
 International Journal of

Geo-Information

Article

Spatial Assessment of the Effects of Land Cover
Change on Soil Erosion in Hungary from 1990 to 2018

István Waltner * , Sahar Saeidi, János Grósz, Csaba Centeri , Annamária Laborczi
and László Pásztor

Faculty of Agricultural and Environmental Sciences, Szent István University, 2100 Gödöllő, Hungary;
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Abstract: As soil erosion is still a global threat to soil resources, the estimation of soil loss, particularly
at a spatiotemporal setting, is still an existing challenge. The primary aim of our study is the
assessment of changes in soil erosion potential in Hungary from 1990 to 2018, induced by the
changes in land use and land cover based on CORINE Land Cover data. The modeling scheme
included the application and cross-valuation of two internationally applied methods, the Universal
Soil Loss Equation (USLE) and the Pan-European Soil Erosion Risk Assessment (PESERA) models.
Results indicate that the changes in land cover resulted in a general reduction in predicted erosion
rates, by up to 0.28 t/ha/year on average. Analysis has also revealed that the combined application of
the two models has reduced the occurrence of extreme predictions, thus, increasing the robustness of
the method. Random Forest regression analysis has revealed that the differences between the two
models are mainly driven by their sensitivity to slope and land cover, followed by soil parameters.
The resulting spatial predictions can be readily applied for qualitative spatial analysis. However,
the question of extreme predictions still indicates that quantitative use of the output results should
only be carried out with sufficient care.

Keywords: PESERA; USLE; soil erosion; Hungary; land use and land cover; CORINE Land Cover;
Random Forest

1. Introduction

Soil erosion by water continues to be a significant degradation process for soil resources around
the world. Due to the expected increased occurrence of extreme precipitation events, soil erosion
remains a key threat to soil resources [1–3]. Therefore, soil erosion by water is still in the focus of a
number of global and regional policies [4].

In the past decades, a significant number or model-based soil erosion susceptibility mapping
studies have been carried out worldwide [5]. Batista et al. [6] provided a review of recently applied
soil erosion models, evaluation methods, and limitations.

A large portion of soil erosion modeling projects focused on the use of the empirical Universal Soil
Loss Equation (USLE) [7] or its revised versions MUSLE [8,9] and RUSLE [10] in variable spatial and
temporal scales. A growing number of applications are utilizing remotely sensed input data [11–15].

The Pan-European Soil Risk Assessment (PESERA) model was primarily developed for the
regional scale estimation of rill and inter-rill erosion. As a process-based model, PESERA requires
a significantly larger number of input data layers and a larger amount of processing power than
the USLE model. Most recently Li et al. [5] have applied the PESERA model along with the RUSLE
model. National level soil erosion maps in Hungary have first been founded on field-based expert
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knowledge [16]. In 2000, a 1:100,000 scale USLE based national erosion risk map has been compiled [17].
In 2016, Pásztor et al. [18] developed a new soil erosion risk map for Hungary, based on the USLE
and PESERA models, focusing on the extreme wet year of 2010. This map was later adopted for the
National Atlas of Hungary [19]. While the primary focus of soil erosion research in Hungary is erosion
by water, there have also been recent studies focusing on susceptibility to wind erosion [18,20].

Since Hungary is still lacking a comprehensive national soil erosion monitoring network [21],
proper validation and/or calibration of such maps has been a challenge. A semi-quantitative evaluation
study has concluded that the map from the combined USLE–PESERA approach has been in line with
in situ observations of farmers [22].

Land use and land cover (LULC) play a critical role in soil erosion processes. The changes in LULC
can have significant effect on susceptibility to soil erosion [23–25], especially in case of agricultural
land use [26–28], and, thus, can contribute to reductions in soil organic carbon (SOC) [29]. Therefore,
understanding LULC dynamics and its effects on soil erosion can provide key information to decision
makers [11,30–33].

Considering the effects of land use change on soil erosion, several studies have been focused on
the assessment of LULC changes. One typical approach is the simulation of LULC change by different
models. For example, Shrestha et al. [34] quantified the individual and integrated impacts of climate
and land use change in stream flows in the Songkhram River. They used dynamic conversion of land
use and its effects (Dyna-CLUE) as a land use change model to define land use change scenarios.
Zhang et al. [35] used a combination of a Markov chain model and Dyna-CLUE model to simulate
future land uses. Lamichhane and Shakya [36] also utilized a CLUE-S based approach to assess the
impact of LULC and climate change on watershed hydrology. Another common methodology is based
on using legacy information and/or satellite data for the assessment of LULC changes [37–39].

As the abovementioned studies show, both the USLE and the PESERA models are still being
applied for evaluating the effects of changes in climate or in land use/land cover, even though there are
clear differences in their predictions [40,41]. In their recent study, Ciampalini et al. [42] have performed
a sensitivity analysis with the PESERA model, focusing on the effects of climatic parameters. However,
there is still a lack of information regarding the effects of other input parameters, specifically the effects
of land use/land cover.

