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Abstract: The accurate quantification of biomass helps to understand forest productivity and carbon
cycling dynamics. Research on uncertainty during pretreatment is still lacking despite it being one
of the major sources of uncertainty and an essential step in biomass estimation. In this study, we
investigated pretreatment uncertainty and conducted a comparative study on the uncertainty of three
optical imagery preprocessing stages (radiometric calibration, atmospheric and terrain correction)
in biomass estimation. A combination of statistical models (random forest) and multisource data
(Landsat enhanced thematic mapper plus (ETM+), Landsat operational land imager (OLI), national
forest inventory (NFI)) was used to estimate forest biomass. Particularly, mean absolute error (MAE)
and relative error (RE) were used to assess and quantify the uncertainty of each pretreatment, while
the coefficient of determination (R2) was employed to evaluate the accuracy of the model. The results
obtained show that random forest (RF) and 10-fold cross validation algorithms provided reliable
accuracy for biomass estimation to better understand the uncertainty in pretreatments. In this study,
there was a considerable uncertainty in biomass estimation using original OLI and ETM+ images
from. Uncertainty was lower after data processing, emphasizing the importance of pretreatments for
improving accuracy in biomass estimation. Further, the effects of three pretreatments on uncertainty
of biomass estimation were objectively quantified. In this study (results of test sample), a 33.70%
uncertainty was found in biomass estimation using original images from the OLI, and a 34.28%
uncertainty in ETM+. Radiometric calibration slightly increased the uncertainty of biomass estimation
(OLI increased by 1.38%, ETM+ increased by 2.08%). Moreover, atmospheric correction (5.56%
for OLI, 4.41% for ETM+) and terrain correction (1.00% for OLI, 1.67% for ETM+) significantly
reduced uncertainty for OLI and ETM+, respectively. This is an important development in the
field of improving the accuracy of biomass estimation by remote sensing. Notably, the three
pretreatments presented the same trend in uncertainty during biomass estimation using OLI and
ETM+. This may exhibit the same effects in other optical images. This article aims to quantify
uncertainty in pretreatment and to analyze the resultant effects to provide a theoretical basis for
improving the accuracy of biomass estimation.
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1. Introduction

The importance of forest ecosystem services function has been universally acknowledged,
especially as it plays an important role in maintaining global carbon balance. The conversion of forestry
may increase carbon emissions, thereby influencing global climate and changes in other environmental
factors [1–5]. Forests account for about 90% of global terrestrial vegetation biomass. For this reason,
biomass estimation is considered a key measure of ecosystem productivity and an indicator of the
carbon sequestration capacity in a forest. As a result, it is used for quantifying the role of forests in the
carbon cycle, energy production, and carbon stock estimation during climate change modelling [6–12].

In general, forest biomass is divided into aboveground biomass (AGB) and below-ground biomass
(BGB) [13]. Studies estimating biomass have traditionally focused on AGB segment due to the difficulty
of collecting field survey data for BGB [14]. In this study, the term forest biomass is used to denote
forest AGB [13]. The estimation of AGB helps to study plant productivity, carbon cycles, nutrient
allocation, and fuel accumulation in terrestrial ecosystems [15–18]. Currently, various techniques have
been developed to estimate forest biomass. Among them, on-site measurement is the most accurate
method, and hence it is preferred [19,20]. However, it is not feasible because it is labor intensive
and expensive [21–23]. To circumvent the aforementioned problems while ensuring the accurate and
affordable measurement of forest biomass on a large spatial scale, remote sensing and sample survey
data approaches have been proposed [24–26].

The forest is a material space composition, and thus the estimation of its biomass through remote
sensing poses a spatial problem. For instance, spatial estimation produces analog values of the
forest biomass estimation simulation system, with an erroneous true value. It can only be close to
the true value under certain conditions. Uncertainty, which is a concept of inaccuracy, fuzziness
and ambiguity [27], represents the distribution of differences between a true value and a range of
estimates, and is normally given at a particular confidence level [28]. In general, forest biomass
estimates acquired through remote sensing will have different sources of errors emanating from
estimation models, ground survey data, and pre-processing [29–31]. Further, multitemporal optical
wavelength satellite data acquired under different acquisition conditions and using different sensors
may have uncertainty in biomass estimation due to a variety of factors, including: (1) atmospheric and
cloud contamination [32,33], (2) changes in geometry of the sun-surface sensors [34,35], (3) spectral
bandpass and spatial resolution differences of the sensors [36,37], (4) sensor degradation and calibration
changes [11], and (5) reflectivity inconsistency and data processing issues [38,39]. Accurate knowledge
of uncertainties resulting from the aforementioned sources is therefore essential for accurate biomass
estimation as it improves the quality of data [40]. Remote sensing has numerous advantages, although
its accuracy in biomass estimation deserves further improvement. In particular, more robust and
comprehensive estimates of uncertainty in biomass estimation are needed [28]. Previous research on the
uncertainties of forest biomass has reported success in the following: (1) estimation models [41,42], (2)
ground survey data [43], (3) differences in satellite sensors [44], (4) error transmission [45], (5) differences
in spatial resolution [36], and (6) sampling [46,47].

