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Abstract: Light detection and ranging (Lidar) spatial coordinates, especially height data, and the
intensity data of point clouds are often used for strip adjustment in airborne Lidar. However,
inconsistency in the intensity data and then intensity gradient data because of the variations in the
incidence and reflection angles in the scanning direction and sunlight incident in the same areas
of different strips may cause problems in the Lidar strip adjustment process. Instead of the Lidar
intensity, a new type of data, termed surface feature strength data derived by using the tensor voting
method, were introduced into the strip adjustment process using the partial least squares method in
this study. These data are consistent in the same regions of different strips, especially on the roofs
of buildings. Our experimental results indicated a significant improvement in the accuracy of strip
adjustment results when both height data and surface feature strength data were used.
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1. Introduction

Currently, light detection and ranging (Lidar) systems are widely used for rapidly acquiring
various types of three-dimensional (3D) point cloud data to reduce the working time effectively in many
fields, especially in surveying, engineering, and 3D smart city construction. Digital terrain models
have been constructed from Lidar point clouds by using interpolation and filtering methods [1,2].
Lidar data have been applied for extracting building outlines and subsequently reconstructing 3D
buildings [3,4]. In [5], a neural network was employed to classify different plant species according to
the Lidar intensity. Moreover, hyperspectral data and Lidar data have been combined for improving
classification confidence [6,7]. Because Lidar data can be updated quickly, Lidar technology has been
adopted for detecting and monitoring urban changes [8,9]. Moreover, by using a waveform airborne
Lidar, one can classify urban and forestry areas and analyze opaque solids and structures [10–13].

In general, errors in Lidar data can be ascribed to factors such as distance measurement errors,
orientation determination errors of the inertial measurement unit (IMU), Global Navigation Satellite
System (GNSS) positioning errors, timing errors, mounting errors, and errors of the geoidal model
(if using the orthometric height system) [14,15]. The accuracy of spatial positioning with Lidar may
be affected by these errors. The performance enhancement achieved when using Lidar, especially
the geometric performance enhancement, depends on the quality and accuracy of Lidar datasets.
Therefore, Lidar data should be first calibrated or corrected. Individual instruments such as GNSS
receivers and IMUs as well as their integration with the system should be calibrated. Often, a Lidar
system can be effectively calibrated using the so-called calibration field [16–20]. Another calibration
method involves the use of planar patches derived from the photogrammetric bundle adjustment as
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control surfaces instead of a calibrated field [21]. After calibration, the dm accuracy of the Lidar point
coordinates can be usually achieved.

However, errors still may exist in Lidar data because of imperfect calibration. For reducing these
errors, strip adjustment is frequently adopted to refine Lidar data. A few studies have introduced
polynomial models or have matched flat and smooth planes in the strip adjustment process to eliminate
displacements of the same objects in overlapping strips, especially height differences [22–25].

In addition to the use of height data in Lidar strip adjustment, other data, such as aerial image
and intensity data, have been employed to acquire highly accurate Lidar data [26–28]. For instance,
Burman [26] and Maas [27] have corrected height discrepancies by using the height and intensity
data of Lidar points in strip adjustment. Zhang et al. [28] used aero-triangulated images to enhance
Lidar strip adjustment by matching conjugated points and conjugated building corner features in
intensity and aerial images. For correctly extracting and matching surface features, Filin [29] presented
an error-recovery model for Lidar systems and established tie surfaces in overlapping strips. Lee et
al. [30] corrected height discrepancies between overlapping strips with conjugated linear features by
using the adjustment method. In summary, calibration and strip adjustment are necessary for acquiring
highly accurate Lidar data.

Although Lidar intensity data may be applied for distinguishing objects according to the reflectivity
of different materials and for strip adjustment, these data are easily affected by laser spreading loss,
the incidence angles of sunlight and laser beams, scan angles, atmospheric attenuation, surface
roughness, materials of objects, and other factors. Therefore, intensity data must be usually corrected
in advance by following the so-called intensity normalization procedure. Even after subjecting Lidar
intensity data to the intensity normalization procedure, guaranteeing their consistency on the same
surfaces of different strips is not easy because of unpredictable factors such as unstable emission
power, marginal variance in atmosphere conditions, and shadow regions (lack of texture) [31–33]. If
the Intensity data are consistent, they are useful data for Lidar strip adjustment. Some researchers
have successfully adopted such data for strip adjustment [26–28]. If they are inconsistent, it is difficult
to use them in the strip adjustment.

