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Abstract: As the world is digitizing fast, the increase in Big and Small Data offers opportunities to
enrich official statistics for reporting on Sustainable Development Goals (SDG). However, survey
data coming from an increased number of organizations (Small Data) and Big Data offer challenges
in terms of data heterogeneity. This paper describes a methodology for combining various data
sources to create a more comprehensive dataset on SDG 6.1.1. (proportion of population using safely
managed drinking water services). We enabled digital volunteers to trace buildings on satellite
imagery and used the traces on OpenStreetMap to facilitate visual detection of water points on
Unmanned Aerial Vehicle (UAV) imagery and estimate the number of people served per water point.
Combining data on water points identified on our UAV imagery with data on water points from
field surveys improves the overall quality in terms of removal of inconsistencies and enrichment of
attribute information. Satellite imagery enables scaling more easily than UAV imagery but is too
costly to acquire at sufficiently high resolution. For small areas, our workflow is cost-effective in
creating an up-to-date and consistent water point dataset by combining UAV imagery, Volunteered
Geographic Information, and field survey data.

Keywords: rural water supply; water points; UAV; drone imagery; data collaborative; data
infrastructure; sustainable development goals; volunteered geographic information; OSM; remote
sensing; geospatial data

1. Introduction

Reporting on the Sustainable Development Goals (SDGs) (2015–2030) has become more
complicated than reporting on the Millennium Development Goals (MDGs), given the increase
in the number of goals, targets, and indicators. SDG 6 [1] is focused on ensuring availability and
sustainable management of water and sanitation for all. It has eight targets and eleven indicators,
whereas there is no separate MDG on water and sanitation. The MDGs have only three related
indicators under Goal 7 (ensure environmental sustainability). Traditionally, the reporting uses census
data from the National Statistics Office (NSO) and household surveys from ministries. Fritz et al. [2]
give an overview of new additional data sources that have become available for measuring the SDGs.
The ongoing digitization of society has led to an exponential increase in the volume of so-called Big
Data. Big Data is not only large in volume, but is also produced continuously and varies in nature
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(structured and unstructured data). In addition to Big Data, Small Data also becomes more and more
unlocked. Small Data is data from a wide variety of stakeholders, produced in a tightly controlled way
using sampling techniques that limit their scope, temporality, size, and variety [3].

In terms of Big Data, See et al. [4] provide an overview of the value of combining remote sensing
and geospatial data for more effective monitoring of SDGs. Geospatial data is defined here as data with
explicit geographical locations. Walz et al. [5] show how remote sensing data and geostatistical data
can be used to monitor the progress of an indicator from a global framework at the municipality level.
In this case, the approach is tested on the Sendai framework, but the same approach can, in principle,
also be tested for specific SDG indicators. We note that also remote sensing imagery contains geospatial
data in terms of the bounding box of the images and the spatial reference system; however, in this
case, no precise locations or objects are identified beforehand. Examples of geospatial data are mobile
phone or social media data and Volunteered Geographic Information (VGI). ICT platforms have been
developed that allow both professionals and citizens to report on water points via mobile devices
(mostly phones) [6]. Fraisl et al. [7] mapped citizen science contributions to the UN SDGs and
showed that based on the mapping exercise the Group on Earth Observations (GEO) undertook, [8]
of the 29 indicators identified by GEO, citizen science could support 24. The Global Partnership for
Sustainable Development Data (GPSDD) advocates for this kind of citizen-generated data [9]. It can
complement official data sources, fill in data gaps, and give those hard to reach a voice on issues that
matter the most to them. Georeferenced tweets or posts on social media can contain information on
the functioning of public infrastructure. However, most developing countries where the monitoring
of SDG 6 is essential have low internet and social media penetration rates, especially in rural areas.
Call detail records can form a proxy for the number of users of a water point but are very hard to
get access to and are often biased. Missing Maps [10] is an open VGI collaboration founded by the
Humanitarian OpenStreetMap Community (HOTOSM), Médecins Sans Frontières (MSF), and the
British and American Red Cross. The objective of this project is to map the most vulnerable places
in the developing world so that humanitarian organizations can use these maps and data to better
respond to crises. Through the Tasking Manager of Missing Maps, organizations can ‘request’ remote
volunteers to trace aerial imagery for a particular area. The created polygons, lines, points, and attribute
information are saved and stored as free and open data in the OSM database and can be accessed like
other regular OSM extracts.