Landsat sensors are frequently used to predict forest biomass and carbon storage, mainly because
data from the platform are freely downloadable with a long history and moderate spatial resolution [39].
For instance, Cyrus et al. [48] used Landsat TM and Enhanced Thematic Mapper-Plus (ETM+) to
estimate biomass in southern Africa while Zheng et al. [49] produced age and AGB maps using
both Landsat ETM+ and field-measured stand level data. Similarly, National Aeronautics and Space
Administration (NASA) successfully launched the operational land imager (OLI) and thermal infrared
sensor (TIRS) in 2013, continuing Landsat’s legacy. In addition, Chenge et al. [50] used Landsat 8
OLI data to map tree AGB and carbon stock in Omo Forest Reserve, Nigeria. By linking Landsat 8
and forest inventory data, Belachew et al. [51] successfully (1) developed linear mixed effects models
for total living biomass (TLB) estimation as a function of spectral variables, (2) developed a 30-m
resolution map of the total living carbon (TLC), and (3) estimated the total TLB stock of the study area.
A series of Landsat satellites are employed to estimate biomass in large areas using remote sensing.
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For this reason, users of the technology have developed a keen interest in its accuracy for biomass
estimation. Consequently, studies have reported uncertainties from different sources such as surface
net radiation [52], regression models [53,54], atmospheric corrections [55], and the absolute radiometric
calibration [56] of Landsat. However, knowledge on uncertainties emanating from pretreatment
is lacking. The pretreatment of Landsat is mostly divided into geometric correction, radiometric
calibration, as well as atmospheric and terrain corrections [57]. Markham et al. [58] reported that
radiance calibration was performed with an uncertainty of about 3% while the reflectance calibration
had an uncertainty of about 2%. Biomass estimation uses spectral information of the satellite, and the
uncertainty of the pre-processed spectral information from the satellite is used to determine the
uncertainty during biomass estimation. However, quantitative research on this uncertainty during
pretreatment is limited. Varying pretreatments often result in different datasets and this is one major
source of uncertainty during biomass estimation. The accurate quantification of the uncertainty of
preprocessing is helpful as it can improve the process during remote sensing using Landsat. Apart from
selecting a suitable pretreatment, it is also critical to use appropriate methods to quantify uncertainty
during biomass estimation. For instance, Fu [30] reported the use of Monte Carlo simulation in a
traditional model analysis that was conducted to estimate AGB on a regional scale and to assess the
corresponding uncertainties contributed separately by sampling and model errors. Similarly, Zhang et
al. [59] evaluated the uncertainty of five K-factor prediction models using statistics such as MAE, mean
relative error (MRE), root mean squared error (RMSE) and accuracy factor (Af) in seven typical soils in
subtropical China. Furthermore, Li [60] used RE to evaluate the uncertainties of simulating crop growth
and yield estimates due to different assimilation strategies and multi-source errors. The confidence of
RE and MAE have long been recognized as an important index for evaluating uncertainty.

Exploring the influence of pretreatment on uncertainties associated with using Landsat images to
estimate biomass will help to generate a practical guide for researchers for accurate biomass estimation.

The remaining part of this research proceeds as follows: details of materials, data and methods
are described in Section 2. In Section 3, the uncertainty statistics of each pretreatment stage and the R2

of the model are depicted. We discuss the mechanisms behind some of the phenomena in this work
and summarize the conclusions in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Study Area

Kaihua county (28◦54′–29◦30′ N, 118◦01′–118◦37′ E) is located in Zhejiang province, China. It is
a typical relief terrain of a mountainous area, mainly subtropical evergreen species and including a
forest area coverage of 80.54%. It is known as the “Amazon rainforest of China”. The terrain of Kaihua
county is affected by geological tectonic movement, and the terrain is uplifted and obviously cut. Most
of the valleys are deep and v-shaped, and the narrow slopes are steep, which can better highlight the
terrain correction effect.

2.2. Landsat Data

Landsat 8 OLI data and Landsat 7 ETM+ data (path 120, row 40; Table 1) processed to level L1T were
acquired from the United States Geological Survey (USGS; http://earthexplorer.usgs.gov/). The spectral
bands used in this study included blue (0.45–0.51 µm), green (0.53–0.59 µm), red (0.64–0.67 µm), near
infrared (NIR; 0.85–0.88 µm), shortwave infrared 1 (SWIR 1; 1.57–1.65 µm), and SWIR 2 (2.11–2.29 µm).
There is some overlapping time period between ETM+ and OLI. Using different sensors of Landsat is
better to understand the influence of pretreatment on uncertainties of biomass estimation using Landsat.

http://earthexplorer.usgs.gov/
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Table 1. Remote sensing data used in this study. MS—multispectral.