Consistency in height and intensity between strips is crucial for obtaining high-quality Lidar
strip adjustment results. The present study focuses on the Lidar strip adjustment by using consistent
data, namely height data and the surface feature strength of objects. The surface feature strength data
derived using the tensor voting method (TVM) provided useful geometric information [3,34,35].

In this study, the feasibility of using height data with surface feature strength data for conducting
Lidar strip adjustment computation according to a method proposed in preliminary work studies [36,37]
is further discussed and analyzed. The properties of surface feature strength data are introduced in
Section 2. Given that a large number of parameters of the Lidar strip adjustment system are unknown,
the partial least squares (PLS) method introduced in Section 3 is adopted instead of the ordinary least
squares (OLS) method to improve computational effectiveness. The experiments conducted in this
study are discussed in Section 4. The concluding remarks are presented in Section 5.

2. Geometric Feature Information

The surface feature strength of Lidar data is a type of geometric feature data derived from the TVM,
and these data can be used to detect and extract geometric features of buildings [3]. You and Lin [35]
used the TVM with topographic maps to reconstruct three-dimensional buildings from airborne Lidar
data and achieved favorable results. We used the geometric feature extraction results obtained with
the TVM, especially the surface feature strength data, for strip adjustment.
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2.1. Geometric Feature Strength

You and Lin [3,35] demonstrated that the TVM algorithm is suitable for extracting geometric
features from Lidar point clouds. By using the TVM, the geometric features of each Lidar point can be
represented with a second-order tensor as follows [34]:

T = (λ1 − λ2)v1vT
1 + (λ2 − λ3)(v1vT

1 + v2vT
2 ) + λ3(v1vT

1 + v2vT
2 + v3vT

3 ) (1)

where λ1, λ2, and λ3 are the eigenvalues of the tensor T and v1, v2, and v3 are the corresponding
eigenvectors. The geometric features of a Lidar point can be captured according to the following
rules [34]: point features (λ1 ≈ λ2 ≈ λ3) can be expressed in terms of λ3, linear features (λ1 ≈ λ2 � λ3)

can be expressed in terms of (λ2 − λ3), and surface feature (λ1 � λ2 ≈ λ3) can be expressed in terms of
(λ1 − λ2). Detailed decompositions of the tensors and the relationship between the tensors and the
geometric features of a point can be obtained by referring to [3,34].

The geometric relationship between a desired point and its adjacent points within a specified
region can be determined from the tensor T in Equation (1) when using the TVM algorithm. After
TVM processing, the main geometric feature of a point can be determined using the eigenvalues
λ1, λ2, and λ3 of the tensor T according to the aforementioned capture rules. The geometric feature
strengths may be affected by the number of adjacent points. To overcome this influence, You and
Lin [3] suggested normalizing the values of the feature strengths as follows:

Surface feature strength: Cs = (λ1 − λ2)/λ1,

Line feature strength: Cl = (λ2 − λ3)/λ1,

Point feature strength: Cp = λ3/λ1,

where 0 ≤ Cs, Cl, Cp
≤ 1 and Cs + Cl + Cp = 1. The surface feature strength (Cs) data and height data of

Lidar points were used for strip adjustment in our study.

2.2. Properties of the Surface Feature Strength

In this section, we first review the important surface feature strength Cs properties of Lidar points
on a plane, as mentioned in [3]. The surface feature strengths of points on planes with the same slope
are almost equal and approach approximately 1. By contrast, the strengths may vary at the junction of
two adjacent planes of different slopes, for example, on roofs. The greater the slope difference between
the two adjacent planes, the more significant is the Cs variation, as depicted in Figure 1.
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Figure 1. Cs values simulated for the different slopes of a roof and derived from the tensor voting
method (TVM).

As an example, we illustrate the height and Cs variation of a building consisting of several gable
roofs by using real airborne Lidar data that were calibrated in advance by using the calibration field
method. Figure 2a–c show the aerial photos, height data, and Cs values, respectively, of the multi-gable
roofs of the building. The height values (as z-data in this study) of the section line PQ (Figure 2a) are
depicted in Figure 2c, and the Cs values of PQ in different strips are illustrated in Figure 2f,g. Although
the Lidar data were calibrated in advance, height discrepancies remained, as illustrated in Figure 2e.

