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Abstract: Urban areas may be affected by multiple hazards, and integrated hazard susceptibility
maps are needed for suitable site selection and planning. Furthermore, geological–geotechnical
parameters, construction costs, and the spatial distribution of existing infrastructure should be taken
into account for this purpose. Up-to-date land-use and land-cover (LULC) maps, as well as natural
hazard susceptibility maps, can be frequently obtained from high-resolution satellite sensors. In
this study, an integrated hazard susceptibility assessment was performed for a developing urban
settlement (Mamak District of Ankara City, Turkey) considering landslide and flood potential. The
flood susceptibility map of Ankara City was produced in a previous study using modified analytical
hierarchical process (M-AHP) approach. The landslide susceptibility map was produced using
the logistic regression technique in this study. Sentinel-2 images were employed for generating
LULC data with the random forest classification method. Topographical derivatives obtained from a
high-resolution digital elevation model and lithological parameters were employed for the production
of landslide susceptibility maps. For the integrated hazard susceptibility assessment, the Mamdani
fuzzy algorithm was considered, and the results are discussed in the present study. The results
demonstrate that multi-hazard susceptibility assessment maps for urban planning can be obtained by
combining a set of expert-based and ensemble learning methods.

Keywords: multi-hazard; susceptibility mapping; developing urban settlements; landslide; flood;
logistic regression; Mamdani fuzzy algorithm; M-AHP

1. Introduction

Improved disaster management is an important focus locally and globally to reduce the losses
caused by natural disasters [1]. The harmful effects of natural hazards on human lives and economies
increase with the inadequate land-use planning in developing countries. Actual infrastructure and land
use should be taken into account in urban planning, which are often neglected [2]. Urban planning is a
complex procedure that needs to consider existing infrastructure, human use, and natural hazards.
The recent developments in geoinformation technologies for data collection and analysis, such as
photogrammetry, remote sensing, three-dimensional (3D) geographical information systems (GIS),
Web-GIS, volunteered geographical information (VGI), and advanced spatial analysis methods, can
support this procedure and provide the essential tools to develop a combined approach.

Among the geology- and climate-related natural hazards (i.e., landslides, floods, earthquakes,
droughts, wildfires, tornados, volcanic eruptions, and avalanches) [3], urban areas are mostly affected
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by landslides and floods. Landslide is one of the most common natural hazards with global spread,
and it may damage buildings, infrastructure, and other facilities in urban areas [4]. Between 1950 and
2018, 23,041 landslides were observed in Turkey [5]. Although there is a vast amount of research on
landslide susceptibility assessment in the literature (e.g., References [6–10]), most studies were on
open lands and forests. Landslide susceptibility assessment in urban areas is difficult due to dense
construction and buildings that modify and largely cover the topography. In addition, further research
is needed due to the complexity of the problem, as well as incomplete and temporally inaccurate
landslide inventories [11]. Production of regional landslide susceptibility maps can be difficult due to
the requirement of actual data. Such maps are essential for urban planning and disaster mitigation
efforts carried out by governments.

Although landslide conditioning parameters can be manifold, the main limitation for the number
of factors employed to produce landslide susceptibility maps is the data availability. In general,
geomorphological (e.g., topographical, hydrological, etc.), geological (e.g., lithology), and land-use
and land-cover (LULC) parameters must be considered for this purpose [4]. A dense digital terrain
model (DTM) can be used to characterize the geomorphology in detail in an urban area. In comparison
to LULC, the geological and geomorphological characteristics change slowly. Since the LULC data are
very important for landslide susceptibility assessment [12], actual data to demonstrate the LULC are
required for obtaining high accuracy. In addition to the conditioning parameters, existing landslide
inventories are employed in the susceptibility assessment models. On the other hand, landslide
inventory extraction in settlement areas and heavy construction sites is also difficult due to covered or
modified topography that considerably obstructs the visibility of landslides.

Floods also constitute one of the most commonly occurring and destructive natural hazards in
the world, which also cause the highest number of fatalities [13,14]. According to the statistics [15],
increasing numbers of flood events are being observed in Turkey. Depending on climate change and
rapid urbanization, the number will continue to rise in the next decade in Turkey. Flood susceptibility
maps also contain essential information for mitigation efforts, and they must be taken into account
by decision-makers [16–18]. Flood susceptibility assessments for Ankara city were produced by
Sozer et al. [19,20] using an expert-based decision support system called the modified analytical
hierarchy process (M-AHP) [21]. A small part of the flood susceptibility map that covers the study
area was employed here for multi-hazard susceptibility assessment. It should be noted that the
flood susceptibility must be evaluated at a regional level, which includes the extent of the basin,
since using the data of only a small area with limited altitude extent would lead to incomplete data
and misinterpretation.

On the other hand, landslides and floods are often effective over the same regions since they occur
in areas with similar geomorphological and climate conditions. Heavy precipitation triggers both
floods and landslides, which occur one after the other. Therefore, areas that are prone to floods and
landslides need to be assessed together to understand the combined effects of both.

The main aim of this study was to develop a spatial analysis methodology to predict the combined
flood and landslide susceptibility level in a developing urban settlement, which can then be used as a
basis for land-use planning. A part of Mamak District in Ankara, Turkey was selected as the study
area for this purpose, because Mamak District is an unplanned settlement area of Ankara.