In terms of Small Data, humanitarian and development organizations regularly collect data
on water and sanitation through household surveys, usually the areas where they intervene.
The WHO/UNICEF Joint Monitoring Programme (JMP) collects household data, globally, on Water
and Sanitation for Health (WASH) through surveys and aggregates this on a country level [11].
However, many other humanitarian and development actors collect data on specifically, for example,
SDG 6.1.1. Proportion of population using safely managed drinking water services. Van den Homberg
and Susha [12] developed a framework to characterize a data ecosystem and applied it to water points in
Malawi. The framework consists of five dimensions: data infrastructure, data supply and demand, data
governance, and actors. Results show that many governmental and NGO actors are involved in water
supply projects with different funding sources and little overall governance. There is a large variety
of geospatial data sharing platforms and online accessible information management systems with,
however, a low adoption due to limited internet connectivity and low data literacy. The framework
was also used to characterize the data quality of these data sources and to identify the gaps, such as
lots of data not being open. Verplanke and Georgiadou [13] describe the complexity of establishing
an open database to map all rural water points in an African nation (Tanzania). When bringing
together unharmonized data from different sources, measurement errors have to be inventoried
and characterized. Causes for errors range from material, observational, conceptual, and discursive
errors [13]. Taking water quality as an example, some measurement methodologies are based on visual
inspection or tasting of the water and are thus subjective, whereas other methods rely upon chemical
test kits [13].
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These new Big and Small Data sources offer opportunities to complement official statistics for
reporting on SDGs, especially at the subnational level. Little attention has been devoted to SDG
information on a subnational level. The UN SDG 6 report [14] identifies the lack of data in rural areas as
a challenge for tracking progress. The recently launched UN-Water SDG 6 Data Portal [15] makes data
on SDG 6 available in a user-friendly interface but is limited by the level at which data are available.
For many countries such as Malawi, local data are lacking in the portal restricting the usability of the
data by decision-makers. UN Water has introduced so-called data drives, where custodian agencies
offer support to the focal points in terms of compiling data from different sources in a variety of ways,
such as providing methodologies, helpdesks, webinars, and workshops [14]. Malawi published in
June 2020 their first Voluntary National Review report for SDGs [16]. It describes the mechanism of
how at the subnational level, local councils can coordinate the implementation and monitoring of the
SDGs. However, the review admits that tracking progress and reporting on various initiatives need to
be strengthened at these local levels. The description of SDG 6.1.1 clearly shows this, as only numbers
at the national level are given and only progress in the period before 2016.

This paper assesses how Big Data can be used to complement data coming from Small Data
to improve subnational reporting on SDG 6.1.1. For a case study in Malawi, we compare high and
low-resolution satellite imagery with Unmanned Aerial Vehicle (UAV) imagery to find out which
remote sensing imagery has sufficient resolution for water point identification. We assess the added
value of combining the UAV imagery, VGI, and field survey data from different data providers by
(a) cross-validating and resolving discrepancies in information on water point attributes from these
different data providers and (b) enriching information on attributes or assessing if attributes can
be added.

2. Materials and Methods

Figure 1 presents an overview of the research framework. Section 2.1 describes the area selection,
and Section 2.2 the data sources used (satellite, UAV, and field survey data). The data analysis used
to obtain the results is covered in Section 2.3. In Sections 2.2 and 2.3, we describe which actors are
involved in either the data collection or the data analysis.
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The dark green circles represent organizations that collected data via field surveys on water points:
Climate Justice Fund (CJF), Water Point Data Exchange (WPDx), Department of Irrigation and Water
Development (DoIWD), Department of Surveys (Dept Surveys).
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2.1. Area Selection

We focus on a case study in rural Malawi. Malawi is selected from an initial subset of low income
and data-poor countries, given the in-country networks of the Red Cross, support by governmental
organizations, and ongoing data-driven projects. We identified the Traditional Authorities (TA)
Makhwira within the Chikwawa district, see Figure 2. This TA is also the intervention area of the
second European Civil Protection and Humanitarian Aid Operations (ECHO) program implemented
by the Malawi Red Cross Society (MRCS) with the support of the Netherlands Red Cross (NLRC),
Belgian Red Cross-Flanders, and the Danish Red Cross. This program focuses on building flood
resilience among vulnerable communities. The Community Risk Assessment (CRA) dashboard of 510,
an initiative of the Netherlands Red Cross [17], is used to identify those communities. Water points in
flood-prone areas are at risk of contamination and malfunctioning.
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Figure 2. Overview of the case study area, part of the Traditional Authority Makhwira in the
district Chikwawa.