Remote Sensing Data Date Pixel Size

Landsat 8 OLI 14 October 2013 MS: 30 m
Landsat 7 ETM+ 22 October 2013 MS: 30 m

2.3. Field Data

National forest resource assessment and monitoring are commonly known as the national forest
inventory (NFI). In many countries, NFI has become an important part of the national information
infrastructure [61–64]. In China, the NFI was started in 1973, and has been widely recognized as a
powerful and appropriate dataset for calculating forest biomass on a large scale [65–69]. The NFI has
been conducted nearly every five years since the late 1970s and the eighth NFI was conducted for the
period 2009–2013 [70]. All provinces are now using a systematic sampling design and permanent field
plots. The permanent plots in Zhejiang province were established through the 4 × 6 km grid, from
0.08 ha in each plot size (28.28 × 28.28 m). This study used the eighth NFI (2014 NFI). A total of 96
sample plots were evenly distributed in the study area, and 35 plots without strip were distributed.
We assumed that the data from sample plots was the true value of biomass (range of biomass from 0 to
284.22 t/ha).

We noted that ETM+ was damaged by scan lines corrector (SLC) failure on 31 May 2003. The data
strip was lost, and the image was seriously striped. To control variables as much as possible and to
reduce interference and influence factors, we selected 35 sample plots without strip as sample data
(Figure 1). Consequently, the sample plot location was basically consistent, compared to the actual
data after geometric correction.
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2.4. Experimental Scheme

Based on the Landsat (OLI, ETM), we carried out pre-treatment uncertainty research on biomass
estimation, then evaluated and quantified effects of different pretreatments on the uncertainty of biomass
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estimation using Landsat images. We selected two scenes images, OLI and ETM+, as the original
remote sensing data, and used the same geometric correction, radiometric calibration, atmospheric
correction (FLAASH), and terrain correction (C-correction) preprocessing for the images. After a stage
of pre-processing, the original image data was used to estimate biomass and calculate RE, MAE, and
R2 of the estimated biomass and biomass true values. The difference in RE between each stage and the
previous pretreatment stage is the uncertainty of biomass estimation.

2.5. Random Forest Modeling

RF is a machine-learning approach based on decision trees that has been shown to provide high
prediction accuracy for biomass estimation [71–76]. RF avoids the overfitting problem in decision tree
learning and has a high tolerance to noise and outliers. We used the RF machine learning algorithm
as implemented in the R package randomForest [77]. In this study, 2000 trees (ntree) were used in
the RF modeling. For the parameter mtry (i.e., the number of variables to be tested at each node),
the default value of the square root of the total number of predictor variables was used [71]. The
parameter node-size was set to the value of 5.

2.6. Remote Sensing Predictor Variables

In this paper, by referring to the literature, 5 kinds of vegetation indexes were selected for biomass
estimation (Table 2). All the vegetation indexes were used to estimate AGB. We built a regression
model based on the dataset of NFI and the vegetation indices. The vegetation indices were used as the
independent variables for regression model.

Table 2. Summary of the spectra predictor variables included in predictive modeling of AGB.

Predictor Variables Formula

Normalized Difference Vegetation Index (NDVI) [78] (NIR−Red)/(NIR + Red)
Generalized Difference Vegetation Index (GNDVI) [79] (NIR−Green)/(NIR + Green)

Soil-Adjusted Vegetation Index (SAVI) [80] (1 + 0.5) × NIR − Red
NIR + Red + 0.5

Modified Soil-Adjusted Vegetation Index (MSAVI) [81] 2 × NIR + 1−
√
(2 × NIR + 1)2

− 8 × (NIR − Red)
2

Enhanced vegetation index (EVI) [82] 2.5 × NIR − Red
NIR + 6 × Red − 7.5 × Blue + 1

NIR, red, blue and green are the reflectance of bands. NIR is near infra-red band, red is the red band, green is the
green band, and blue is the blue band.

2.7. Accuracy Assessment and Evaluation Indicators

The predictive ability of all models was assessed using 10-fold cross validation (10% of reference
data). That is, in each round of biomass estimation, the data (data of sample plot and remote sensing
variables) was divided into 10 parts. Select one from them as the testing samples, and the rest will be
regarded as training samples. Then, 10 trainings shall be conducted in sequence. In each round, ten
results of each evaluation index were obtained, and the average value was taken as the final result.
The cross-validation approach is based on the entire reference dataset, rather than using separate
training and validation data subsets, which is a useful approach when there is limited reference
data [83]. To ensure the authenticity and reliability of the data, the study was cycled for 100 rounds.
Three measures of biomass estimation accuracy were calculated from the 10-fold cross validation,
including R2, MAE, and RE.

