, WA, USA).
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5.2. Generation of Lane-Level Road Network

5.2.1. Experimental Data Acquisition

For the experiment, we selected an actual road section in Shanghai as the testing area. The
survey area covered 11.6 km and contained 36 road sections. Prior to the start of the experiment,
we used the experimental vehicle and mobile measurement technology to create a high-precision
lane-level map [27]. Since the purpose of this study was to demonstrate the proposed algorithm, we
were not concerned with how to implement high-precision map production algorithms using mobile
measurement techniques. In the survey area, the road network in the easterly direction had a maximum
error of 0.134 m and a minimum error of 0.003 m. In the northerly direction, the road network had a
maximum error of 0.121 m and a minimum error of 0.003 m. The mean square error (MSE) in the plane
was ±0.043 m. We used the centerline data of the lanes in the high-precision map as the true values to
which we compared the experimental data.

To conduct the experiments, we needed to obtain two different types of data: The centerline
trajectory data of the road segment and the lane centerline trajectory data of the lanes. In addition, the
accuracy of the collected trajectories in the experiment played a decisive role in the accuracy of the
generated lane centerline trajectories. Therefore, we needed to evaluate the accuracy of the trajectory.

The first type of experimental data to be acquired and assessed for accuracy was the centerline
trajectory data of the road segment. We used the road network of the high-precision map as the
first type of experimental data. The experimental test area contained 2665 road segment centerline
trajectories. Since the available experimental methods could not generate data with higher precision
than the map, it was not possible to evaluate the accuracy of the centerline trajectory of the road
sections. We used the accuracy of the map as a substitute for the accuracy of the road network. The
accuracy of the centerline of the road network has a MSE of ±0.043 m. Figure 8 shows all road segment
centerline trajectories and the enlarged map.
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The second type of experimental data to be acquired was the lane centerline data. We used the
unmanned vehicle to collect the centerline data of the rightmost lane. A total of 939 GPS points were
collected, as shown in Figure 9a. The data were acquired according to the Chinese map standard. The
accuracy of the input data in the algorithm can affect the final accuracy of the road network. Therefore,
we calculated accuracy by comparing the centerline data of the lanes in the high-precision map with
the trajectory data of the unmanned vehicle. To evaluate the accuracy of the collection point instead of
the rightmost road centerline, we calculated the mean error (Mean), standard deviation error (Std),
root mean square error (RMSE), and maximum error (Max) between the collected trajectories and
the true rightmost lane centerline. We randomly selected six trajectory pairs for the experiment. The
comparison results are shown in Figure 9b.
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Figure 9. Experimental area and raw data: (a) GPS collection raw points; (b) accuracy assessment of
original GPS trajectories. Note: Mean error (Mean), standard deviation error (Std), root mean square
error (RMSE), and maximum error (Max).

5.2.2. Visualization of Road Network Graphics

We used the TSJ-pruning-based algorithm method proposed in this paper to calculate the data for
all sections in the area and to generate the road network. The widths of the given lanes were 2 and
4 m, the similarity of distance was 0.85, and the similarity of angle was 0.97. Figure 10a shows the
lane-level road network generation results. Figure 10b provides a detailed view of one of the road
segments after enlargement, and Figure 10c depicts the enlarged intersection. To maintain the integrity
of the road network, we manually connected the traffic direction line at the intersection.
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5.3. Performance of the TSJ-PS-Based Algorithm

5.3.1. Adopted Comparison Algorithm

To test our TSJ-PS-based extraction algorithm, we compared our method with two other methods.
The first comparative experimental algorithm did not use pruning, calculated the closest trajectory

and trajectory distance points, and then generated the lane centerline trajectory.
The second comparative experimental algorithm used a grid-based method [9]. This method

uses an orthographic projection but is based on a grid structure. Specifically, grid signatures were
generated for the GPS collection trajectory and lane centerline trajectory, and the nearest road segment
centerline trajectory grid points within the distance threshold were found and formed the candidate set.
Similarity filtering on the candidate set was then performed and the closest point-to-trajectory distance
point based on the point of the candidate set after pruning was calculated. Finally, we calculated the
lane centerline coordinates using the method presented in Section 2. The pseudo-code of the algorithm
is provided in Algorithm 4.

Algorithm 4 grid-based Algorithm

Input: lane centerline trajectory: T, road segment centerline trajectory: S, lane width: LaneWid
Output: all lane centerline trajectory points
1: computer GridStep
2: computer GridT, GridS
3: computer AngT, AngS
4: computer BoundaryCoorS
5: for each point in GridT do
6: compute NearestPoint
7: compute filterindex
8: end for
9: computer vertical point in filterindex
10: computer all lane centerline trajectory points
11: return all lane centerline trajectory points
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5.3.2. Accuracy Evaluation of Road Network Graphics

To further evaluate the accuracy of the lanes in a single section of road, the error-detailed views of
one segment analysis (Figure 11a–c) created by the three methods were generated separately, and error
analysis tables were generated (Figure 11d–f). In the experiment, we set the width of the lane to 4 m.
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Using the three methods, we conducted experiments on the entire area and evaluated the accuracy
of the road networks that were generated. To achieve the best experimental results, using the method
proposed in this paper, we set the widths of the lanes to 2 and 4 m, the distance similarity to 0.85,
and the angle similarity to 0.97. In the grid-based method, the widths of the lane were 2.2 and 4 m,
the distance similarity was 0.86, and the angle similarity was 0.97. We then calculated the Mean, Std,
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RMSE, and Max errors between the lane centerline coordinates generated by the three experiments
and the true value coordinates. The accuracy evaluation results for the entire experimental area are
shown in Table 1.