2.2. Data Sources

2.2.1. Satellite Imagery

We pursued three options to obtain satellite imagery. First, satellite imagery is freely available
from Bing Maps, a web mapping service provided by Microsoft. Bing Maps sources its data from a
variety of satellite data providers. For example, for Chikwawa, TomTom, HERE, Maxar Technologies,
and Earthstar Geographics SIO are referenced depending on the zoom level. Up to 50 cm resolution
was available. Second, Malawi held a population and housing census in 2018. A vital component
was the delineation of statistical areas referred to as Enumeration Areas (EAs) for field enumeration,
which is the spatial foundation for census datasets [18]. The Geographic Information System (GIS)
unit of the Demography and Social Statistics division of the National Statistics Office (NSO) recruited
the Regional Centre for Mapping of Resources for Development (RCMRD) to provide the satellite
imagery and to perform a dwelling frame, capturing the location of around 200 to 300 dwelling units
within about 25000 EAs. RCMRD used satellite imagery of ultra-urban areas at 0.5 m, regular urban
at 2.5 m, and rural areas at 2.5 m [18]. This imagery was also used to plot facilities in villages such
as schools, boreholes, and health centers. Unfortunately, it was not possible to obtain this satellite
imagery. Third, Maxar Technologies provided the authors WorldView-3 satellite imagery at 30 cm
ground sample distance for the UAV flight areas.
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2.2.2. UAV Imagery

A Smartplane Freya, a fixed-wing UAV with 0.3 m2 wing area, a weight of around 1.5 kg and a
RICOH GR II camera was used to obtain the UAV imagery. The UAV used only unlicensed ISM-bands.
MRCS received flight permission from the Civil Aviation Authority (CAA) and a clearance from the
Malawi Police Service. The regulations, enforced by Air Traffic Control from CAA, allow flying at 120 m,
whereby in some cases, it is possible to fly up to an altitude of 500 m. MRCS organized a community
sensitization campaign one week in advance. The campaign explained where the flight would take
place and why the data collection took place to counter suspicions. MRCS used mobile van publicity
and jingles that were played at the community radio stations Nyantepa and Gaka. Communities were
also informed that sometimes an emergency landing is necessary and that they should not throw
stones at the drone. Some people were afraid of the UAV capturing personal information about them
and that this information could be used in election rigging. The drone usually flew at around 300 m
altitude, whereby the optical imagery has a resolution of around 11 cm. The UAV has a flight time of
maximum 60 min per battery. A single flight at 500 m altitude with a sidelap and overlap of each 70%
can cover a maximum of 3.4 km2 per flight. The complete area consisted of 140 flights, each lasting
45 min, resulting in 105 h of flight time excluding relocation time. The UAV has a range of up to 60 km
according to the manual, but in practice it was around 20 km due to wind or battery abnormalities.
The flight area in Makhwira is 284 km2. Figure 3 gives an impression of the UAV mission.
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2.2.3. Field Survey Data

Several of the actors in the WASH sector in Malawi produce data on water points by regularly
conducting field surveys. Susha and van den Homberg [12] extensively described the corresponding
WASH data ecosystem in Malawi and also visualized it in a dashboard [19]. In this research, we focus
only on those actors that produce data for the case study area. Of the nine data providers, four
did not cover the area of the UAV imagery. The five data providers that did cover the area are
Fisherman’s Rest (with their Madzi Alipo platform), the Climate Justice Fund (CJF), the Water Point
Data Exchange (WPDx), the Department of Irrigation and Water Development (DoIWD) and the
Department of Surveys (Dept Surveys). Apart from DoIWD, which is directly involved in water supply
service provisioning, there are also government agencies that play a role from the data perspective.
NSO provides the baseline data for the SDGs, including SDG 6.1.1. In 2015–2016, the large-scale
Demographic Health Survey (DHS) was conducted. This survey provided insight into the current state
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of rural, urban, and overall water supply. According to the results of the DHS, 63% of rural households
have access to basic water services, compared to 87% of urban households [16]. The worldwide
DHS program (as sponsored by USAID) makes several of the underlying datasets available upon
registration. Our current understanding is, however, that the answers on survey questions about access
to water per household are not available with corresponding GPS coordinates as these coordinates
are randomly displaced to ensure respondent confidentiality [20]. The government of Malawi is
working with the University of Strathclyde and the Government of Scotland through the Climate
Justice Fund: Water Futures Programme on getting water asset management data using their mWater
data platform. However, for our study, we could only gain access to an example dataset and not the
full dataset. The reasons for not opening up the dataset might be related to government accountability
and protecting the unique position of the contractor. Apart from NSO, also the Department of Surveys
(DoS) has a role in terms of data related to water points as their vision is to provide timely, accurate,
and reliable geospatial information for sustainable development.