In modeling situations, where sufficient validation data is not available, a potential method is the
application of random forest variable importance measures in order to assess the sensitivity of models
to particular input variables [43,44]. To our knowledge, this method has not yet been applied for the
comparison of USLE and PESERA models.

The aim of the work presented here was to assess the extent of land cover changes in Hungary
between 1990 and 2018, and to estimate the effects these changes had on soil erosion potential, while also
providing a comparison of the two models and their sensitivity to input parameters through the
application of random forest variable importance. Our basic assumptions include the established
nature of the applied models (i.e., they provide valuable information regarding potential loss due to
water erosion [18,22]), and reliability of the input datasets. Our base hypothesis is that LULC changes
from 1990 to 2018 have influenced potential erosion rates. In order to make different years comparable,
we have used the climate data of 2010 as a benchmark year.

2. Materials and Methods

The current study has adopted the methodology and the data utilized for the development of
the Soil Erosion Map of Hungary [18]. While a national erosion monitoring network does not exist,
this map (utilizing the 2006 CORINE Land Cover data) has been semi-quantitatively evaluated and is
currently accepted at the national level [22,45]. In order to assess the effect of LULC change, all variables
unaffected by such changes have been kept as stationary, focusing on the wettest observed year 2010 as
climatic baseline.
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2.1. Study Area

Hungary is situated in central Europe (45◦48′ and 48◦35′N, 16◦05′, and 22◦58′ E), in the Carpathian
Basin. Its highest peak is at 1014 m, while its lowest point is at 78 m. The whole area of the country is
in the basin of the Danube River [19].

The relief of Hungary is mostly expressed as low elevation and low vertical dissection (Figure 1).
The area is dominated by lowland regions (82.4% below 200 m), with only about 0.5% of terrain
above 500 m. Medium-height mountains (200–500 m) cover 2.1% of the area, while hills and foothills
15.5%. [46]

Figure 1. Location and (DEM-based) topography of the study area (Hungary).

Hungary is located in the northern temperate zone, but is influenced by three climatic zones
(oceanic, continental and Mediterranean). Its climate is characterized by four seasons, with a great
temporal variability. Typical climatic parameters for the whole of Hungary are presented in Table 1.
Summer is the warmest season with the highest seasonal precipitation, while winter is typically
the coldest and driest season. However, precipitation can be especially variable in the region both
temporally and spatially. The wettest observed year was 2010, also having an average of 9 days
with high (more than 20 mm) precipitation [47]. Recent studies have shown that while the spatial
distribution of extreme (more than 40 or 60 mm) rainfall events has not changed significantly over
the past decades, their intensity and frequency is showing an increasing tendency [48,49]. Figure 2
presents the spatial distribution of annual precipitation for the present study’s benchmark year 2010.

Amongst the different natural hazards in Hungary, mass movements (primarily landslides) are
concentrating only in small areas, while soil erosion by wind can amount to as much as 80–110 million
m3 annually, with 10% of the total area of the country being susceptible to wind erosion [45,50,51].
Soil erosion by water affects about 24.7% of the total area of Hungary [18,21].

Hungary has a wide variety of soils. In hilly or mountainous areas, Luvisols and Cambisols are
typical, while the Great Plain area has a range of Chernozems, Vertisols, Solonchaks and Solonetz
soils. Alluvial plains often contain Luvisols, while certain areas with sand deposits have Arenosols
dominating [52]. Figure 3 presents the spatial distribution of the USLE K factor in Hungary.
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Figure 2. Annual precipitation in Hungary (mm) in 2010.

Figure 3. Universal Soil Loss Equation (USLE) K factor in Hungary.

The vegetation of Hungary is mostly part of the Pannonian region, a forest steppe surrounded
by the Turkey oak forest zone. The Carpathian Mountains are dominated by beech and spruce.
Influenced by various biogeographic effects, the Pannonian region has a highly diverse vegetation
with variable spatial distribution. Besides grasslands and dry oak forests, there is a high proportion of
Sub-Mediterranean, continental and Balkan species, with Eurasian elements still dominant in most
plant communities. [53]
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Table 1. Average values of basic climatic parameters of Hungary [41].

Climatic Parameter Typical Values

Annual sunshine duration 1900–2100 h
Annual mean temperature 10–11 ◦C

Mean annual temperature range 22.1 ◦C
Average annual precipitation 580 mm

Prevailing wind direction northwestern
Annual mean wind speed 2.5 m/s

2.2. Applied Models

2.2.1. The Universal Soil Loss Equation (USLE) Model

The empirical USLE model was the first widespread method to calculate soil loss. The model uses
the following formula to calculate average annual soil loss A (t/ha-):

A = R×K × L× S×C× P (1)

where R is the rainfall erosion index (MJ mm/ha/h/y), K is the soil erodibility factor (t×ha×h /ha/ MJ/mm),
L is slope length factor and S is slope gradient factor, C is the cropping cover management factor,
and P is the agricultural practice factor [7,21]. In case of the agricultural practice factor is not available,
a default value of 1 can be used [21].