The Cs values are nearly the same on planes, for example, flat planes (e.g., the ground) or roof planes
of buildings, inclined or flat roof planes, or ground planes. However, the Cs values of the section line PQ
vary at the roof ridges of adjacent roof planes with differential slopes (Figure 2c,d,f). The Cs values in the
neighborhood of the roof ridge are evidently different from those in the other parts of roof planes; however,
their patterns in different strips of the same building are extremely similar, as illustrated in Figure 2f,g.
The surface feature strength values of the same objects in different strips are consistent.

This consistency of Cs values can be used for strip adjustment. Therefore, in addition to the height data
of Lidar points, the Cs values of Lidar points were used as complementary data when performing strip
adjustment in this study. The flat roof planes or inclined roof planes and flat ground planes, for which the Cs

values vary marginally, are termed as the areas that exhibit slight variation in Cs values (SVC areas) in this
study. These planes are indicated in brown in Figure 2d. The neighborhood of the roof ridges of adjacent
roof planes with different slopes are the areas with high variation in Cs values (hereafter, HVC areas),
as indicated by the blue parts in Figure 2d. The green regions in Figure 2d are the Cs images of trees or
the underbrush, and their Cs values vary considerably. However, such messy distributed point clouds are
unsuitable for strip adjustment and are excluded. In this study, Cs data pertaining to the HVC areas were
used in the strip adjustment to study the effects of surface feature strength data.
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the TVM.

3. Strip Adjustment

Inaccuracy in Lidar data may exist even after the Lidar system has been calibrated. To correct
such inaccuracy, strip adjustment is a powerful tool. Strip adjustment usually involves using the height
discrepancies of the same object in the overlapping regions and occasionally involves using the Lidar
intensity data if consistent intensity data are available. The three-, seven-, nine-, and 12-parameter
transformation models as well as polynomial models, bilinear interpolation models using grids, linear
interpolation models using a triangulated irregular network (TIN), corrections based on the generation
function of Lidar data, and other methods have been adopted for Lidar strip adjustment [22–28].

Because each intensity-normalized method is associated with different restricted items [31–33],
maintaining a consistent intensity for the same object in different strips is difficult even after
normalization. Therefore, intensity data are excluded from strip adjustment in this study. Instead
of intensity data, surface feature strength (Cs) values are used. The z-values (height values) and Cs

values of objects in the overlapping regions of different strips serve as the main data in our strip
adjustment scheme. In addition, PLS is adopted for the strip adjustment because it offers advantages
in terms of computational efficiency. The conjugated points for the adjustment are the grid points of
the overlapping regions. An interpolation method is also required for adjustment. Details regarding
the grids and bilinear interpolation method used in this study can be obtained from [26].

3.1. Mathematical Models and Grid Setting

Every Lidar strip is assigned to a seven-parameter similarity transformation model, and these
parameters are used to absorb the displacement errors between overlapping strips. The model is
expressed as follows: 

x′

y′

z′


j

i

= κ j
·R

(
α j,β j,γ j

)
·


x
y
z


j
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+


t j
x

t j
y

t j
z

 (2)
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where the elements of the rotational matrix R
(
α j,β j,γ j

)
are as follows:

R(1, 1) = cosβ j
·cosγ j,

R(1, 2) = cosα j
·sinγ j + sinα j

·sinβ j
·cosγ j,

R(1, 3) = sinα j
·sinγ j

− cosα j
·sinβ j

·cosγ j,
R(2, 1) = −cosβ j

·sinγ j,
R(2, 2) = cosα j

·cosγ j
− sinα j

·sinβ j
·sinγ j,

R(2, 3) = sinα j
·cosγ j + cosα j

·sinβ j
·sinγ j,

R(3, 1) = sinβ j,
R(3, 2) = −sinα j

·cosβ j,
R(3, 3) = cosα j

·cosβ j.

(3)

The superscript j represents the strip number; subscript i represents the Lidar point i; α j,β j, and γ j

represent the rotational angles of the jth strip, κ j is the scale factor, t j
x, t j

y, and t j
z are the shift

parameters; and (x j
i , y j

i , z j
i ) and (x′ ji , y′ ji , z′ ji ) are the coordinates of a laser point before and after

transformation, respectively.
A series of square grids are first set in the flight regions to connect different strips. The (x, y)

coordinates of every grid point are set to be known and are calculated as follows:

Xs = M0 + G·s, s = 0 · · ·m,
Yt = N0 + G·t, t = 0 · · · n,

(4)

where (M0, N0) are the known coordinates of the original point of the continuous grid and G is the
given length of a square grid. The height (Zs,t) and the surface feature strength (Cs,t) of every grid
point are functions of the coordinates (Xs, Yt), that is, Zs,t = fZ(Xs, Yt) and Cs,t = fC(Xs, Yt). The height
and the surface feature strength data of each Lidar point can be derived from those of the grid points
by using bilinear interpolation [26]:

z′ ji =

(
Xs+1,t+1− x′ ji

)(
Ys+1,t+1−y′ ji

)
G2 Zs,t +

(
x′ ji−Xs,t

)(
Ys,t+1−y′ ji

)
G2 Zs+1,t

+

(
Xs+1,t−x′ ji

)(
y′ ji−Ys,t

)
G2 Zs,t+1+

(
x′ ji−Xs,t

)(
y′ ji−Ys,t

)
G2 Zs+1,t+1,

(5)

C′ ji =

(
Xs+1,t+1− x′ ji

)(
Ys+1,t+1−y′ ji

)
G2 Cs,t +

(
x′ ji−Xs,t

)(
Ys,t+1−y′ ji

)
G2 Cs+1,t

+

(
Xs+1,t−x′ ji

)(
y′ ji−Ys,t

)
G2 Cs,t+1+

(
x′ ji−Xs,t

)(
y′ ji−Ys,t

)
G2 Cs+1,t+1,

(6)

By introducing Equation (2) into Equations (5) and (6) as well as the “total errors” vz and vC,
the following complex observation equations are adopted for our strip adjustment scheme:

0 + vZ = z j
i − z′ ji = FZ(

j,α j,β j,γ j, t j
x, t j

y, t j
z, Zs,t, Zs+1,t, Zs,t+1, Zs+1,t+1,

x j
i , y j

i , z j
i , Xs,t, Ys,t, Xs+1,t, Ys+1,t, Xs,t+1, Ys,t+1, Xs+1,t+1, Ys+1,t+1),

(7)

0 + vC = C j
i −C′ ji = FC(

j,α j,β j,γ j, t j
x, t j

y, t j
z, Cs,t, Cs+1,t, Cs,t+1, Cs+1,t+1,

x j
i , y j

i , Xs,t, Ys,t, Xs+1,t, Ys+1,t, Xs,t+1, Ys,t+1, Xs+1,t+1, Ys+1,t+1),
(8)

where x j
i , y j

i , z j
i and C j

i denote the measurement values of the coordinates and the surface feature
strength value at a Lidar point, respectively. The remaining variables in the functions Fz and FC are
unknown, including the transformation parameters of each strip and the heights and the surface
feature strength values of grid points.
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Compared with the results obtained using height observation data alone, it may be expected that
the reliability of the results of strip adjustment would be higher when using both height and surface
feature strength data. Notably, the parameter t j

z could not be solved when using Cs observation data
alone, which is similar to using only intensity data in the adjustment [26].

3.2. PLS Method

Because the number of Lidar points and the associated observation equations are large in number
and Equations (5) and (6) are nonlinear, a linearization and iteration procedure is necessary for strip
adjustment. Because of the demand for computational effectiveness, the PLS method is selected for
strip adjustment. Helland [38,39] and Young [40] have suggested the use of the PLS method to reduce
the dimensionality of unknown parameters for increasing operational efficiency. The analysis results
of the OLS and PLS program source codes indicated that the time complexity and operational time of
PLS are higher than those of OLS [41]. In addition, the PLS method may reduce the correlation among
parameters, which may lead to a more reliable solution [42].

The PLS method also uses the least squares principle to solve the unknowns; however, it does not
solve all unknown parameters simultaneously. Instead, it divides the unknown parameters into two
parts. A variable transformation may be used for reducing the correlation between parameters [42].
In principle, at the beginning of the adjustment, the parameters in one of the parts (named the first
part hereafter) are treated as knowns by assigning initial values to them and the parameters in the
second part are regarded as unknowns that are determined by the least squares principle. Once
the parameters are estimated, the parameters belonging to the second part are treated as knowns in
the second adjustment step, whereas the parameters in the first part are now considered unknowns.
In the third adjustment step, the parameters in the first part estimated in the previous adjustment
step are treated as knowns and the parameters in second part are now considered unknowns again.
The adjustment process continues with such a sequential exchange of knowns and unknowns until the
estimation is convergent [43].