2.3. Analysing the Data

We define a water point as an improved source used for drinking water. Improved sources are the
top three services levels as defined by [11], see Table 1.

Table 1. WHO/UNICEF Joint Monitoring Programme for Water Supply and Sanitation (JMP) service
ladder for household drinking water. Reprinted from [11], page 12.

Service Level Definition

Safely managed Drinking water from an improved water source which is located on premises, available
when needed and free of faecal and priority contamination.

Basic Drinking water from an improved source provided collection time is not more than
30 min for a roundtrip including queuing.

Limited Drinking water from an improved source where collection time exceeds over 30 min for a
roundtrip to collect water, including queuing.

Unimproved Drinking water from an unprotected dug well or unprotected spring

No service Drinking water collected directly from a river, dam, lake, pond, stream, canal or
irrigation channel

Safely managed water points are on-premises, so in the near vicinity of a building. The basic
and limited water points can be further away up to 30 min walking distance but usually close to
the village it is serving. Therefore, to facilitate the visual detection of rural water points on UAV
and satellite imagery, our first step was to overlay the images with OSM building data. The OSM
building data were created via mapathons. In a mapathon, a large number of digital volunteers work
on numerous tasks that consist of tracing buildings on satellite imagery from (mostly) Bing Maps with
a sub-meter resolution, typically between 50 and 70 cm for specific areas. The Netherlands Red Cross
organized over 20 mapathons in the Netherlands, mobilizing hundreds of mostly Dutch volunteers.
The volunteers were either employees from a wide range of organizations or students from several
universities. A minority of these participants had a background in GIS, so all mapathons started
with a basic introduction to OSM. Between 2016 and 2017, due to these tasks, the number of newly
mapped roads in Malawi doubled from 37,000 km to 78,000 km. Over 1.8 million buildings have
been mapped since the start of the project in Malawi, a vast amount through the Netherlands Red
Cross tasks. Several of these tasks were in the area of the UAV pilot; some were also outside this area.
Experienced mappers, often the organizer of the mapathon but also others qualified as validators,
checked the quality and validated the tasks conformed to the usual OSM mapping workflow [21].

After the overlaying of OSM data, eight volunteers of 510 visually inspected the images and
mapped the water points. The eight volunteers were mostly Dutch MSc students doing their research
or internship with 510 or just graduated students volunteering with 510. All had GIS skills. The water
points were created in a spatial dataset based on the imagery. Additional information was added in
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the attribute list based on visual inspection of the surroundings and other metadata. After the initial
mapping, 510 staff checked the data upon quality and consistency. The results were stored in the dataset
and used for further analysis. Because of the number of volunteers, this process could be finished
within a week. It would also have been an option to create OSM tasks for identifying water points
via remote digital volunteers. However, the limited amount of UAV and satellite imagery available
did not yet require upscaling from the crowd of OSM volunteers. Furthermore, clear guidelines for
mapping water points have to be developed to reach a uniform and standardized way of open online
mapping. In addition to manually, the options for automated water point detection were briefly
explored. Currently, algorithms are being developed (such as deep learning) to detect building outlines
and material in aerial imagery [22]. However, these are still in the development phase, and they do not
yet work well with objects with small sizes like water points in combination with the limited image
resolution available. Furthermore, a good test dataset needs to be available to teach the algorithm.