In the initial phase of the study, the landslide susceptibility map was produced by extracting and
using the up-to-date LULC data from Sentinel-2 satellite images, high-resolution DTM, and lithology
data obtained from existing geodatabases [4]. Since the flood susceptibility maps must be produced at
regional level, i.e., basins, a part of the map produced by Sozer at al. [19,20] was reclassified and used
for the purposes of this study. To assess the multi-hazard susceptibility level (MHSL), a Mamdani
fuzzy algorithm was developed, and the results are presented and discussed in the later sections. This
is the first application of the Mamdani fuzzy algorithm to combine two susceptibility maps in the
international literature.
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2. Background on Multi-Hazard Assessment

Many natural hazards types affect urban settlements. To mitigate the effects of future natural
hazards, all possible risks in an area should be assessed. Multi-hazard assessment models can be
generated by integrating multiple susceptibility assessment maps belonging to different types of
natural hazards for a specific area. Moreover, using multi-layer information is a more reliable and
effective approach to disaster prevention [22]. Different types of susceptibility maps created by using
various parameters and factors can be combined with different methods, such as AHP, which is based
on expert opinion. Using AHP, a suitability map can be determined by the weight coefficients and
uncertainties for each hazard [23–25]. Furlan et al. [26] provided a gradual analysis of all components
contributing to the risk at a particular site. This method involved the assessments of hazard, exposure,
vulnerability, and risk. In this analysis, since the input dataset was large and heterogeneous, the
multi-criteria decision analysis (MCDA) method was used to evaluate the parameters [27]. In all these
studies, scores and weights provided by the experts had great importance, and it was stated by the
researchers that they affected the accuracy of the results. Chen et al. [28] considered debris flows
and river and flash flooding to be common in one area. These hazard types were examined in four
scenarios (major, moderate, minor, and frequent events). In this approach, the losses caused by each
hazard were firstly calculated individually. Afterward, the spatial probability of the element at risk,
the physical vulnerability, and the quantification of the exposed elements at risk were multiplied. The
effects of hazard types were compared based on the results.

It is also important to include social and economic dimensions in multi-hazard assessment
methods [29]. China’s disaster risk index was calculated for 31 provinces by using four types of
factors: exposure (population exposed to earthquakes, floods, droughts, low temperatures/snow, and
gale/hail), susceptibility (based on public infrastructure, income health, and economic status), coping
capacity (based on governance, medical care, and material security), and adaptive capacity (related
to future natural events) [30]. In addition to these factors, the exposure parameter was analyzed as
hazard exposure and hazard loss. Hazard exposure referred to the presence of assets and values that
may be adversely affected in hazardous areas. The hazard loss was defined by the extent of physical
damage, monetary loss, human loss, and economic deterioration. At the same time, the scope of the
other parameters was extended [31]. Using a multiple linear regression method, influencing factors
of community resilience were calculated. It was also stated that this model can be developed for
employing a different weighting scheme by using expert knowledge and the entropy. Moreover, for
holistic multi-hazard assessment methodologies, it was proposed that anthropogenic processes should
be used in relation to natural disasters, and it was mentioned that the environment in which natural
hazards are experienced is shaped by human activities. The main idea was to include this relationship
in the multi-hazard assessment process [32,33]. Additionally, Gallina et al. [33] and Basheer Ahammed
and Pandey [22] pointed out that the climate change perspective is a forgotten piece that should be
evaluated in a multi-risk assessment of natural and anthropogenic systems.

Barrantes [34] proposed a natural multi-hazard assessment model that can be used when working
with limited data. This model proposed an algorithm that takes the spatial overlap of the values of
each risk and the potential interaction between different natural risks and the temporal frequencies
into account. In this algorithm, all risk combinations were evaluated and potential interactions
between natural hazards matrix were formed. Potential multi-hazard risks arose with the set of
intersections of all combinations. Liu et al. [35] used the MmhRisk-HI (Model for multi-hazard Risk
assessment with a consideration of Hazard Interaction) method for multi-hazard risk assessment.
The method had two main components. The first component analyzed the relationship between the
hazardous environment and the hazards, showing the probability of multiple hazard occurrence.
In this component, the probabilities were calculated with functions used according to the relationship
levels (independent, mutex, parallel, series) between the natural hazards. The second component
calculated the possible damages and loss rate by employing a Bayesian network. In Bernal et al. [36],
a fully probabilistic multi-hazard risk model was assessed for hazard, exposure, vulnerability, and
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loss using specific stochastic event sets. The average and maximum yearly losses were calculated
with this model. Quantitative approaches were also used in some regional risk assessments [37].
The study of quantitative multi-hazard risk evaluation using elements at risk, their exposure, and
their vulnerability can be examples for regional multi-hazard assessment. In another quantification
approach, the interrelation between hazards was examined in two ways: by cascading hazards and
by compound hazards. These relationships were evaluated with three hazard interrelation modeling
approaches (stochastic, empirical, mechanistic) [38]. When the results were evaluated using different
model parameters in each approach, it was seen that the extreme copulas method in the stochastic
approach, the linear regression method in the empirical approach, and hydrodynamic models in the
mechanistic approach were most prevalent. As mentioned, the use of mechanistic and stochastic
methods in multi-parameter (more than two) hazards imposes certain restrictions, such as uncertainties
caused by statistical assumptions (e.g., distribution, dependence model selection) or the effect of the
data quality used for validating the mechanistic models [38].