2.2.2. Pan-European Soil Risk Assessment (PESERA) Model

The process-based model partitions the precipitation into overland flow, evapotranspiration
and soil moisture storage. It also includes a plant growth model to calculate biomass, leaf fall and
vegetation cover. It generates daily rainfall using a monthly Gamma distribution. To compute total
erosion, sediment yield Y is calculated by the expression:

Y = ςkH
∑

r2 (2)

where ς is the ratio of slope base to average gradient, k is the soil erodibility (kg liter−2 m day), H is the
total slope length (m) multiplied by the average slope gradient and r is the local runoff in (mm) for
each event. Detailed equations and model description are presented by Kirkby et al. [54].

The PESERA model requires a large number of input layers of which 96 relates to climate (rainfall,
temperature, potential evapotranspiration), 25 to land use, crops, and planting dates (land cover type,
dominant arable crops, planting dates, initial ground cover, initial surface storage, surface roughness
reduction per month, root depth), 6 to soil parameters (crust storage, sensitivity to erosion, effective
water storage capacity, soil water available to plants in top 300 mm, soil water available to plants,
scale depth) and 1 to topography (standard deviation of elevation in a 1.5 km radius). Some climatic
layers are optional and are only used in case of simulating climatic changes (not applicable for the
current study). In case dominant crops are not available, a default assumption of maize can be applied
to all arable land. Detailed description of model input parameters and application is presented in the
PESERA Manual [55].

2.3. Data Sources and Processing

All source and input datasets (see Table 2) have been in a raster format, with their original
grid size resampled and/or interpolated where necessary. The target grid size of the study was a
100 × 100 m (1 ha) grid.

Data processing and application of the USLE model (multiplication of its factors) was primarily
carried out in ArcMap 10.1, while application of the PESERA model utilized ArcInfo Workstation 9.3 for
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pre- and post-processing. The PESERA model itself is a set of standalone executable and. aml files,
including the model itself and data input/output [55]. Analysis, tables and graphs have been prepared
with MS Excel and R software [56].

Table 2. The main datasets used in the analysis.

Input Data Source Original Grid Resolution

Land use and land cover CORINE Land cover [57] 100 × 100 m

Climate data
CARPATCLIM database [3] 0.1◦ × 0.1◦

Agri4Cast MARS [58] 25 × 25 km

Topographic information EU-DEM [59] 30 × 30 m

Soil data DOSoReMI.hu [60] 100 × 100 m

2.3.1. Land Use and Land Cover information

Information on LULC for the years 1990, 2000, 2006, 2012, and 2018 has been obtained from the
respective CORINE Land Cover datasets at 100 × 100 m resolution.

The CORINE Land Cover (CLC) inventory includes 44 land cover classes for the abovementioned
years. CLC mapping units are delineated via visual interpretation as well as by semi-automatic
classification of satellite imagery. The geometric accuracy of the datasets is generally better than 100 m,
while the thematic accuracy is typically above 85%, depending on countries [57].

All land use related layers for the PESERA model have been derived by the reclassification of the
CORINE data based on the PESERA Manual [55]. As annual information on crops at arable land at
a hectare level was not available, maize crop has been selected as a worst-case scenario for both the
PESERA and the USLE (C factor) models, with an April sowing date. For the same reason, the USLE P
factor has been set to 1, as detailed information was not available at a national scale.

C factor for the USLE model has been calculated based on the CLC values according to
Podmaniczky et al. [61]

2.3.2. Climatic Information

The year 2010 has been selected as a baseline for comparing the effects of LULC changes. Therefore,
all LULC “scenarios” have used the same climatic input variables. Where available, climate data
was obtained from the CARPATCLIM database [3]. However, since a part of western Hungary is not
covered by CARPATCLIM, AGRI4CAST MARS data [58] has been used to supplement it. The two
datasets have been merged and re-interpolated for a 100 m grid via Ordinary Kriging in SAGA GIS.
The PESERA model used monthly data (precipitation, PET, and temperature), while the USLE only
required yearly precipitation data, where the extreme nature of the 2010 precipitation was represented
as a 20-years return frequency. Calculation of R was based on the method proposed by Renard and
Freimund [62], by the combined use of the following equations:

R = 0.04830 P1.610 (3)

and
R = 587.8− 1.219 P + 0.004105 P2 (4)

where P is the mean annual precipitation. Equation (3) has been applied where P < 850 mm,
while Equation (4) has been applied for P > 850 mm.

2.3.3. Topography

Elevation-based characteristics for both models have been derived from the EU-DEM dataset [59].
The Standard deviation of elevation within 1.5 km radius (for PESERA) was calculated in ArcMap 10.1.
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The USLE L (slope length) and S (slope gradient) factor was calculated in SAGA GIS based on Moore’s
method [63], according to the following equation:

LS = (0.4 + 1)
( As

22.13

)0.4( sin β
0.0896

)1.3

(5)

where β is the average slope and As is the specific catchment area.