In this study, the unknown parameters are divided into two parts: the heights and Cs values
of the grid points are the parameters in the first part and the datum transformation parameters are
the parameters in the second part. A flowchart of the strip adjustment procedure performed in this
study with the PLS method is illustrated in Figure 3. Before strip adjustment by using the PLS method,
the heights and surface feature strength of the grids are assigned initial values according to the closest
points. The initial value of the scale parameter is set to 1 and those of the other datum parameters
are set to 0. At the beginning of strip adjustment, the parameters in the first part, namely the initial
heights and Cs values of the aforementioned grid points, are considered known information and the
parameters in the second part, namely the transformation parameters of individual Lidar strips, are
estimated with the OLS method. After each step of strip adjustment, new coordinates of laser points
are updated according to the new estimated transformation parameters. The final solutions were
obtained when the PLS procedure ceased until the changes in the unknown parameters (including grid
values and transformation parameters) became lower than the corresponding thresholds.

If Lidar data (including the z-data and Cs data) contain outliers, the results of strip adjustment may
deteriorate. Therefore, an outlier detection procedure should be considered. In this study, the outliers
in Lidar data were detected using the robust method [44]. Moreover, observational data of different
types, namely height data and Cs data in this case, should be assigned correct weight values in
the adjustment process. When the observational data lack correct priori information about weights,
variance component estimation should be performed for the observation data of different types.
We employed Helmert variance component estimation to obtain accurate variances of the observation
data for achieving the optimal estimation of unknown parameters [45].
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4. Experiments and Discussion

The study region covered with four Lidar strips is located on the campus of National Cheng-Kung
University in Tainan City, Taiwan (Figure 4). The area of the study region is approximately 360,000 m2.
The width of flights A and B was approximately 350 m, and the length of flights A and B was 1,070 m.
The width of flights C and D was approximately 250 m, and the length of flights A and B was 570 m.
The flight height was approximately 500 m above ground level. Lidar point clouds were captured
using an Optech ALTM 30/70 scanner, and the Lidar density was found to be approximately 6 pts/m2.
Although the Lidar point clouds in the study region were calibrated in advance, discrepancies were
readily apparent, as depicted in Figure 2e. Therefore, the strip adjustment and grid interpolation
methods mentioned in Section 3 were used to correct such discrepancies.

First, the study region was set into grids with a width of 1 m in the experiment. The regions
O1, O3, O4, O5, and O7 in Figure 4 were overlapped by two strips, and the regions O2 and O6 were
overlapped by three strips. Second, the observational equations (Equations (7) and (8)) of all Lidar
points, excluding those of trees, the underbrush, the ground, and some selected check planes in the
overlapping areas, were adjusted using the PLS method. A few inclined or flat roof planes and ground
planes were selected as the check planes. Observations of Lidar points on these planes were not used in
the adjustment. After the adjustment was performed, the adjusted height and surface feature strength
of each Lidar point were calculated using the transformation parameters and the interpolation method
expressed in Equations (2), (5), and (6).
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In this study, the accuracy of the adjustment results was evaluated using two quality indicators,
namely relative deviation (RED) and absolute deviation (ABD). The RED was calculated using all the
residuals of observations in the check planes as follows:

RED =

√∑
(VZTVZ)

n
, (9)

where n is the number of Lidar points. The RED can be used to reveal the quality of matching between
the strips after adjustment are made. The residual vz in Cases 2–4 was equal to the z-observational value
minus the adjusted z value, whereas in Case 1, the residual vz was calculated from the differences in the
calibrated z-data of the same object in adjacent strips. Cases 1–4 are defined in the following paragraph.

Measurements of 20 flat check planes were conducted using three to five points through the
real-time kinematic GPS (RTK-GPS) positioning by using a Leica SR530 GPS receiver. Such check
planes were used for external examination of the adjustment results (Figure 4). The ABD indicator can
be expressed as follows:

ABD =

√∑
(
(
dw

i )
T·dw

i

)
n

, (10)

where n represents the sum of the numbers of check points on all such check planes, dw
i = z′wi −

∑m
k=1 zw

k,GPS /m
(m = 3~5) represents the height residual of the ith Lidar point on the wth flat plane, and zw

k, GPS represents
the kth GPS measurement height on the wth flat plane. The GPS heights and the heights of Lidar points
were obtained by referring to the same height system in this study.