Assessing multiple hazards in urban areas and predicting future risks can help decision-makers
to prioritize actions and manage the risks [32,39–41]. Although the effects of natural risks on the urban
area were examined individually and the results were compared visually, a quantitative approach of
the co-evaluation process of hazards was lacking in Chang et al. [39] and Jacobs et al. [42]. A combined
and quantitative assessment of hazards provides more accurate results than individual assessments
and visual comparison. However, the choice of parameters and their weights, as well as the quality of
data, are also important. The choice of using a qualitative, semi-quantitative, or quantitative approach
may vary depending on the target [43]. In Omidvar and Karimi [44], a method developed using
the theory of probability and Boolean logic was used. This study was conducted for multi-hazard
reliability measurements according to available urban data. Multi-hazard reliability emerged with
operations on different combinations of hazard risks.

Machine learning methods are also available for multi-hazard risk assessment. In Reference [45],
risk analysis for each natural hazard type was carried out by modifying the weights of each parameter
according to the hazard type using the random forest (RF) method. Afterward, a multi-hazard map
was produced by combining the results. The model accuracy of 96.70% supported the usefulness of
machine learning in multi-hazard risk assessments. Mirzaei et al. [46] used Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) as a multi-criteria decision-making model. It worked
with similarity indexes of hazard maps and showed multi-hazard assessment. In Sheikh et al. [47],
TOPSIS–Mahalanobis distance, TOPSIS, and simple additive weight (SAW) methods were combined.
Although the TOPSIS method was criticized for using only a geometric distance, it was mentioned that
it gives more clear results for natural hazards.

There are also other studies in the literature in which different multi-criteria decision-making
methods were used in risk assessment. In Pourghasemi et al. [48], risk maps were created by using
the stepwise weight assessment ratio analysis (SWARA) method which is an expert-oriented method,
as well as the adaptive neuro-fuzzy inference system (ANFIS) method which involved an FIS (fuzzy
inference system) and gray wolf optimization (GWO) to find the optimal solution. In multi-hazard
analysis, the occurrence rate of hazard risk combinations was determined using weighted overlay
analysis of risk maps by Mukhopadhyay et al. [27]. Moreover, with the use of fuzzy modeling, direct
standardization of multiple indicators, aggregation, and deriving the impact are possible. By using
the gamma fuzzy overlay model, the relationship between multiple input criteria was explored [49].
Kappes et al. [50] emphasized the importance of multi-hazard assessment and compiled difficulties
when analyzing multi-hazards. Consequently, the present study introduces the production of a
multi-hazard map for a settlement area by employing the Mamdani fuzzy inference algorithm.

3. Materials and Methods

Mamak District is a rapidly developing area located in the eastern part of Ankara, Turkey. Similar
to many other large cities in Turkey, Ankara is affected by urban sprawl, and Mamak is one of the
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development centers for this sprawl. Approximately 640 thousand people live in the area. Since
Mamak is on the route to Eastern Turkey, there is substantial transportation infrastructure. Furthermore,
Bayindir Dam, which is currently used as a recreational area, is also located here. A part of Mamak
District which is prone to both landslides and flooding was selected as the study area since it features
continuous urban expansion and infrastructure (Figure 1). The area is ca. 30 km2 and the minimum
and maximum altitudes are 924 m and 1284 m, respectively.

Figure 1. The location of the study area and an overview of the Sentinel-2 red–green–blue (RGB) image
used in the study (upper left coordinates: 32◦56′51.372” E, 39◦56′27.108” N; lower right coordinates:
33◦0′57.578” E, 39◦53′41.689” N).

The landslide susceptibility map of the study area was produced by applying logistic regression
(LR) to LULC data (sourced from Sentinel-2 imagery), the geomorphological features (sourced from
DTM), and the lithology data [4]. Sentinel-2 images are distributed freely by the European Space
Agency (ESA). It was found that actual land-use data can be produced from Sentinel-2 images, which
are geometrically corrected (i.e., orthorectified, L2A) and obtained regularly over a large geographical
extent by ESA [51]; they also provide multi-band (13 bands in total) data at spatial resolutions of
10 m, 20 m, and 60 m. The satellite constellation also has high transmission frequency [52] and, thus,
is widely used in natural hazard assessments [53]. Sentinel-2 imagery can be easily employed by
non-experts via the Sentinel Application Platform (SNAP) Tool from ESA. The LR is a rather simple
method and can take non-numerical parameters such as different LULC types into account. The output
probabilities were classified as low, moderate, and high. The flood susceptibility map of Ankara was
produced in a previous study by Sozer et al. [19] for Ankara city and reclassified here into the same
three classes (i.e., low, moderate, and high) to be used in the multi-hazard susceptibility assessment
model. The study workflow is depicted in Figure 2. More details on the input data and methodology
are provided in the sub-sections below.
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Figure 2. Overall workflow of the study.