The OSM building footprint could not only be used for facilitating the identification of water
points but also for obtaining more insights into the local situation. We calculated the size per house in
m2 and selected all houses larger than 15 m2 and smaller than 100 m2 in size. Buildings larger than
100 m2 are assumed to be churches, schools, or industrial buildings. Subsequently, we could estimate
the number of people living in a certain radius around a water point by relating building size to the
number of people living on average in such houses. We used the ArcGIS Living Atlas of the World [23],
which gives an average of 4.5 people per household.

3. Results

3.1. Results Satellite Imagery in Comparison to UAV Imagery

For five sites within the UAV flight area we compared the images with the three different
resolutions available. Figure 4 shows the results for a zoom in on two sites. In each of the images
of the top row, we have plotted a coloured dot for the water points in this area if listed in the field
surveys and a red cross if identified by the digital volunteers through visual inspection on the UAV
imagery. Most digital volunteers found it impossible to identify water points on the Bing Maps, except
for larger water points, for example walled water points. It was possible on the WorldView-3 images,
although it was slightly more complicated than on the UAV images. Unprotected boreholes were most
challenging to identify, given that their size could be of the same order as the 30 cm resolution of the
WorldView-3 images.

In the area of the top row, Madzi Alipo (brown dot), CJF (green dot), Dept Surveys (yellow dot),
and WPDx (red dot) each identified two water points. The Madzi Alipo database describes them as a
piped water point (gravity feed) and a hand pump from Afridev. In both cases, they are functional and
unprotected water points.

In the area of the bottom row, Madzi Alipo, CJF, Dept Surveys, and WPDx each identified two
water points. The Madzi Alipo database describes them as a piped water point (not working) and a
protected hand pump (working). The WPDx database describes them as a gravity-fed system.
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Figure 4. Overview of the different imagery for 175 × 125 m2 for two different locations (top row and bottom row) in the case study area. The red cross refers to water
points as identified on the UAV imagery. Green dots represent water points surveyed by Climate Justice Fund, red dots Water Point Data Exchange, yellow dots
Department of Surveys, brown dots Madzi Alipo. In some cases, the brown and yellow dots coincide. No water points from the Department of Irrigation and Water
Development survey were present in these segments.
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3.2. Results UAV imagery

3.2.1. Visual Inspection

Figures 5–8 show water points detected in UAV imagery. We can determine from a UAV image
what the type of water point is and whether the water comes from an improved or unimproved source.
Figure 5 shows a protected water point. The risk for dysfunctionality can be estimated by the level
of protection of the water point (presence of walls, palisades, fences, or roofs). Dysfunctionality can
also be deduced from dry soil around the water point (Figure 6), whereas wet spots on the soil show
that the water point provides water (Figure 7). The risk for contamination can be assumed based
on the proximity of the water source to visible sewage systems, latrines, or industries, for these can
pollute ground- and surface water or water in rivers and lakes, or floods. Figure 8 shows a water point,
located close to a latrine. It is possible to decide if a water point is located on a premise, but not whose
premise it is. Therefore, the accessibility aspect of the location of a water point cannot be determined
conclusively. In some cases, the UAV imagery allows us to say something on the usage of the water
point if water spills, the presence of people, or buckets were visible.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 9 of 20 
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3.2.2. Contrasting UAV Imagery with the Data on Water Points from other Organizations

Figure 9 gives an overview of the water points (red circles) visually detected on the UAV imagery
(red perimeter) as well as the water points from the field surveys. An automatic comparison in the
open-source desktop GIS software QGIS enables finding water points in the water point field survey
data within different buffers (15, 50, 100, 200, and 500 m). As shown in Figure 10, the 200 and 500 m
buffers can, when close to the edge of the UAV flight area, fall outside the area. We consider that water
points within 15 m from one another are the same water point as the accuracy of the GPS location
might not be 100%.
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Figure 9. Overview of water points (red circle) visually detected on the UAV imagery (red perimeter).
Additionally, the water points from Madzi Alipo, Department of Irrigation and Water Development,
Climate Justice Fund, Water Point Data Exchange, and Department of Surveys are depicted.
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selected water points.
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Table 2 shows that there is not a 100% match. The best match is with the Water Point Data
Exchange data provider [24]. On the UAV imagery, more water points are detected, but also some
water points are not matching. The non-matching can have multiple causes such as that the water
point does not exist, it is below bushes/tree and not visible on the imagery, or it is no longer operational
and dismantled. In these cases, only inspection in the field can provide a conclusive answer. In the
case of matches, the more accurate location of water points can be added to OSM and the databases
of the data providers. Table 3 gives an overview of the protection and the functionality of the water
points as identified on the UAV imagery.