2.3.4. Soil Information

Soil parameters (particle size distribution, organic matter content and carbonate content) have
been provided from the DOSoReMI.hu initiative [60], based on the Digital Kreybig Soil Information
System (DKSIS) [64] and the Hungarian Soil Information and Monitoring System [65]. The USLE K
factor has been calculated based on the method of Sharply and Williams [66]:

K =
(
0.2 + 0.3e[−0.256SAN(1−SIL/100)]

)
×

(
SIL

CLA+SIL

)0.3
×

(
1− 0.25OM

OM+e(3.72−2.95OM)

)
×

[
1− 0.7SN1

SN1+e(22.9SN1−5.51)

] (6)

where SAN = sand, SIL = silt, CLA = clay and OM = organic matter content of the soil while
SN1 = 1 − SAN/100.

The PESERA soil erodibility and surface crusting factors were calculated based on Fryrear et al. [67],
while soil water available to plants, effective soil water capacity, and scale depth have been
downscaled from the original pan-European dataset [55], using regression kriging and conditional
generalization [18].

2.4. Harmonization and Combination of Results

The applied harmonization/combination procedure followed the method, which had been used
earlier in developing and evaluating the Soil Erosion Map of Hungary [18,22,45]. Some predicted
values proved to be negative. These values have resulted from the modeling process. In case of the
USLE, they represent urban areas or waterbodies that were later masked out during the procedure and
thus set to 0. As the PESERA model also calculates sediment accumulation, its negative values are
actually meaningful. However, since sediment accumulation was not in the scope of the current study,
in order to avoid any confusing results, predicted values below 0 have been set to 0. This does not
affect the results, as soil erosion in deposition sites is considered zero.

The combination of outputs from the two models involved calculating a cell-by-cell mean of the
two model outputs. Where only one of the models produced outputs (due to slight differences in
methodology), the existing results were accepted.

2.5. Evaluation and Analysis

Statistical analysis of the results primarily included basic descriptive analysis and cross-correlation
tables. Year to year comparison of erosion estimates followed the general rule of subtracting the output
of the earlier scenario later one. This produced positive values where values have increased and
negative ones where they decreased. Comparison of the USLE and PESERA outputs was carried out
by calculating the difference between the two output layers for each modeled year.

In order to assess the influence of different input variables, Random Forest regression models
have been created for each modeled year, for both models as well as the differences in the predicted
results of the two model, from a randomized representative subsample of 70,236 points, using the
randomForest package in R. For each model, 500 regression trees have been grown, with 3 variables
tried at each node. Since the since the specific input variables were in many ways different between
the two models, a set of 10 key variables have been identifies representing the potential effects of
precipitation (total annual rainfall in 2010, “prec”), slope (‘slope’), land cover (CORINE Land Cover,
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“clc”) and soil properties (USLE K factor, “k”; PESERA crust storage, “crust”; PESERA sensitivity to
erosion, “erod”; PESERA effective soil water storage capacity, “swsc_eff”; PESERA soil water available
to plants in top 300 mm, “p×1”; PESERA soil water available to plants between 300 and 1000 mm,
“p×2”; PESERA scale depth, “zm”).

3. Results

3.1. Land Cover Change

The identified changes in LULC are summarized in Figure 4, with original CORINE categories
merged into major groups for better presentation. The figure shows an almost continuous reduction
in “Non-irrigated arable land”, coupled with an increase of “Artificial surfaces” and “Transitional
woodland-shrub”, while other categories seem to have only slight variations.

Figure 4. Land use and land cover (LULC) change over time by total area.

Figure 5 presents the changes as a percentage of the total area covered by each category. The most
observable trends are the reduction of non-irrigated arable land and the increase of artificial surfaces
and transitional woodland–shrub areas. These indicate that such changes are primarily driven by
land use and natural succession can play a part only when arable land is (either temporarily or long
term) not being cultivated. The changes are generally well-distributed in the country, and occur mostly
sporadically, without any visible spatial trends at the national level. A summary of the changes from
1990 to 2018 is presented in Table 3, while more detailed comparison of all five years is presented in
Appendix A.
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Figure 5. LULC change over time by percent change.

Table 3. Area affected by LULC change in Hungary between 1990 and 2018.

LULC 1990–2018 1990 (ha) 2018 (ha) Changes (ha) Changes (%)

Urban fabric 415,567 452,283 36,716 0.39
Industrial, commercial, transport 56,848 89,027 32,179 0.35

Mine, dump, and construction sites 11,869 16,489 4620 0.05
Green urban areas, sport-leisure facilities 36,373 40,379 4006 0.04

Non-irrigated arable land 4,958,900 4,708,948 –249,952 –2.69
Rice fields 14,775 8048 –6727 –0.07

Permanent crops 215,013 174,079 –40,934 –0.44
Pastures 680,005 692,421 12,416 0.13

Heterogeneous agricultural areas 483,859 452,706 –31,153 –0.34
Forests 1,684,294 1,744,546 60,252 0.65

Natural grasslands 225,809 230,786 4977 0.05
Transitional woodland-shrub 241,934 425,027 183,093 1.97

Sparsely vegetated areas 2413 2844 431 0.01
Inland wetlands 103,428 87,162 –16,266 –0.18

Inland waters 170,175 176,579 6404 0.07

3.2. Soil Erosion

As output of the erosion modeling and evaluation process, a total of 30 maps have been created
(see Appendix B). Estimated soil loss maps have been prepared for the LULC distribution for the years
1990, 2000, 2006, 2012, and 2018. Results included PESERA and USLE based estimates as well as maps
of the combined (mean) estimates.