Table 1. Errors between all true road segment lane trajectories in the experimental area and the lane
trajectories generated by the unimproved, grid-based, and proposed algorithms.

Method Mean (m) Std (m) RMSE (m) Max (m)

Unimproved 0.37 0.43 0.57 1.89
Grid-based 0.46 0.51 0.63 1.99
Proposed 0.51 0.52 0.69 1.95

5.3.3. Algorithm Efficiency

To observe the computational efficiency of the algorithm for different data volumes and the
stability of the algorithm, we selected three different road numbers as our experimental data. The
road segment numbers of the three experimental datasets were 2, 18, and 36, which were tested using
the unimproved, grid-based, and proposed methods. To obtain the best experimental results, in the
experiment using the method proposed in this paper, the width of the lane was 2 m, the distance
similarity was 0.85, and the angle similarity was 0.97. For the grid-based method, the width of the
lane was 2.2 m, the distance similarity was 0.86, and the angle similarity was 0.97. Figure 12a shows
the elapsed time for the three algorithms under different data quantities, and Figure 12b shows the
number of collection trajectories and the number of road centerline trajectories with different road
segment numbers.
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road centerline trajectories with different road segment numbers.

5.3.4. Effect of Similarity of Angles (SimAng)

To test the effect of the similarity of angles, we chose the method proposed in this paper and
the grid-based method, and used three angle similarities to test the entire experimental dataset for
each method. The size of the candidate set, the elapsed time, and the correct rate of the experimental
results were recorded. In these experiments, for the experiment using the proposed method, the width
of the lane was 2 m and the distance similarity was 0.85. In the experiment using the grid-based
method, the width of the lane was 2.2 m and the distance similarity was 0.85. Figure 13 depicts all the
experimental results.
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6. Discussion

The experimental results presented in Section 5.2 verify the effectiveness of the algorithm and show
that the proposed method generated a lane-level road network based on collecting point trajectories
and road network trajectories in an existing map.

The results in Section 5.2.1 show that the maximum accuracy of the acquisition point instead of the
rightmost lane was less than 0.4 m, indicating that the road acquisition process accurately calculated
the lane trajectory. The overall accuracies of the three algorithms were relatively close and consistent
with the accuracy requirements of lane-level road networks.

However, the accuracy of the unimproved algorithm was higher because the higher the density of
the sample points, the higher the accuracy of the road network. In addition, the unimproved algorithm
was more accurate when the lane shape change was relatively small because the fitting accuracy of a
straight line is higher than that of a curve. When the number of lanes increased but the lane width was
almost constant, the three algorithms could extract the correct number of lanes due to the effectiveness
of the algorithm and because the data acquisition process provided good raw acquisition trajectories.

The results in Section 5.3.3 show that the proposed method is more efficient than the unimproved
and grid-based methods, thus highlighting the effectiveness of the trajectory similarity pruning strategy.
The grid-based method also performs pruning, but it consumes more computing resources, which
decreases the efficiency of the entire algorithm. With the expansion of the data scale, the three methods
generally showed a linear upward trend. The efficiencies of the three methods were relatively stable
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when using small-scale data. We can speculate that for road data, the larger the data size, the more
efficient the pruning efficiency over time. We can infer that the algorithm is more efficient at changing
the shape of the lane when the lane shape change is relatively small because the algorithm has a better
effect on pruning when the road condition changes are relatively small.

The results in Section 5.3.4 indicate that the larger the SimAng value, the greater the similarity
between the line segments and the less obvious the pruning effect. The smaller the SimAng value, the
more dissimilar candidate points are selected and, thus, the higher the correction rate. The proposed
and grid-based algorithms showed little differences in pruning and could basically reduce the number
of lane trajectories.

7. Conclusions

This study proposed a method for using acquisition trajectories and road centerline shape points
to generate a lane-level road network. The main contribution of this study is that we used the existing
acquisition platform of an autonomous vehicle as one data source and professionally surveyed road
centerline data of an existing road-level network as another source. This approach effectively uses
unmanned vehicle data and provides a new method for map manufacturers to produce lane-level
road networks only using position data. We also proposed a TSJ-PS algorithm that can quickly and
effectively generate the lane centerline trajectories of the lane-level road network, providing a solution
for generating and updating map data for real-time online updates. This study demonstrated the
effectiveness of the proposed method using experimental data for a real road.

Currently, autonomous vehicles are developing rapidly, and the combination of car networking
technology and autonomous driving technology is expected to realize real-time intercommunication of
information in entire regions. In the environment of the Internet of Autonomous Vehicles, autonomous
vehicles with communication capabilities are important sources for road network data. This study
has helped to solve the problem of lane-level road network generation using a single autonomous
car as an intelligent crowd-sensing agent. This study provides a foundation for future research and
development of high-precision road networks based on crowd sensing in the Internet of Vehicles.
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