Table 2. Comparison of water points found on UAV imagery (266 in total) with those in the databases.

Data Provider

Number
of Data

Provider
Water

Points in
UAV Area

Match with
Water Points

Identified
on UAV
Imagery

within 15 m

50 m 100 m 200 m

200 m
(Outside

UAV
Area)

500 m

500 m
(Outside

UAV
Area)

Madzi Alipo 52 20 29 36 45 1 54 2
DoIW 41 0 1 8 18 0 43 2

CJF 38 15 17 24 32 0 40 2
WPDx 57 23 29 37 49 1 59 2

Dept of Surveys 99 22 31 45 69 1 103 4
Total 287 80 107 150 213 3 299 12

Table 3. Overview of water points identified in the UAV imagery.

Explanation Number

Total number of water points 266
Match with existing databases within 15 m 80

Without match within 15 m to existing databases 137
Protection of water point

Protected 67
Un-protected 80

Unknown 119
Functionality of water point

Functional 68
Non-functional 10

Unknown 188

The next analysis is to calculate the number of OSM buildings in a radius around a water point in
the UAV flight area (Figure 11). Table 4 gives the result for different ground surfaces of the buildings.
The UAV imagery is closely located to the Mapalera town. As only part of the building footprint of this
town is mapped by the OSM volunteers, there could be more water points close to the not mapped area
that were not discovered during the visual detection. Therefore, the values in Table 4 are an estimation.
It shows that all villages have one or more water points and that the biggest houses are located more in
the center of the villages.



ISPRS Int. J. Geo-Inf. 2020, 9, 592 16 of 20

ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 17 of 20 

 

 

Figure 11. Diagram showing how the number of OpenStreetMap buildings in different buffer zones 

around a water point can be calculated. 

4. Discussion 

Table 5 summarizes how data from various remote sensing, VGI, and field survey data can be 

combined to get more information on water points and their attributes. The left column is a long list 

of all the attributes found in the different water point datasets as provided by both governmental and 

NGO data providers [12]. We added an attribute on the number of users per water point. 

Table 5. Overview of the resolution and added value for water point attributes of the various data 

sources and their analysis method. 

Attributes Data source 

Data acquisition 
UAV (11 cm), Satellite 

imagery (30 cm) 

Satellite imagery 

(50 cm) 
Field survey 

Data analysis Visual inspection, GIS 
OpenStreetMap, 

GIS 
GIS 

GPS location  Between 11 and 30 cm 50 cm 
With the accuracy 

of GPS device 

Access  Walled/non-walled  Not collected  

Install year 

Not possible to identify from the imagery 
Collected in some 

surveys 

Installer/funder 

Management of the 

water point 

Free or paid service  

Water quality 

Number of users per 

water point 

If imagery is taken at a 

certain time of the day, 

the number of persons 

Buildings can be 

traced and then 

uploaded in OSM. 

Not collected 

Figure 11. Diagram showing how the number of OpenStreetMap buildings in different buffer zones
around a water point can be calculated.

Table 4. Overview of OpenStreetMap (OSM) buildings in the area with UAV images.

Radius around Water Point (m) Number of OSM Buildings

Ground Surface of Building

All Sizes >15 m2 >15
<100 m2

Whole UAV image 4963 3614 3518
15 34 23 23
50 578 416 409

100 1730 1314 1286
200 3145 2428 2383
500 4407 3463 3390

>500 556 151 128

4. Discussion

Table 5 summarizes how data from various remote sensing, VGI, and field survey data can be
combined to get more information on water points and their attributes. The left column is a long list of
all the attributes found in the different water point datasets as provided by both governmental and
NGO data providers [12]. We added an attribute on the number of users per water point.
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Table 5. Overview of the resolution and added value for water point attributes of the various data
sources and their analysis method.

Attributes Data Source

Data acquisition UAV (11 cm), Satellite imagery
(30 cm) Satellite imagery (50 cm) Field survey

Data analysis Visual inspection, GIS OpenStreetMap, GIS GIS

GPS location Between 11 and 30 cm 50 cm With the accuracy
of GPS device

Access Walled/non-walled Not collected

Install year

Not possible to identify from the imagery Collected in some
surveys

Installer/funder

Management of the
water point

Free or paid service

Water quality

Number of users
per water point

If imagery is taken at a certain
time of the day, the number of

persons around the water point
could be counted.