Figure 6 presents the estimated soil loss based on the latest available (2018) land cover information
based on the PESERA model. Output of the USLE model for the same year is presented in Figure 7,
while the combined (mean) output is shown on Figure 8. Results for other years are provided in
Appendix B (Figures A1 and A2).

Spatial coverage of soil erosion classes showed no significant variation between the years.
Most of the country area (PESERA: 83.7–83.6%; USLE: 63.6–65.1%) showed below 5 t/ha/y soil loss;
while coverage of higher classes has varied between the two models for 5–10 t/ha/y (PESERA: 6.0–6.7%;
USLE: 13.3–13.7%); and above 10 t/ha/y (PESERA: 10.3–10.7%; USLE: 21.6–22.7%).
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Figure 6. Estimated soil loss for 2018 LULC by the Pan-European Soil Erosion Risk Assessment
(PESERA) model.

Figure 7. Estimated soil loss for 2018 LULC by the USLE model.

In order to assess the effects of LULC changes and their spatial distribution, a number of maps
have been created by subtracting predictions of the older map from the newer one. Changes in erosion
rates from the year 1990 to 2018 are displayed in Figure 9, while changes for other years are presented
in Appendix B.
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Figure 10 presents the changes in mean soil loss over the observed time period for the different
estimation (USLE, PESERA, combined) methods. The graphs clearly show that the effects of changes
are more prominent in case of the USLE model, and thus the combined approach.

Figure 8. Estimated soil loss for 2018 LULC by the combination of the PESERA and USLE models.

Figure 9. Change in erosion estimates from 1990 to 2018 LULC (PESERA and USLE models combined).
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Figure 10. Changes in mean estimated soil loss over time, by using the PESERA and USLE models and
their combination.

In order to evaluate the effect of land use on the prediction difference between the two
models, Figure 11 displays the minimum and maximum values (thus also ranges) of prediction
differences within CORINE categories. Some categories (211, 311, and 324) had higher variation than
others. These results show that for certain classes (111—continuous urban fabric, 213—rice fields,
221—vineyards, 333—sparsely vegetated areas, 411—inland marshes, 511—water courses) USLE was
more likely to provide higher estimates, while for other categories the over-/underestimation of the
two methods were more balanced, with the possible exception of pastures (231), where PESERA was
slightly more likely to produce higher estimates.

Figure 11. Minimum and maximum values of differences in PESERA and USLE predictions for 2018 by
CORINE land cover classes.

Table 4 presents the basic descriptive statistics on the effects of LULC changes. The mean shows
that at a national level, with the exception of the period 1990 to 2000, the potential erosion has been
continuously reduced.
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Table 5 compares the changes estimated by the different methods. It clearly shows that the USLE
method generally provided a higher mean estimate, while from 2000 onwards, the highest estimate
was predicted by the PESERA method.

It has to be noted that the maximum values presented in most of this chapter are extremely
high values that are not at all typical under Hungarian conditions. In fact, in all likelihood these
extreme values are outliers. However, at present we have insufficient observed information to provide
an appropriate baseline from which calculation and removal of extreme outliers would be possible.
Observation of the spatial distribution of estimates above 100 t/ha/y indicate that these mostly occur in
the hilly regions. In case of the PESERA, they mostly show up in the Transdanubian Mountains (north
of Lake Balaton), while the USLE estimates are generally evenly distributed along the mountains/hills
of Hungary.

Table 4. Descriptive statistics on the effects of LULC changes on erosion estimates (in t/ha/y).

1990 to 2000 2000 to 2006 2006 to 2012 2012 to 2018 1990 to 2018

Min. –3976.6 –936.3 –600.9 –1134.7 –1134.7
Max. 1092.2 929.7 691.0 760.7 760.7

Mean. 0.005 –0.344 –0.085 –0.200 –0.286
Std. Dev. 9.787 8.948 4.768 9.244 10.148

Table 5. Descriptive statistics on the effects of LULC changes and different modeling methods on
erosion estimates (in t/ha/y).

Year Method Min.1 Max. Mean. Std. Dev.

1990
PESERA 0.00 1835.00 4.87 20.70

USLE 0.00 6306.58 13.86 38.18
combined 0.00 3989.92 9.36 23.25

2000
PESERA 0.00 1755.00 5.03 20.79

USLE 0.00 1335.61 13.71 37.64
combined 0.00 1195.49 9.37 23.15

2006
PESERA 0.00 1835.00 5.06 22.11

USLE 0.00 1278.95 13.01 35.80
combined 0.00 1195.49 9.02 22.43

2012
PESERA 0.00 1835.00 5.05 22.52

USLE 0.00 1278.95 12.85 35.51
combined 0.00 1195.49 8.94 22.38

2018
PESERA 0.00 1834.65 4.99 21.21

USLE 0.00 1354.66 12.51 34.69
combined 0.00 1022.86 8.74 21.64
1 Negative estimates (sedimentation) have been changed to 0.