To analyses the effects of the surface feature strength on our strip adjustment scheme, we designed
the following four cases to evaluate the quality of the adjustment results with or without the surface
feature strength values. In Case 1, the initial height data (z-data) after calibration were used without the
subsequent PLS strip adjustment. In Case 2, the z-data of the Lidar points in the HVC areas obtained
after strip adjustment were used. In Case 3, the z-data of the Lidar points in the SVC areas only, as used
commonly in airborne Lidar adjustment, were used. In Case 4, the z-data of the Lidar points in the
SVC areas and the Cs data in the HVC areas were used. In the aforementioned cases, the Cs data and
z-data of the same locations were not used simultaneously in the adjustment. The z-data used in Cases
2–4 were the same as those used in Case 1.
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Because the Cs data in the SVC areas, such as in the plane roofs, were nearly identical,
some unknown parameters could not be solved in our experiments when only the Cs data were
used in the SVC areas. By contrast, z-data are usually useful in the SVC areas. Therefore, the use of Cs

data for strip adjustment in the SVC areas is not discussed in this paper.
The adjustment results are summarized in Table 1. The experimental results indicate that in

Case 1, in which only the calibrated z-data were used, and without using strip adjustment, the RED
accuracy was 20 cm and the ABD accuracy was 11 cm. Figure 5 illustrates the discrepancies between
the strips in section lines GH, KL, PQ, RS, TU, and VW in Cases 1, 2, 3, and 4. The abscissa axis
indicates the direction along the section line and the vertical axis represents the elevation in meters.
These discrepancies negatively affect the working of highly accurate applications using Lidar data.
The adjustment results of Case 2 were worse than those of Case 1. This indicates that conducting Lidar
strip adjustment is not feasible with the use of the z-data in the HVC areas. By using z-data in the
SVC areas (Case 3), one may obtain better results, as summarized in Table 1 and illustrated in Figure 5.
The same conclusion was arrived at in [26].

Table 1. Summation of RED and ABD.

Case RED (m) ABD (m)

1 0.203 0.111

2 0.406 0.261

3 0.067 0.088

4 0.057 0.073

According to statistical hypothesis testing at the 95% significance level, the adjustment results
obtained in Cases 3 and 4 were significantly superior to those obtained in Case 1. Compared with Case
1, the RED and ABD results improved by 67 and 21% in Case 3, respectively, and by 72 and 34% in Case
4, respectively. The results of Case 4 were superior to and more accurate than those of Case 3. In Case 4,
the RED and ABD improved significantly by approximately 15 and 17%, respectively, compared with
the corresponding values in Case 3. The quality of the strip adjustment results obtained using both
z-data and Cs data was superior to that obtained using z-data alone. In general, the experiments indicate
that the surface feature strength (Cs) is useful for improving the results of strip adjustment significantly.

To analyses the levels of improvement in different areas when using Cs data, the adjustment
results obtained in regions O1–O7 are discussed in the following text. The related RED and ABD
values are illustrated in Figure 6. The accuracy of the results obtained in regions O2, O4, and O6 in
Case 1 was higher than that of the results obtained in the other regions. The errors may have resulted
from the large discrepancies between strips A and B despite the fact that the Lidar source data used in
the process were calibrated in advance. After strip adjustment by using Case 3 data, the RED of all
regions except that of O5 reached the cm-level. As illustrated in Figure 4, this result was expected
because fewer suitable z-data points were available from region O5 than from other regions for use
in the adjustment. Moreover, the data available from region O5 had poor distribution. However,
the accuracy was improved when Case 4 data were used (Figure 6). The use of strip adjustment to
correct discrepancies between strips, especially discrepancies in height, may not always be possible
even when the z-data are distributed uniformly and over a sufficient SVC terrain. Strip adjustment
may yield poor results if z-data alone are used.

However, the use of the z-data of Lidar points in the SVC areas and the Cs data of the points in the
HVC areas can improve the quality and accuracy of strip adjustment, as illustrated in Figures 5 and 6.
Notably, the z-data of SVC areas and the Cs data of HVC areas can be used as complementary data for
Lidar strip adjustment.
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5. Conclusions

In this study, a new Lidar data type, namely the surface feature strength derived from the TVM,
was introduced into Lidar strip adjustment. Compared with the use of height data alone for up-to-date
airborne Lidar strip adjustment, the use of the surface feature strength data of Lidar points in the
HVC areas as auxiliary data can improve the strip adjustment accuracy by 15–17% according to our
experimental results. The new data, namely the surface feature strength, are useful auxiliary data for
strip adjustment, especially when elevation data in SVC areas are insufficient.
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