Buildings can be traced and
then uploaded in OSM. By

overlaying with buildings in
OSM as a proxy for the

number of users.

Not collected

Type of water point Protected/non-protected/unknown Not possible

Electric or hand
pump, open or

piped water

Functionality Possible Collected in some
surveys

Visit time Time of drone flight or overpass of
satellite

Date when buildings traced
by volunteers

When field
survey is done

Reporter Digital volunteer Digital volunteer Enumerator of
organization

UAV images typically have a higher resolution than satellite images and are therefore more
suitable for water point detection. The images we were able to collect with UAVs have a resolution of
11 cm, which is sufficient for the identification of water points. Satellite imagery of 30 cm resolution
enables identifying the somewhat larger or walled water points, whereas 50 cm satellite imagery
does not. The combination with OSM building footprint data are powerful and enables us to get
more insights. However, the combination of OSM and UAV data did not fill all information gaps.
Whereas our pilot proves that UAV imagery is promising in closing some information gaps, field
surveys will remain necessary. Water quality, water point management, and whether a water point
provides a free or a paid service cannot be determined from UAV imagery. Increased adoption of data
collection tools that can capture spatial data instead of using paper or other non-spatial collection
methods contributes to filling information gaps. Nevertheless, combining remote sensing data with
field survey data can play an important role, especially if, for example, the remote sensing data are
taken at more regular intervals than the field surveys.

Besides information gaps, combining remote sensing, VGI and field survey data is essential in
responding to geographical gaps. Location analysis can be used to identify the spatial deficits in
information coverage. Once these are identified, new data can efficiently be collected in target areas.
This can be done either by conducting field surveys or by UAV missions as described above. Hereby the
OSM community can support by mapping the targeted areas on the UAV imagery.
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In terms of the different aerial imagery available, satellite imagery would be the most scalable
compared to UAV and paerial photography. Commercial satellite data providers can capture any place
on earth at very regular intervals and usually offer resolutions from 30 cm onwards. However, funding
issues for high-resolution satellite imagery will need to be resolved. Prices for 50 cm resolution are
typically between $20 to $40 per km2 [25], and hence higher resolution will be most likely more
expensive. RCMRD gives as the surface of Malawi 118,484 km2, which would amount to a cost of
over $2.3 million. This cost will be an upper limit as probably satellite providers reduce the cost
per km2 if one buys imagery for a very large area. RCMRD charged NSO US $1.1 million for technical
assistance and the satellite imagery for the whole of Malawi (but for 0.5 m up to 2.5 m resolution) [18].
To compare, Malawian drone companies typically request around US $5 per hectare, which amounts to
US $ 500 per km2. Costs for nationwide field surveys are more difficult to determine. According to [2]
and [26], sample-based methods such as household surveys cost on average between US $460,000 to
1.7 million depending on the type of survey used.

5. Conclusions

The main implication of our research is that we have created, for small areas, a cost-effective
workflow that can create an up-to-date and consistent water point dataset. This workflow combines
UAV imagery, VGI, and field survey data. Important in combining these heterogeneous datasets is the
information on buildings mapped through the open VGI platform OSM, whereby OSM enables easy
and systematic scaling of the mapping to other areas. The resulting water point data fill a gap in the
data needs for monitoring water-related SDGs on a sub-national level as it provides more details on
the service level of water points at the household level. Our analysis clarifies the added value per data
source, given that the attribute information and quality vary.

Future research will assess how collaboration with other organizations doing UAV analysis
in Malawi can potentially enable scaling of the approach tested in this pilot. OpenAerialMap [27]
already has some UAV imagery from different areas of Malawi available. The expectation is that the
amount of openly available imagery will grow, given that more and more low-cost UAVs become
available, and more and more governmental and humanitarian organizations start using them. We will
also look into using other geospatial data such as the High-Resolution Settlement Layer, as it gives
a high-resolution estimation of people living in the area. Digital Elevation Models extracted from
UAV imagery can serve to identify which water points will be most at risk of getting flooded and for
which return periods. Overall, building data collaboratives [12] will be essential to align the different
data collection efforts and facilitate data sharing among the many actors involved in the fragmented
WASH sector.
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