3.3. Importance of Input Variables

In order to assess the importance of the input variables, affecting both the output of the models
as well as the differences in predictions between the two, 15 Random Forest (RF) regression models
have been calculated. Detailed results of these models are presented in Appendix C. An example
visualization of variable importance for the differences between the two models for 2018 is presented
on Figure 12. The left side of the figure indicates the importance of each variable as a percentage of
increase in mean squared error (MSE) upon leaving out the variable, while the right-hand side presents
node purity based on the Gini index.

The ranking of variables by importance is presented in Table 6. Table 7 presents the importance
(see above) of each input variable, as well as the mean squared residuals and the % of variance explained
by the Random Forest regression. It is important to note that the importance of these variables is



ISPRS Int. J. Geo-Inf. 2020, 9, 667 14 of 27

presented based on the RF regression only, since the models themselves do not share the exact same
input variables.

Table 6. Variable ranking based on Random Forest regression analysis.

Ranking 1 2 3 4 5 6 7 8 9 10

PESERA zm clc slope prec swsc_eff p2x erod k p1x crust
USLE slope clc k p2x prec swsc_eff erod p1x crust zm
U-P slope clc zm p2x swsc_eff prec erod p1x crust k

(P—PESERA; U—USLE; %IncMSE—percentage of increase in MSE; prec—total annual rainfall in 2010; slope—slope;
clc—CORINE Land Cover; k—USLE K factor; crust—PESERA crust storage; erod—PESERA sensitivity to erosion;
swsc_eff—PESERA effective soil water storage capacity; p×1. PESERA soil water available to plants in top 300 mm;
px2—PESERA soil water available to plants between 300 and 1000 mm; zm—PESERA scale depth).

Figure 12. Variable importance based on Random Forest regression for the differences between the USLE
(U) and PESERA (P) models for 2018 predictions. (P—PESERA; U—USLE; %IncMSE—percentage of
increase in MSE; prec—total annual rainfall in 2010; slope—slope; clc—CORINE Land Cover; k—USLE
K factor; crust—PESERA crust storage; erod—PESERA sensitivity to erosion; swsc_eff—PESERA
effective soil water storage capacity; p×1. PESERA soil water available to plants in top 300 mm;
p×2—PESERA soil water available to plants between 300 and 1000 mm; zm—PESERA scale depth).
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Table 7. Variable importance based on Random Forest regression analysis.

Mean of Squared
Residuals:

% Variance
Explained:

%IncMSE

slope prec clc erod crust k p1x p2x zm swsc_eff

1990
P 364.29 47.26 23.82 26.15 29.94 19.25 18.28 21.62 18.04 22.97 43.16 35.50
U 452.24 73.80 100.29 34.57 68.14 32.36 24.32 58.62 31.79 45.57 22.30 29.46

U-P 767.34 64.89 93.42 30.40 64.44 32.19 27.02 11.67 34.02 48.37 45.61 47.89

2000
P 331.22 51.90 27.41 39.42 53.92 27.00 16.63 32.03 26.00 24.48 58.04 32.59
U 454.33 73.20 104.18 40.30 96.80 31.03 24.50 60.88 29.25 36.72 24.92 35.01

U-P 695.86 66.60 89.29 47.11 86.93 37.85 21.90 44.07 39.30 45.10 56.85 39.34

2006
P 371.83 52.40 34.33 28.89 36.34 42.13 22.39 15.49 14.73 33.41 44.94 25.49
U 422.93 71.49 84.17 36.80 95.83 35.71 28.99 58.16 21.62 42.31 26.82 34.28

U-P 711.38 64.56 79.44 36.58 88.94 33.79 21.23 9.90 28.81 42.06 46.01 44.41

2012
P 389.83 51.52 32.03 34.14 34.74 29.31 19.97 11.86 24.50 30.79 40.60 27.75
U 420.13 71.42 89.85 42.33 96.81 33.79 24.77 53.31 30.52 41.65 26.75 33.87

U-P 729.05 64.13 77.07 34.81 75.40 36.78 22.71 10.17 23.07 46.08 43.10 44.76

2018
P 727.61 64.20 78.04 41.95 73.73 35.31 20.55 9.41 27.37 52.46 43.99 48.45
U 442.73 67.40 88.86 37.17 85.72 32.21 35.01 53.53 31.85 47.75 27.77 38.59

U-P 740.58 60.68 78.96 30.64 70.42 23.32 20.04 12.00 26.16 49.89 59.21 39.62

Mean
PESERA 39.12 34.11 45.74 30.60 19.56 18.08 22.13 32.82 46.14 33.96

USLE 93.47 38.24 88.66 33.02 27.52 56.90 29.00 42.80 25.71 34.24
U minus P 83.64 35.91 77.23 32.79 22.58 17.56 30.27 46.30 50.16 43.20

(P—PESERA; U—USLE; %IncMSE—percentage of increase in mean squared error (MSE); prec—total annual rainfall in 2010; slope—slope; clc—CORINE Land Cover; k—USLE K factor;
crust—PESERA crust storage; erod—PESERA sensitivity to erosion; swsc_eff—PESERA effective soil water storage capacity; p×1. PESERA soil water available to plants in top 300 mm;
px2—PESERA soil water available to plants between 300 and 1000 mm; zm—PESERA scale depth).
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4. Discussion

Analysis of the results have demonstrated that the effects of LULC changes between 1990 and 2018
are clearly present in Hungary, with a general reduction in soil erosion estimates. This indicates that
the applied changes have somewhat reduced soil erosion risk in Hungary. Based on the comparison of
estimated mean erosion values for the 1990 and the 2018 land cover, a reduction of 0.28 t/ha/year has
been calculated. Considering the 93,030 km2 total territory of Hungary, this would mean the potential
conservation of approximately 2.6 million tons of soil per year, under the same climatic conditions
as 2010.