3.1. Input Datasets for Landslide Susceptibility Map Production

A DTM with 5-m resolution was obtained from the General Directorate of Mapping (GDM),
Turkey. The geomorphological parameters such as altitude, slope, general curvature, plan and profile
curvatures, topographic wetness index (TWI), stream power index (SPI), distance to channel networks,
and ridgelines were derived from the DTM. The Sentinel-2 satellite imagery from 23 March 2019 were
employed for classifying the LULC using the RF method. The lithology data were digitized into vector
form using the WebGIS portal data of the General Directorate of Mineral Research and Exploration
(GDMRE/MTA), Turkey [54], and converted into raster data with 5-m grid spacing. The LULC map
was also resampled to 5-m grid data to perform the LR technique. The data sources and the spatial
resolutions are summarized in Table 1.

Table 1. Properties of input parameters. LULC—land use and land cover; DTM—digital terrain model;
GDMRE/MTA—General Directorate of Mineral Research and Exploration.

Parameters Source Resolution

Geomorphological parameters DTM 5 m
LULC Sentinel-2 satellite imagery 10 m (resampled to 5 m)

Lithology GDMRE/MTA 5 m
Landslide susceptibility map Produced in the study 5 m
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For training the LR method, boundary polygons of eight landslides covering ca. 2000 grid points
were manually delineated by the expert using the DTM and the satellite images. The altitude range
map and the landslide inventory represented by the red polygons are depicted in Figure 3. In order to
utilize in the LR model estimation process, the vector landslide inventory map was rasterized with 5-m
grid spacing. The landslides detected in the study area occurred in schists and volcanic units. These
units are highly susceptible to weathering and landslides. The main characteristics of the landslides
were circular, and the depth of failure surfaces was controlled by the thickness of weathered zones.
In addition, the damage on the buildings in the study area was observed, and it is well known that the
main cause of damage is the landslides in the area. However, it is impossible to draw the borders of
the landslides due to urbanization on the slopes.

Figure 3. The elevation map and the manually delineated landslides (red polygons).

3.2. Geomorphological Characteristics of the Study Area

In order to understand the topography, some scalars such as primary and secondary derivatives
of a DTM can be used. Primary features (e.g., slope, aspect, curvature) are computed from elevations,
whereas secondary features (e.g. SPI, TWI) are obtained from the second derivatives of elevations [55].
These derivatives can be computed by using spatial analysis tools and software. Here, SAGA GIS from
the SAGA User Group Association, Germany [56] and ArcGIS from ESRI Inc., Redlands, CA, USA [57]
were used for this purpose. A statistical summary of the elevation data and the derivatives are given
in Table 2. Similar statistics were derived for the landslide positive samples (~2000 grid points) and are
provided in Table 3.

Table 2. Statistics of topographic attributes. SPI—stream power index; TWI—topographic
wetness index.

Attribute Name Minimum Maximum Mean SD

Altitude (m) 924.1 1284.7 1032.2 62.8
Slope (◦) 0.004 73.127 13.075 8.719

Aspect (◦) 0 360 192.23 101.46
General curvature −1.25957 1.09325 −9.73 × 10−5 0.05887

Plan curvature −0.09291 0.14917 4.56 × 10−4 9.69 × 10−3

Profile curvature −0.16431 0.16666 −5.05 × 10−4 0.01107
SPI 0 3,315,271.5 688.02 14,974.51
TWI 1.2776 22.1526 5.8651 2.1451

Distance to channel (m) 0.4 561.9 84.2 73.8
Distance to ridgeline (m) 0.0 229.9 33.0 26.5
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Table 3. Statistics of topographic attributes in the landslides.

Attribute Name Minimum Maximum Mean SD

Altitude (m) 934.4 1050.4 986.5 30.7
Slope (◦) 0.560 39.793 20.171 7.949

Aspect (◦) 0.64 359.59 233.03 80.38
General curvature −0.369 0.388 −0.0094 0.0943

Plan curvature −0.0717 0.0493 −0.00418 0.0187
Profile curvature −0.05139 0.04435 −0.00454 0.0139

SPI 0.362 9091.607 319.292 814.8529
TWI 2.2736 15.33 5.197 1.719

Distance to channel (m) 0.4 142.3 44.1 40.7
Distance to ridgeline (m) 0.0 50.4 15.7 10.9

Altitude shows the elevation measures of an area [58]. The slope gradient represents the variation
in elevations [58] (Figure 4). Here, the slopes were employed to relate the topographical changes to
landslide formation. The aspect was computed as the angle from the north to depict the direction of
the slope. The aspect parameter was used to understand which slopes (north, south, etc.) would affect
the landslides more [58]. The aspect values are also depicted in Figure 4.

Figure 4. The slope gradient (left) and aspect (right) maps of the study area.

The curvature calculated from the DTM shows the changes in slope and aspect (Figure 5). The
curvature parameter can be classified as plan and profile, and it needs to be analyzed separately. The
planimetric component is based on the rate of slope variation along the contour lines, and the profile
component is computed along the slope to determine the rate of slope gradient change [58]. Negative,
positive, and zero curvatures reflect concave, convex, and flat surfaces, respectively [59]. The plan and
profile curvatures of the study area are given in Figure 6.
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Figure 5. General curvature map of the study area.