2.8. Variance

In this study, we sought to evaluate the uncertainties of biomass estimation at pretreatment using
Landsat 8 OLI and Landsat 7 ETM+ images based on the two indices (RE and MAE).

Landsat remote sensing image preprocessing is divided into four stages: geometric correction,
radiation calibration, atmospheric correction, and terrain correction. In this study, the OLI and ETM+
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original images and the results of radiation calibration, atmospheric correction, and terrain correction
were used to estimate biomass to better analyze the uncertainty of biomass estimation. Further, the
RE, MAE, and model precision (R2) of the estimated biomass and the actual biomass of the sample
land at each stage were calculated. The relative error of each stage is the uncertainty of remote sensing
biomass estimation in this stage. The uncertainty caused by different pretreatments can be measured
by calculating the difference between the relative error of the previous stage pretreatment results.
Results were subjected to statistical analysis.

R2 =

∑n
i=1 (yi − yi)

2(ŷi − ŷi)
2∑n

i=1 (yi − yi)
2 ∑n

i=1 (ŷi − ŷi)
2 (1)

MAE =

∑n
i=1

∣∣∣ŷi − yi

∣∣∣
n

(2)

RE =

∑n
i=1

∣∣∣ŷi − yi

∣∣∣
n× yi

(3)

where yi is plot biomass value, ŷi is the predicted plot biomass value, yi is the average of yi, ŷi is the
average of ŷi, and n is the number of samples.

3. Results

3.1. Biomass Estimation from Raw Data

The R2 value from biomass estimation results for ETM+ and OLI original images is described
by a fold line diagram Figure 2a,b. The results show that: (a) the original biomass estimated using
OLI images had a higher overall accuracy than ETM+ (OLI: 0.86~0.88, ETM+: 0.84~0.85); (b) accuracy
of the two models showed a sharp fluctuation following an even distribution of the high, medium,
and low values (OLI: 0.0001~1, ETM+: 0.000007~1). The accuracy of biomass estimation using remote
sensing models based on OLI and ETM+ raw image data was unstable, as 23% and 24% were less
than mean 1 standard deviation (SD), respectively (Table 3). The MAE of biomass estimation for
ETM+ and OLI original images is described using a fold line presented in Figure 2c,d. The results of
ETM+ and OLI were approximate. (c) In OLI, based on a training sample of 24.48~25.03 t/ha, a mean
value of 24.73 t/ha, and biomass estimation uncertainty of about 21.05% were recorded. In ETM+, a
training sample of 25.19~25.74 t/ha resulted in an average value of 25.47t/ha with an uncertainty of
about 23.48%. (d) The MAE of both OLI and ETM+ showed a large fluctuation with a relatively large
number of outliers. In OLI, a mean value of 47.1 t/ha with an uncertainty of about 33.70%, results had
15 rounds with values of MAE greater than mean 1 standard deviation. In ETM+, a mean value of 50.3
t/ha with an uncertainty of about 34.28%, results had 14 rounds with values of MAE greater than mean
1 standard deviation. Compared with Figure 2b, we found that the high MAE value corresponded to
the low R2 value of the test sample. The MAE showed a negative correlation with R2 and was highly
disturbed by R2 change. In summary, biomass estimation for OLI and ETM+ raw data was not entirely
accurate, with results showing high uncertainty. MAE showed a negative correlation to R2.



ISPRS Int. J. Geo-Inf. 2020, 9, 48 7 of 17
ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 7 of 17 

 

 
Figure 2. The R2 and MAE of ETM+ and OLI biomass estimation results for the original image. (a,c) 
Results of training samples; (b,d) Results of test samples. 

Table 3. Summary of the R2 and MAE of test samples included in each stage. 

Class Value 
Original Image Radiometric Calibration Atmospheric Correction Terrain Correction 
OLI ETM+ OLI ETM+ OLI ETM+ OLI ETM+ 

R2 
Mean 0.571  0.499  0.565  0.498  0.670  0.561  0.725  0.681  

SD 0.332  0.364  0.329  0.343  0.304  0.337  0.270  0.323  
< SD 23 24 22 23 18 21 18 21 

MAE 

Mean 47.1  50.3  49.4  54.2  44.0  45.3  42.8  43.3  
SD 24.3  25.3  24.2  24.9  21.1  24.6  21.2  20.7  

> SD 15 14 14 14 14 12 14 13 
< SD 7 15 11 16 12 20 17 22 

SD is standard deviation, < SD indicate the number of rounds with values of R2/MAE less than mean 
1 standard deviation, > SD indicate the number of rounds with values of MAE greater than mean 1 
standard deviation. 