However, the spatial distribution of these changes is not even and it is clear that there are small
areas all around the country where erosion risk has increased due to the changes in land cover.
While the applied methodology of utilizing the CORINE datasets as input is well established [29], it is
best applied for analyzing long-term changes. However, the same methodology could also be utilized
to evaluate short-term changes based on Sentinel-2 imagery as demonstrated by Karydas et al. [68].

Spatial pattern of changes (Figure 9) in predicted erosion rates reveal that the effect of LULC
changes are present throughout the country. However, visual interpretation of the results also suggests
that the effect of these changes is much more significant in hilly and mountainous regions. This effect
is clearly visible in (but not limited to) the North Hungarian Mountains and the Transdanubian
Mountains. Occurrence as well as intensity of such changes (as variables influencing soil erosion) is
less expressed in the low-lying areas, such as the Hungarian Great Plain.

The successful application of the two models supported the validity of their application as
found in similar studies recently [69]. However, longer, more demanding processing for the PESERA
model indicates the growing demand for higher level processing utilities, such as parallel processing
capabilities for physically based models [70].

Comparison of the two models showed that as in previous studies, the USLE model produced
generally higher estimates than the PESERA. This is in line with the findings of other studies [40,41,70]
where applying the RUSLE and the PESERA model provided similar results. Their findings indicate
that PESERA has performed better responding to changes in vegetation rather than to slope. Evaluation
of the Random Forest regression analysis has confirmed this. It is also worth noting that PESERA
was also more sensitive to soil parameters than the USLE model. The PESERA model is also likely to
produce lower predictions at finer spatial resolutions [41], which clearly demonstrated its limitations
when applying at smaller scales. Changes in the mean maximum values of the PESERA model have
been less influenced by the land cover changes, indicating that the USLE model was more sensitive
to such effects. The differences in predictions do not seem to be specific for any particular LULC
classes. While some land cover categories indeed produced higher variations in prediction difference,
these categories can also be associated with a higher spatial coverage. Tables 6 and 7 indicate that
the differences between the two model are mainly driven by their sensitivity to slope and land cover,
followed by soil parameters. The differences in predictions underline the findings of [6] regarding the
importance of communicating uncertainty in erosion models. While the existence of new and updated
spatially explicit erosion estimates is undeniably beneficial, end users—including decision makers and
the general public—should also be more aware of the limitations of these products.

Future research should focus on the appropriate determination method for outlier predictions
and their removal from the datasets. A comparison of model estimates with field-based monitoring
data would also be invaluable for a proper valuation of the methodologies.

5. Conclusions

During our research, we have successfully applied a combined approach of the PESERA and
USLE models for estimating the effects of recent LULC changes in Hungary. Based on our results and
discussion above, we can establish the following conclusions:
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• Changes in land use/land cover from 1990 to 2018 have reduced potential soil erosion by water in
Hungary by up to 0.28 t/ha/year on average.

• LULC changes in Hungary have primarily affected the extent of non-irrigated arable land
(decreased), artificial surfaces and transitional woodland-shrub areas (increased).

• The USLE model generally provided higher estimates, with higher sensitivity to slope and to
LULC changes.

• The PESERA models has proven to be more sensitive to soil parameters.

As our results have indicated, the identification of outlier (extreme) predicted values are a critical
issue and further analysis should be carried out to properly identify these. While our study has
provided a combined approach for the use of the two models, the methodology could still be advanced
by a potential implementation of spatially differential weighting based on the strengths/weaknesses of
the applied models.
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Appendix A

Land Use and Land Cover change tables for Hungary based on CORINE Land Cover data.

Table A1. Area affected by LULC change in Hungary between 1990 and 2000.

LULC 1990–2000 1990 (ha) 2000 (ha) Changes (ha) Changes %

Urban fabric 415,567 427,641 12,074 0.13
Industrial, commercial, transport 56,848 63,982 7134 0.08

Mine, dump and construction sites 11,869 13,573 1704 0.02
Green urban areas, sport-leisure facilities 36,373 39,581 3208 0.03

Non-irrigated arable land 4,958,900 4,983,921 25,021 0.27
Rice fields 14,775 11,786 –2989 –0.03

Permanent crops 215,013 215,985 972 0.01
Pastures 680,005 677,439 –2566 –0.03

Heterogeneous agricultural areas 483,859 396,449 –87,410 –0.94
Forests 1,684,294 1,738,785 54,491 0.59

Natural grasslands 225,809 228,463 2654 0.03
Transitional woodland-shrub 241,934 241,691 –243 –0.00

Sparsely vegetated areas 2413 2330 –83 –0.00
Inland wetlands 103,428 85,875 –17,553 –0.19

Inland waters 170,175 173,761 3586 0.04
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Table A2. Area affected by LULC change in Hungary between 2000 and 2006.