Figure 6. Plan (left) and profile (right) curvature maps of the study area.

The SPI is an indicator for erosive power of flowing water [60]. SPI is effective on landslides and
denotes potential erosion energy [61]. The TWI shows the positions and size of the water-saturated
regions [55] (Figure 7). The distances to channels were used for understanding the effect of the drainage
network on landslides. The vertical distances to the channels were computed from the elevation data
and, thus, the network was formed [62]. The landslide probability and the distances to the ridges were
negatively correlated [59]. The ridges were computed using the DTM, and the distance values to both
the ridges and the channel networks are provided in Figure 8.

Figure 7. SPI (stream power index, on the left) and TWI (topographic wetness index, on the right)
maps of the study area.
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Figure 8. Distances to channels (left) and to ridgelines (right).

3.3. Land-Use and Land-Cover Extraction from Sentinel-2 Imagery

The use of up-to-date LULC data is essential for natural hazard assessments and disaster mitigation
efforts. In this study, the LULC data were extracted from Sentinel-2 optical satellite imagery with 10-m
spatial resolution. Seven LULC classes as shown in Figure 9 were extracted from red–green–blue (RGB)
bands using SNAP software. The RF method was applied for the classification by collecting training
data on the images. Using the RF method, classification is made with an ensemble of decision trees
created by using training samples and variables [63]. In decision trees, the most rated pixels from all
trees in the forest are classified. Because of the higher accuracy compared to other machine learning
methods, it is widely used for image classification [64–67]. As seen in the study of Lim et al. [68] on
Sentinel-2 images, the RF method can work with high accuracy in image classification. The RF classifier
has two main parameters: the number of trees (T) and the number of variables (M) [69].

Figure 9. Land-use and land-cover map of the study area.

In this study, the classification process was completed by creating 10 trees using four bands,
i.e., red, green, blue, and the gray-level co-occurrence matrix angular second moment (GLCM-ASM)
parameter using 2077 training samples. Since it was difficult to separate the industrial units from
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the roads only with RGB information, the GLCM of the images was also computed and added to the
classification as proposed by Stumpf and Kerle [70], and the GLCM-ASM parameter was found to
be particularly useful in the present study. The distribution of the training samples to the classes is
shown in Table 4. When the accuracy of classification was calculated by the cross-validation method,
the correct prediction percentage was 93.73%, the classification precision was 92.01%, and the kappa
value was 97.13% (Table 4). As can be seen in Table 4, the classification accuracies of all bands were
improved by including the GLCM-ASM parameter, except for the industrial units, which remained
high for both versions. In addition, it was visually verified that this parameter was especially useful to
separate the road and industrial unit classes.

Table 4. Classification accuracy of the random forest method. ASM—angular second moment.

Land Use Number of Training
Samples

Classification Accuracy
(Cross-Validation)
(with ASM Band)

Classification Accuracy
(Cross-Validation)

(without ASM Band)

Discontinuous urban
fabric 401 98.75% 94.01%

Industrial units 36 98.84% 98.94%

Road and rail networks
and associated land 811 97.10% 94.4%

Green urban areas 146 99.71% 97.88%

Arable land 325 98.75% 96.72%

Pasture and herbaceous
vegetation 125 98.65% 96.14%

Water bodies 233 99.81% 99.71%

Overall 2077 93.7259% 83.1081%

Kappa coefficient 97.13% 93.68%

3.4. Lithological Characteristics of the Study Area

In addition to the LULC and elevation data, the lithology type is extremely important for natural
hazard assessments [71]. Lithology type and the structural differences generally affect the robustness
and permeability of rocks and soils [72]. The lithology map was obtained from the geosciences
portal (Yer Bilimleri Portali) of GDMRE/MTA. The lithology map is shown in Figure 10, and detailed
descriptions are provided in Table 5. This vector map was preprocessed for conversion to raster data
with 5-m grid spacing.

Table 5. Age and general descriptions of the lithologies in the study area [54].

Age Description

Pliocene Terrigenous clastics
Quaternary Undifferentiated quaternary

Permian–Triassic Clastics and carbonates
Upper Paleozoic Triassic Schist, phyllite, marble, metabazite etc.
Lower–Middle Miocene Non-graded volcanites
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Figure 10. Lithology map of the study area [54].

3.5. Landslide Susceptibility Map Production with Logistic Regression Method

For the generation of landslide susceptibility maps, various mathematical and machine learning
methodologies can be applied. Many studies on the assessment of landslide susceptibility using
logistic regression were published in the literature (e.g., References [73–78]). In this study, multivariate
LR was employed to derive the landslide susceptibility distribution of the area. LR is a statistical
model, and it was used here to predict the potential landslide areas since it is fast and accurate for
landslide susceptibility assessment purposes [9,59,79]. The LR is a supervised method and uses
dependent (i.e., landslide conditioning factors) and independent (i.e., actual landslide inventory)
variables. The dependent variable is a binary value which depicts the occurrence/non-occurrence of
the event [62]. Independent variables were the 11 conditioning factors used as input data layers here
(e.g., elevation data, slope, aspect, LULC, etc.). In the model estimation stage, the relationship between
the variables was analyzed using the landslide positive samples (i.e., inventory data) and a number of
randomly chosen non-landslide samples. Equations (1) and (2) were used for computing the logistic
regression method.