3.2. Biomass Estimation from Radiometric Calibration. 

R2 results in biomass estimation following radiometric calibration of the ETM+ and OLI images 
are presented in Figure 3a,b. The results show that: (a) R2 from both ETM+ and OLI had a slight 
downward trend with a high fold line. Particularly, OLI decreased to between 0.84 and 0.85 while 
that in ETM+ decreased to 0.83 to 0.84. (b) In addition, the accuracy of the two models showed a 
marked fluctuation (OLI: 0.0001~1, ETM+: 0.00004~1). Despite this instability in model accuracy, the 
mean value showed a small increase, and comparison with the original images showed a lower 
frequency and an improved trend. Details can be found in Table 3, the SD did decrease. These 
findings indicate that radiometric calibration slightly reduced the accuracy of the OLI and ETM+ 
biomass estimation models but still maintained high accuracy.  

A further analysis of the MAE of biomass estimation following radiometric calibration yielded 
similar results between ETM+ and OLI (Figure 3c,d). A comparison with the original image results 
showed a slight but not significant MAE uncertainty. In OLI (24.82~25.40 t/ha), a mean value of 25.07 
t/ha and a biomass estimation uncertainty of about 21.67% under radiometric calibration were 
recorded accounting for a 0.62% increase. For ETM+ (25.00~25.67 t/ha) the mean MAE value was 25.41 
t/ha with an uncertainty of about 24.42%. This indicated a 0.94% increase in large fluctuations as well 
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Results of training samples; (b,d) Results of test samples.

Table 3. Summary of the R2 and MAE of test samples included in each stage.

Class Value
Original Image Radiometric

Calibration
Atmospheric

Correction Terrain Correction

OLI ETM+ OLI ETM+ OLI ETM+ OLI ETM+

R2
Mean 0.571 0.499 0.565 0.498 0.670 0.561 0.725 0.681

SD 0.332 0.364 0.329 0.343 0.304 0.337 0.270 0.323
<SD 23 24 22 23 18 21 18 21

MAE

Mean 47.1 50.3 49.4 54.2 44.0 45.3 42.8 43.3
SD 24.3 25.3 24.2 24.9 21.1 24.6 21.2 20.7

>SD 15 14 14 14 14 12 14 13
<SD 7 15 11 16 12 20 17 22

SD is standard deviation, <SD indicate the number of rounds with values of R2/MAE less than mean 1 standard
deviation, >SD indicate the number of rounds with values of MAE greater than mean 1 standard deviation.

3.2. Biomass Estimation from Radiometric Calibration

R2 results in biomass estimation following radiometric calibration of the ETM+ and OLI images
are presented in Figure 3a,b. The results show that: (a) R2 from both ETM+ and OLI had a slight
downward trend with a high fold line. Particularly, OLI decreased to between 0.84 and 0.85 while that
in ETM+ decreased to 0.83 to 0.84. (b) In addition, the accuracy of the two models showed a marked
fluctuation (OLI: 0.0001~1, ETM+: 0.00004~1). Despite this instability in model accuracy, the mean
value showed a small increase, and comparison with the original images showed a lower frequency
and an improved trend. Details can be found in Table 3, the SD did decrease. These findings indicate
that radiometric calibration slightly reduced the accuracy of the OLI and ETM+ biomass estimation
models but still maintained high accuracy.
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A further analysis of the MAE of biomass estimation following radiometric calibration yielded
similar results between ETM+ and OLI (Figure 3c,d). A comparison with the original image results
showed a slight but not significant MAE uncertainty. In OLI (24.82~25.40 t/ha), a mean value of
25.07 t/ha and a biomass estimation uncertainty of about 21.67% under radiometric calibration were
recorded accounting for a 0.62% increase. For ETM+ (25.00~25.67 t/ha) the mean MAE value was
25.41 t/ha with an uncertainty of about 24.42%. This indicated a 0.94% increase in large fluctuations
as well as abnormal values, recorded between them as well as a negative correlation to R2. When
compared to results from the original images, the frequency of abnormal values decreased and the
number of rounds with values of MAE less than mean 1 SD was increased. In addition, the abnormal
value of test samples decreased while its stability increased. For OLI, the mean MAE value was
49.4 t/ha with an uncertainty of about 35.12% being recorded, accounting for a 1.38% increase. In
ETM+, the uncertainty ratio was 36.36%, accounting for a 2.08% increase. These observations indicate
that, after radiometric calibration, the MAE and uncertainty of biomass estimation show a slight but
not significant increase.