LULC 2000–2006 2000 (ha) 2006 (ha) Changes (ha) Changes (%)

Urban fabric 427,641 435,081 7440 0.08
Industrial, commercial, transport 63,982 71,033 7051 0.08

Mine, dump, and construction sites 13,573 20,462 6889 0.07
Green urban areas, sport-leisure facilities 39,581 39,406 –175 –0.00

Non-irrigated arable land 4,983,921 4,843,860 –140,061 –1.51
Rice fields 11,786 11,169 –617 –0.01

Permanent crops 215,985 200,256 –15,729 –0.17
Pastures 677,439 684,333 6894 0.07

Heterogeneous agricultural areas 396,449 445,893 49,444 0.53
Forests 1,738,785 1,723,106 –15,679 –0.17

Natural grasslands 228,463 228,308 –155 –0.00
Transitional woodland-shrub 241,691 333,840 92,149 0.99

Sparsely vegetated areas 2330 2703 373 0.00
Inland wetlands 85,875 86,040 165 0.00

Inland waters 173,761 175,772 2011 0.02

Table A3. Area affected by LULC change in Hungary between 2006 and 2012.

LULC 2006–2012 2006 (ha) 2012 (ha) Changes (ha) Changes (%)

Urban fabric 435,081 438,749 3668 0.04
Industrial, commercial, transport 71,033 77,598 6565 0.07

Mine, dump, and construction sites 20,462 17,416 –3046 –0.03
Green urban areas, sport-leisure facilities 39,406 39,852 446 0.00

Non-irrigated arable land 4,843,860 4,799,046 –44,814 –0.48
Rice fields 11,169 8247 –2922 –0.03

Permanent crops 200,256 181,391 –18,865 –0.20
Pastures 684,333 687,657 3324 0.04

Heterogeneous agricultural areas 445,893 451,725 5832 0.06
Forests 1,723,106 1,723,319 213 0.00

Natural grasslands 228,308 228,665 357 0.00
Transitional woodland-shrub 333,840 382,069 48,229 0.52

Sparsely vegetated areas 2703 2703 0 0.00
Inland wetlands 86,040 86,043 3 0.00

Inland waters 175,772 176,782 1010 0.01

Table A4. Area affected by LULC change in Hungary between 2012 and 2018.

LULC 2012–2018 2012 (ha) 2018 (ha) Changes (ha) Changes (%)

Urban fabric 438,749 452,283 13,534 0.15
Industrial, commercial, transport 77,598 89,027 11,429 0.12

Mine, dump, and construction sites 17,416 16,489 –927 –0.01
Green urban areas, sport-leisure facilities 39,852 40,379 527 0.01

Non-irrigated arable land 4,799,046 4,708,948 –90,098 –0.97
Rice fields 8247 8048 –199 –0.00

Permanent crops 181,391 174,079 –7312 –0.08
Pastures 687,657 692,421 4764 0.05

Heterogeneous agricultural areas 451,725 452,706 981 0.01
Forests 1,723,319 1,744,546 21,227 0.23

Natural grasslands 228,665 230,786 2121 0.02
Transitional woodland-shrub 382,069 425,027 42,958 0.46

Sparsely vegetated areas 2703 2844 141 0.00
Inland wetlands 86,043 87,162 1119 0.01

Inland waters 176,782 176,579 –203 –0.00
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Appendix B

Soil erosion estimates and changes.

Figure A1. Erosion estimates for the observed years and applied methods.
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Figure A2. Changes in erosion estimates between the observed years (PESERA and USLE
models combined).

Appendix C

Detailed results of Random Forest regression analysis.
Importance of variables is presented by analyzed method (P—PESERA; U—USLE; %IncMSE—

percentage of increase in MSE; prec—total annual rainfall in 2010; slope—slope; clc—CORINE
Land Cover; k—USLE K factor; crust—PESERA crust storage; erod—PESERA sensitivity to erosion;
swsc_eff—PESERA effective soil water storage capacity; p×1. PESERA soil water available to plants in
top 300 mm; p×2—PESERA soil water available to plants between 300 and 1000 mm; zm—PESERA
scale depth). The left side of the figure indicates the importance of each variable as a percentage of
increase in mean squared error (MSE) upon leaving out the variable, while the right-hand side presents
node purity based on the Gini index.
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Figure A3. Variable importance based on Random Forest regression for PESERA model for all
modeled years.



ISPRS Int. J. Geo-Inf. 2020, 9, 667 22 of 27

Figure A4. Variable importance based on Random Forest regression for the USLE model for all
modeled years.
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Figure A5. Variable importance based on Random Forest regression for the differences between the
USLE (U) and PESERA (P) models for all modeled years.
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