Yi = β0 + β1Xi (1)

Pi = (Y = 1|Xi) = 1/(1 + eˆ(−Yi)) (2)

where Yi represents the dependent variables, xi represents the independent variables, β0 is a constant,
βi represents the i-th regression coefficient, and P is the probability of the existence of landslides [59].
In Vorpahl et al.’s [80] and Park et al.’s [81] studies, one of the most accurate results among the
landslide susceptibility maps created with similar parameters used in this study was achieved using
the LR method compared to other methods. After calculating the LR model parameters, the landslide
susceptibility map was produced for the whole area. The ratio of the landslide positive and negative
(non-landslide) samples was 1:2.

3.6. Flood Susceptibility Map of the Study Area

The flood susceptibility map of Ankara City was obtained from a previous study [19,20] (Figure 11)
with the M-AHP method [21] using flow accumulation, slope, topographic altitude, distance to
permanent river, distance to dry drainage, land cover, topographic wetness index, and lithology
parameters. Each parameter was weighted with the M-AHP method according to expert opinion, and
the highest score of each parameter was defined a priori. The output flood susceptibility map was
reclassified by dividing the resulting probability values into three classes with equal intervals, and
they were clipped for the study area (Figure 12). The original flood susceptibility map was divided
into five equal classes by Sozer et al. [19]. However, in accordance with the purpose of the study, three
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classes of the flood susceptibility map were used in the present study. The histograms prepared for the
five classes and three classes are given in Figure 13. The output susceptibility classes were categorized
as low, moderate, and high, and they were used for the multi-hazard susceptibility assessment with
the Mamdani fuzzy method.

Figure 11. Flood susceptibility map produced by Sozer et al. [19] (the rectangular area to the east is the
selected study area).

Figure 12. Flood susceptibility map of the study area (modified after Reference [19]).
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Figure 13. Histograms of flood susceptibility classes for five classes (left) and three classes (right).

3.7. Multi-Hazard Susceptibility Assesment with Mamdani Fuzzy Method

The multi-hazard susceptibility assessment map was derived with a combined assessment of flood
and landslide susceptibility results using the Mamdani Fuzzy Method, which was first developed by
Mamdani and Assilian [82]. This method is able to reduce uncertainties while solving complex problems
using “if–then” rules. The stages of a Mamdani FIS are fuzzification, rule evaluation, aggregation, and
defuzzification [82]. Fuzzy inference systems (FIS) produce a crisp output for supplied crisp inputs by
using fuzzy set theory [83]. The general structure of a Mamdani FIS can be found in several books and
publications (i.e., References [84–87]). Osna et al. [87] developed an integrated tool for construction
of a Mamdani FIS for Netcad Software, Netcad, Ankara, Turkey. With the Mamdani fuzzy logic [88]
operator in Netcad, landslide and flood susceptibilities could be evaluated together in the study area.
The Mamdani fuzzy algorithm was previously used for landslide susceptibility mapping [86,87,89],
but the present study is the first attempt at the combination of two susceptibility maps to obtain a
multi-hazard susceptibility map.

The inputs of the Mamdani fuzzy model constructed in the study were landslide susceptibility
and flood susceptibility maps, while the output was the multi-hazard susceptibility level (MHSL).
Traditionally, a fuzzy model is built using expert knowledge in the form of linguistic rules. Three
membership functions, i.e., low, moderate, and high, were defined for each input and output in the
Mamdani FIS implemented here. The membership functions are shown in Figure 14, which also
constitute the fuzzification stage of the system. In Figure 14, the vertical axes of the graphs denote the
membership degree, and the horizontal axes represent the susceptibility levels, which range from 0–1
for landslide and 8–66 for flood. In the literature, many methods, such as intuition, rank ordering,
angular fuzzy sets, genetic algorithms, inductive reasoning, soft partitioning, etc., exist for membership
value assignment (e.g., References [90–92]). Although it is possible to select membership functions in a
site-specific or target-oriented manner, or non-linearly, a generic approach was preferred here to prove
the usability of the approach. In this study, the constructed fuzzy model employed two inputs and
one output using three membership functions, and the fuzzification of crisp numbers and degree of
membership of each crisp input were calculated at this stage. One of the fundamental features of a
Mamdani FIS constitutes the linguistic if–then rules, namely, rule evaluation. In the present study, the
if–then rules were generated by the expert (last author), which prevented an exhaustive data analysis
process. The total number of linguistic rules generated by the expert was nine (Table 6). The final fuzzy
output of the model was produced by aggregation of all local results from fuzzy rules triggered in the
rule evaluation phase [87]. In the Mamdani FIS constructed here (Figure 15), the maximum operator
was considered for aggregation, as suggested by Reference [87]. Finally, the center of gravity was used
for defuzzification. Employing the Mamdani FIS constructed, the landslide and flood susceptibility
maps were used as inputs, and the MHSL map was produced as presented in the section below.
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Figure 14. The membership functions of each input. The vertical axes in both graphs represent the
degree of membership, while the horizontal axes reflect the susceptibility level range for landslide (left)
and flood (right).

Table 6. If–then fuzzy rules used for the multi-hazard susceptibility level (MHSL) assessment in the
study area.