3.3. Biomass Estimation after Using Atmospheric Correction

Analysis of R2 in biomass estimation following atmospheric correction showed a slight increase
in R2 as well as improved model accuracy in both ETM+ and OLI (Figure 4a,b). (a) Models recorded
a significant increase in their range with 0.87~0.88 and 0.85~0.86 for OLI and ETM+, respectively.
When compared with results from biomass estimation following radiometric calibration, atmospheric
correction effectively improved the accuracy of the model. (b) We also observed a reduction in two
ranges (OLI: 0.024~1; ETM+: 0.00029~1). In addition, the low-value frequency reduced, with a
moderately high distribution 0.4~1. For both OLI and ETM+, the mean value was increased, SD
and “> SD” were decreased (Table 3). In the range of 0.6–1.0, the number of rounds was increased
significantly. Generally, this indicated that atmospheric correction effectively improved the accuracy of
the model compared to radiometric calibration.
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The MAE of biomass estimation after using atmospheric correction showed a downward trend
with a reduction in uncertainty (Figure 4c,d). The results show that: (c) A range reduction was observed
in OLI at 20.20~20.62 t/ha with a mean value of 20.40 t/ha. The uncertainty of biomass estimation after
using atmospheric correction was about 17.89%, which was 3.78% lower. In ETM+, the range decreased
to 21.45~21.84 t/ha with a mean value of 21.64 t/ha. Its uncertainty was about 20.70% representing
a significant decrease of 3.72%. (d) The uncertainty of OLI test samples was about 29.56%, about
5.56% lower. In ETM+, the uncertainty was about 31.95%, about 4.41% lower. The abnormal values
decreased. Compared with radiometric calibration results, the number of MAE (less than 40) increased
significantly. The mean values were 44.0 t/ha and 45.3 t/ha from OLI and ETM+, respectively, reduced
significantly. Further, the number of rounds with values of MAE less than mean 1 SD was increased,
that is, the lower the MAE, the higher the accuracy. These findings indicate that atmospheric correction
can effectively reduce the uncertainty of OLI and ETM+.

3.4. Biomass Estimation Following Terrain Correction

R2 values of biomass estimation, after terrain correction, are represented by a line chart (Figure 5a,b).
Results show that: (a) After using terrain correction, the change in accuracy tends to be stable, which is
basically consistent with the atmospheric correction results of 0.87~0.88 and 0.85~0.86 for OLI and
ETM+, respectively; (b) the frequency of low values was significantly reduced, while that of high
values (greater than 0.6) increased significantly. The mean value was also increased and the number of
rounds with values of R2 less than mean 1 SD was decreased (Table 3), signifying an increasing trend
of accuracy. In summary, terrain correction effectively improved the accuracy of model.



ISPRS Int. J. Geo-Inf. 2020, 9, 48 10 of 17
ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 10 of 17 

 

 
Figure 5. The R2 and MAE of ETM+ and OLI biomass estimation results after using terrain calibration. 
(a,c) Results of training samples; (b,d) Results of test samples. 

4. Discussion 

Although numerous studies on forest biomass estimation have been conducted, substantial 
uncertainties remain in their current estimations. In this study, we analyzed the effects of the 
pretreatment (three stages) on the uncertainty of biomass estimation from optical remote sensing 
data. The MAE and RE were used to assess and quantify the uncertainty of each pretreatment, and 
R2 further analyzed to evaluate model accuracy. 

In recent years, random forest has gained popularity as an effective classification method in the 
remote sensing domain [84–86]. Results from our study additionally confirm that the random forest 
ensemble is a robust and accurate method for regression type applications as well. 

A comparative analysis of our findings showed that the estimation of forest biomass based on 
the 10-fold cross validation method has a high model accuracy, and this accurately reflects the 
different influence of each pretreatment on the uncertainties observed from OLI and ETM+. In this 
study, original images of OLI and ETM+ for biomass estimates had 21.05% and 23.45% uncertainties 
in the training sample, respectively, and uncertainly with 33.70% and 34.28% in the test sample. 
Several design enhancements have been made in OLI relative to prior Landsat instruments. These 
enhancements include pushbroom imaging which provides substantially improved signal to noise 
ratio (SNR), spectral bandpasses refinement to avoid atmospheric absorption features, 12 bit data 
resolution that provides a larger dynamic range for limiting levels of saturation and increasing SNR, 
as well as a set of well-designed onboard calibrators to monitor the stability of the sensor [87]. For 
this reason, the OLI original image has a lower uncertainty than that of ETM+ during biomass 
estimation. 

Radiometric calibration resulted in a slight decrease in accuracy of OLI and ETM+ models, an 
unchanged MAE, and a slight increase in uncertainty of biomass estimation. Markham et al. [58] 
explored the effect of radiance calibration uncertainty which further reduced to about 2% following 
reflectance calibration. When receiving solar radiation and converting it into DN values, the Landsat 
sensor is prone to oversaturation due to the limitation of data bit width (OLI: 12 bit, ETM+: 8 bit). It 
is possible that this is the reason why ETM+ results in greater uncertainty than OLI. In this study, we 
considered that radiometric calibration converts the original image DN value into a radiance value. 
The reflectivity process is affected by its uncertainty and the possible supersaturation of the original 

Figure 5. The R2 and MAE of ETM+ and OLI biomass estimation results after using terrain calibration.
(a,c) Results of training samples; (b,d) Results of test samples.