Rule No. Rule

1 If (landslide susceptibility is high) and (flood susceptibility is high), then (MHSL level is high),

2 If (landslide susceptibility is high) and (flood susceptibility is moderate), then (MHSL is high),

3 If (landslide susceptibility is high) and (flood susceptibility is low), then (MHSL is high)

4 If (landslide susceptibility is moderate) and (flood susceptibility is high), then (MHSL is high)

5 If (landslide susceptibility is moderate) and (flood susceptibility is moderate), then (MHSL is high)

6 If (landslide susceptibility is moderate) and (flood susceptibility is low), then (MHSL is moderate)

7 If (landslide susceptibility is low) and (flood susceptibility is high), then (MHSL is high)

8 If (landslide susceptibility is low) and (flood susceptibility is moderate), then (MHSL is moderate)

9 If (landslide susceptibility is low) and (flood susceptibility is low), then (MHSL is low)

Figure 15. The general structure of the Mamdani fuzzy inference system (FIS) constructed.
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4. Results and Discussion

4.1. The Landslide Susceptibility and MHSL Maps

The output landslide susceptibility map is shown in Figure 16. Although the landslide occurrence
probability values ranged from 1%–99% (i.e., from 0–1, as shown in the landslide susceptibility
membership graph in Figure 14), these values were reclassified into three categories (low, moderate,
and high) by using equal interval classification for easy interpretation. These values were also used in
the fuzzy assessment model in the next step. The map demonstrates the existing landslide hazard
potential, especially in the western parts of the area. The field observations of the expert support the
findings of the results obtained from the study.

Figure 16. Landslide susceptibility map of the study area.

The accuracy of the output map was evaluated to understand the quality of the results. The factors
that affect the accuracy are the data quality, the applied methods, the number of input parameters used
in the process, and the approach for map production [72]. The ROC (receiver operating characteristic)
curve, which is a measure of the capability of the current model in classification [93], was used
to evaluate the accuracy (Figure 17). The figure shows that the areas with and without landslide
susceptibility were classified with 96% accuracy.

In the present study, a plausible and practical methodology to combine different susceptibility
maps was proposed. The Mamdani fuzzy algorithm was used and the MHSL map was obtained
(Figure 18). The results show that some of the slopes and valleys have high multi-hazard potential.
To minimize the losses caused by landslide and flood, the high multi-hazard susceptibility zones shown
in Figure 18 must be investigated carefully, and necessary engineering measures must be provided at
the construction stage.
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Figure 17. Receiver operating characteristic (ROC) curves of landslide susceptibility map.

Figure 18. Multi-hazard susceptibility level map of the study area.

4.2. Discussion

The study area is subject to urban transformation projects due to unplanned settlements. The
Mamak Urban Transformation Project was implemented in a part of the study area, which covers
ca. 7.4 km2. The project location is shown in Figure 19. It was divided into 11 stages and carried
out by TOKI (Toplu Konut Idaresi Baskanligi), which is a state organization carrying out large-scale
construction works for new houses, in the Ankara Metropolitan Municipality and Mamak Municipality.
The main aim of the project was to transform the slums, i.e., unplanned settlement areas with insufficient
facilities and infrastructure, and modernize these areas [94]. While the initial number of slums was
13,662, the number of slums destroyed as of 2019 was 8389 throughout the project. In total, 30,000
dwellings are planned to be constructed in the next phase of the project. Considering the natural
hazard potential and related risks within the study area, the MHSL map could be used to analyze the
vulnerability of future urban development and transformation plans.
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Figure 19. A part of urban transformation project within the study area [91].

The DTM textured with the Sentinel-2 RGB image (Figure 20), the landslide susceptibility map
(Figure 21), the flood susceptibility map (Figure 22), and the MHSL map (Figure 23) of the study
area were visualized in 3D with the QT Modeler software from Applied Imagery, Chevy Chase, MD,
USA [95] for interpretation of the results.

Figure 20. The DTM (digital terrain model) of the study area textured with the Sentinel-2 image.

Figure 21. The DTM of the study area textured with the landslide susceptibility map (output of logistic
regression).
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Figure 22. The DTM of the study area textured with the flood susceptibility map (modified into three
classes after Sozer et al. [19]).

Figure 23. The DTM of the study area textured with the MHSL (multi-hazard susceptibility level)
map. The circles denote important focal areas for city planning in northwest and south Mamak as
mentioned above.

Figure 23 demonstrates the locations of the existing and the planned urban transformation sites.
The existing project area (purple circle in Figure 23) includes areas with multi-hazard risk. When the
risks are evaluated individually, there is low landslide risk in this area, but the excess of flood risk
is also remarkable. In this respect, it can be considered to review the resilience of the project against
natural hazard risks.

There are slum areas (blue circles in Figure 23) which represent potential urban transformation
sites. Land-use decisions in these areas should be prepared elaborately. It is more appropriate to
evaluate these areas at high susceptibility and utilize them as urban green areas by establishing
agreements with the property owners. There are also newly constructed buildings (dark-green circle in
Figure 23) in the west of the Mamak region. As can be seen, there are multiple areas with multi-hazard
risk. The status of new buildings in these areas should be examined. The construction quality and the
landslide resistance of these structures can be used as criteria to measure the accuracy of the previous
partial urban transformation in this area.

With regard to the methodological approach employed here, the accuracy of the LR method
was found sufficient for the purposes of the study. Although the number of the training samples in
manually delineated landslide areas was low, using the 1:2 ratio for landslide/non-landslide samples
worked efficiently. The produced MHSL map was representative for the purposes of the study, and
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it can be used as base map for urban planning and transformation purposes. The ensemble (i.e.,
LR) and expert-based (i.e., M-AHP) methods employed for the production of the individual hazard
susceptibility maps were useful, and the Mamdani Fuzzy algorithm was able to handle the complexity
of the problem.

5. Conclusions

In this study, a fuzzy model for integrated multi-hazard susceptibility assessment was developed.
In addition, the usability of Sentinel-2 images in obtaining up-to-date LULC data in urban development
areas for the production of landslide susceptibility maps was evaluated. The RF classification method
was employed for producing LULC classes from Sentinel-2 RGB images, and the GLCM-ASM parameter
was added to the classification to distinguish the industrial areas from roads. A high-resolution DTM
and the lithology data were integrated into the landslide susceptibility map, and the LR method was
applied for this purpose. An MHSL map was produced using the Mamdani fuzzy algorithm. The
produced MHSL map can be used as essential data for urban development and transformation plans.
Further analysis and planning can be carried out for this purpose.

The main difficulty encountered during the study was the preparation of a fully completed
landslide inventory map due to urbanization. However, a combined methodology to obtain the MHSL
map was described and applied successfully. The high multi-hazard susceptibility zones must be
investigated carefully before construction; alternatively, if possible, these zones should be avoided
with regard to construction purposes to minimize losses sourced from natural hazards. These maps
are highly useful for planning stages, and, if these maps are considered during the planning stage,
serious benefits can be obtained.

The methodology introduced in the present study for producing multi-hazard susceptibility
represents a first in international literature. The use of an expert-based fuzzy inference system for the
combination of two susceptibility maps portraying different natural hazards yielded very promising
results. The study showed that the Mamdani type fuzzy inference system is a suitable approach
for producing multi-hazard susceptibility mapping. the use of this approach for the combination
of several multi-hazard susceptibility maps may provide new possibilities for suitable site selection
efforts. However, there is no methodology available for the accurate assessment of a multi-hazard
susceptibility map. For this reason, the study area selected was relatively small and from a well-known
area. Consequently, the final output map was assessed with field observations.

As a final concluding remark, the fuzzy algorithm proposed for combining different natural hazards
is a flexible and transparent modeling approach; hence, the model can be tuned or re-constructed
easily when new information is obtained. As a future recommendation, some attempts at performance
assessments of the multi-hazard susceptibility maps should be carried out, and some numerical indices
for accuracy and performance assessments should be developed.
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5. AFAD. Afet ve Acil Durum Yönetimi Başkanlığı. Available online: https://www.afad.gov.tr/ (accessed on 1
December 2019).

6. Nefeslioglu, H.A.; San, B.T.; Gokceoglu, C.; Duman, T.Y. An assessment on the use of Terra ASTER L3A data
in landslide susceptibility mapping. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 40–60. [CrossRef]

7. Pham, B.T.; Shirzadi, A.; Tien Bui, D.; Prakash, I.; Dholakia, M. A hybrid machine learning ensemble approach
based on a radial basis function neural network and rotation forest for landslide susceptibility modeling: A
case study in the Himalayan area, India. Int. J. Sediment Res. 2018, 33, 157–170. [CrossRef]

8. Gorum, T.; Gonencgil, B.; Gokceoglu, C.; Nefeslioglu, H.A. Implementation of reconstructed geomorphologic
units in landslide susceptibility mapping: The Melen Gorge (NW Turkey). Nat. Hazards 2008, 46, 323–351.
[CrossRef]

9. Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide
susceptibility models. Earth Sci. Rev. 2018, 180, 60–91. [CrossRef]

10. Sevgen, E.; Kocaman, S.; Nefeslioglu, H.A.; Gokceoglu, C. A novel performance assessment approach using
photogrammetric techniques for landslide susceptibility mapping with logistic regression, ANN and random
forest. Sensors 2019, 19, 3940. [CrossRef] [PubMed]

11. Kocaman, S.; Gokceoglu, C. A CitSci app for landslide data collection. Landslides 2019, 16, 611–615. [CrossRef]
12. Chen, L.; Guo, Z.; Yin, K.; Shrestha, D.P.; Jin, S. The influence of land use and land cover change on landslide

susceptibility: A case study in Zhushan Town, Xuanen County (Hubei, China). Nat. Hazards Earth Syst. Sci.
Discussions 2019. [CrossRef]

13. Adhikari, P.; Hong, Y.; Douglas, K.R.; Kirschbaum, D.B.; Gourley, J.; Adler, R.; Brakenridge, G.R. A digitized
global flood inventory (1998–2008): Compilation and preliminary results. Nat. Hazards 2010, 55, 405–422.
[CrossRef]

14. CRED. Natural Disasters 2017. Available online: https://cred.be/sites/default/files/adsr_2017.pdf (accessed
on 1 December 2019).
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