Analysis of MAE after using terrain correction showed a constant downward trend with a
decreased uncertainty of biomass estimation and this was relatively lower compared with what was
observed after atmospheric correction (Figure 5c,d). Particularly, the results show that: (c) a reduced
MAE range of 19.48~19.87 t/ha and an average of 19.64 t/ha was recorded in OLI. Similarly, the
uncertainty of biomass estimation using remote sensing after terrain correction was about 16.81%,
which was 1.08% lower than for atmospheric correction. In ETM+, the MAE range reduced to
20.47~21.01 t/ha with a mean value of 20.74 t/ha, representing a 2.42% reduction; (d) the frequencies of
high and abnormal values as well as uncertainty decreased significantly. It was concluded from the
results obtained in Table 3, that the mean and SD were decreased, with the number of rounds with
values of MAE less than mean 1 SD increased. The terrain correction greatly improved overall accuracy.
Likewise, we observed 28.56% and 30.28% uncertainty in biomass estimation from OLI and ETM+,
respectively. Under terrain correction, that was reduced by 1.00% and 1.67%. In summary, these results
showed that terrain correction can effectively reduce the uncertainty of biomass estimation for OLI and
ETM+ during remote sensing.

4. Discussion

Although numerous studies on forest biomass estimation have been conducted, substantial
uncertainties remain in their current estimations. In this study, we analyzed the effects of the
pretreatment (three stages) on the uncertainty of biomass estimation from optical remote sensing data.
The MAE and RE were used to assess and quantify the uncertainty of each pretreatment, and R2 further
analyzed to evaluate model accuracy.

In recent years, random forest has gained popularity as an effective classification method in the
remote sensing domain [84–86]. Results from our study additionally confirm that the random forest
ensemble is a robust and accurate method for regression type applications as well.

A comparative analysis of our findings showed that the estimation of forest biomass based
on the 10-fold cross validation method has a high model accuracy, and this accurately reflects the
different influence of each pretreatment on the uncertainties observed from OLI and ETM+. In this
study, original images of OLI and ETM+ for biomass estimates had 21.05% and 23.45% uncertainties
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in the training sample, respectively, and uncertainly with 33.70% and 34.28% in the test sample.
Several design enhancements have been made in OLI relative to prior Landsat instruments. These
enhancements include pushbroom imaging which provides substantially improved signal to noise
ratio (SNR), spectral bandpasses refinement to avoid atmospheric absorption features, 12 bit data
resolution that provides a larger dynamic range for limiting levels of saturation and increasing SNR, as
well as a set of well-designed onboard calibrators to monitor the stability of the sensor [87]. For this
reason, the OLI original image has a lower uncertainty than that of ETM+ during biomass estimation.

Radiometric calibration resulted in a slight decrease in accuracy of OLI and ETM+ models,
an unchanged MAE, and a slight increase in uncertainty of biomass estimation. Markham et al. [58]
explored the effect of radiance calibration uncertainty which further reduced to about 2% following
reflectance calibration. When receiving solar radiation and converting it into DN values, the Landsat
sensor is prone to oversaturation due to the limitation of data bit width (OLI: 12 bit, ETM+: 8 bit). It
is possible that this is the reason why ETM+ results in greater uncertainty than OLI. In this study,
we considered that radiometric calibration converts the original image DN value into a radiance value.
The reflectivity process is affected by its uncertainty and the possible supersaturation of the original
data. This, in turn, leads to an increase in the uncertainty of biomass estimation, although the change
is small. Radiometric calibration results in increase in instability of accuracy in a test sample model
to a certain extent compared with the original image. This has less influence on the uncertainty of
biomass estimation.

Atmospheric correction can eliminate the influence of factors, including the atmosphere and
illumination on surface reflection. This leads to lead to more accurate physical model parameters such
as surface reflectivity and radiation brightness. Ghulam et al. [88] used 6S atmospheric correction to
reduce uncertainties in electromagnetic wave transmission and effectively eliminate perturbations
from geometric and system corrected ETM+ imagery. Other reports have demonstrated that, after
atmospheric correction, the results of MAE are significantly lower than those of radiometric calibration,
and the accuracy of the model is significantly improved [89,90]. In the current study, the uncertainty in
both models significantly decreased, indicating that the atmospheric correction effectively improved
estimation accuracy and reduced the uncertainty of biomass estimation using Landsat. Zhu et al. [91]
proposed that improved atmospheric correction and surface reflectance removal schemes may decrease
the uncertainty generated by water surface. Based on our results, we conclude that the improved
atmospheric correction method is the most effective for further reduction of uncertainty during
biomass estimation.

Furthermore, the findings of the current study showed that MAE and uncertainty of biomass
estimation from OLI and ETM+ remote sensing showed a similar trend after terrain correction as
those recorded following atmospheric correction. The accuracy was also stable. However, terrain
correction resulted in a significantly higher effect on reduction of uncertainty in ETM+ biomass
estimation compared to OLI. Images used in this study were selected at a close time, but there was an
eight-day time difference. The alpine area of this study was undulating, and the valleys were mostly
steep with a “V” shape. Although this better reflected the terrain correction effect, it also shows that
this effect is more susceptible to imaging conditions. Analysis and subsequent comparison of the
imaging parameters in the sensor revealed that ETM+ has better imaging conditions with a higher
solar elevation angle than OLI, which may lead to a better ETM+ effect in terrain correction and lower
uncertainty of biomass estimation.

Our results further indicated that pre-processing improved the accuracy of the biomass estimation
model relative to the previous stage. The R2 changes tended to be stable after terrain correction, which
is consistent with previous reports [92]. Further, MAE was negatively correlated with R2, and the
uncertainty of biomass estimation also decreased, indicating that improving model accuracy is helpful
in reducing the uncertainty of biomass estimation.

Although we predicted that the three pretreatments can exhibit the same effects of uncertainty
during biomass estimation in other optical images. In this study, we used only one correction model for
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each pretreatment. Differences in the selection of the correction model for pretreatment may produce
different effects, thus affecting the performance of reducing the uncertainty of biomass estimation. We
should investigate more attempts in the future to understand the impact of different correction models.
In addition, we assumed that the data from sample plots was the true value of biomass. Actually,
there is an inevitable measurement error between the data of sample plots and true value, and it is
unpredictable and unavoidable. The numerical values of uncertainty may have some differences.
The amount of sample plots in a study area may also influence the evaluation results. The datasets
from Landsat are easy to acquire and use. More effort is needed to better understand the behavior
at pretreatment.

5. Conclusions

Remote sensing techniques have many advantages, in biomass estimation, over traditional field
measurement methods and provide the potential to estimate biomass at different scales. However,
there is still a need for improving the accuracy of biomass estimates [93,94]. Based on the adjacent time
OLI, ETM+ images, and 2014 NFI data, we used the RF model and 10-fold cross validation method to
determine the effects of different pretreatments on the uncertainty of biomass estimation using remote
sensing techniques implemented with Landsat series satellites (OLI, ETM+). The conclusions are as
follows:

1. In this study, with regard to results of training sample, we observed 21.05% and 23.45% uncertainty
in biomass estimation using original images from the OLI and ETM+, respectively. For the test
sample, an uncertainty of 33.70% and 34.28% was found, respectively. The three pretreatments
can effectively improve the stability of model accuracy. Atmospheric correction was the main
process for reducing the uncertainty of remote sensing biomass in the pretreatment stage. In the
training sample, this reduced uncertainty by 3.78% and 3.72% for OLI and ETM+, respectively,
as opposed to 5.56% and 4.41% in the test sample, Terrain correction can reduce the uncertainty
of biomass estimation of OLI (training sample: 1.08%, test sample: 1.00%) and ETM+ (training
sample: 2.42%, test sample: 1.67%). On the other hand, radiation calibration will slightly reduce
the accuracy of the model and increase the uncertainty of remote sensing biomass estimation
(OLI increased by 0.62% and 1.4%, ETM+ increased by 0.94% and 2.1%).

2. Radiometric calibration as well as atmospheric and terrain corrections showed consistent basic
characteristics with respect to the uncertainty of biomass estimation using remote sensing in
Landsat series satellites (OLI, ETM+). Radiometric calibration can slightly increase the uncertainty,
while atmospheric and terrain correction could significantly reduce the uncertainty and with
similar effects.

3. Atmospheric correction was a primary means for reducing the uncertainty of biomass estimation
during pretreatment, and thus we conclude that the improved atmospheric correction method
is beneficial for the further reduction of uncertainty during biomass estimation. However, the
influence of solar elevation angle should be considered when performing terrain correction and
choosing an appropriate optical image is recommended to improve the predictive accuracy.

We believe that the uncertainty evaluations presented in this study can easily be transferred to
the estimation and analysis of biomass data from other space or airborne sensors. Particularly, those
evaluations related to the estimation of atmospheric correction will be the main source of uncertainties
in the pre-processing phase prior to biomass estimation. This has to be considered deeper in future
biomass estimation using remote sensing. In this study, significant efforts in the uncertainty of biomass
estimation using Landsat remote sensing have been focused on the pre-processing phase. In the future,
we expect new insights into the causes of the uncertainties following radiometric calibration as well as
atmospheric and terrain correction.
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