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Abstract: To equally distribute the workload and minimize the travel distance for fire departments,
we developed a new dynamic floating stations model (DFSM) to target traffic-related emergency
medical services (EMS) during peak hours. This study revealed that traffic-related EMS incidents
have different characteristics to other EMS incidents. The number of floating stations was determined
by the number of available ambulances at a given time. The optimum floating station location was
identified by using the given capacity to establish the smallest service radius. In DFSM simulations
using floating stations with a capacity of 100 and 150 EMS incidents, the result shows significant
improvements in comparison to the current situation.
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1. Introduction

Emergency medical services (EMS) systems are typically established to increase survival in
life-threatening situations [1,2]. The term EMS refers to the well-trained teams that provide first aid
treatment in a medical emergency. The main objective of EMS is related to the name itself—to offer
initial treatment to people requiring critical medical attention. Moreover, EMS is responsible for
transporting patients from their location to the hospital in a safe and efficient manner, which allows
patients to receive more definitive care if they require it. EMS exists to enhance people’s quality of
life. Without the daily sacrifice of these crews to save people’s lives, society might face an even higher
death rate.

Despite being in existence since the beginning of the 18th century and having served countless
people since then, EMS must still improve to provide an even higher quality service. Rapidly arriving
at the patient’s location is a crucial goal of EMS teams. Therefore, improving solutions to location
accuracy problems and addressing timing concerns are imperative. The goal of this study was to solve
these problems and provide an operational model and application that enables the fire department to
decide when, where, and how many ambulances to deploy. Therefore, this study describes a floating
station that can be employed to improve EMS.

This study uses a floating ambulance station because New Taipei City’s geographical location
presents challenges for the movement of EMS teams and because work is asymmetrically divided
between stations [3]. In New Taipei City, acute illness represents the highest number of EMS incidents,
followed by traffic-related injuries and general wounds. To accurately evaluate the demand for EMS
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from acute illness, this study excluded all other categories, such as traffic-related injuries and general
wounds. Therefore, the new floating stations only target one category.

Some other considerations are clearer, such as the diverse routes taken by EMS to reach patients.
Nontraffic-related EMS incidents typically occur off the road; thus, the patients cannot be reached by
the ambulance itself. An emergency medical technician (EMT) must carry the stretcher and equipment
through open spaces and lobbies and use elevators and stairs to reach the patient inside a building
compound or in an off-road field. This increases the time it takes for EMS personnel to reach a
victim and is not included in the traveling time of conventional set-covering models. By contrast,
traffic-related EMS requests typically have traffic police on the scene, who can help the ambulance
reach a patient on the roadside. This is why the idea of assigning floating ambulance stations to
the roadside to address traffic-related EMS incidents involves the New Taipei City Fire Department.
For convenience, floating ambulance stations can be located along the road in areas with high EMS
requests, such as at a nearby intersection. For this reason, the current study evaluated intersections as
potential floating station candidates.

A floating ambulance station can be defined as a roadside depot that is used at certain times, such
as during workday peak hours. The actual location is connected with a certain intersection, and the
ambulance accepting the assignment remains stationary, but within sight of the given intersection,
without interfering with regular traffic movement. The on-site ambulance can immediately respond to
an accident in its area or receive assignments from the dispatch center to travel to a nearby area. The goal
of this study was to diminish the high occurrence of traffic-related EMS incidents at certain intersections
and enhance the service quality. The success of the floating ambulance stations was measured according
to the decrease in total travel distance and the increase in coverage area. By enlarging the study area to
encompass the remaining parts of the city, the observed improvements in EMS performance can be
extended to the entire city.

The rest of this paper is organized as follows. In Section 2, the literature is reviewed and ambulance
location research is discussed. In Section 3, the study problem is defined and data are described.
Section 4 elaborates on the proposed dynamic floating stations model (DFSM) and related procedures.
Section 5 presents and discusses the experimental results. Finally, conclusions and future directions
are provided in Section 6.

2. Literature Review

Several papers have reviewed recent developments in ambulance location and relocation research.
For example, locating service facilities and vehicles [4,5], scheduling crew shifts [6], dispatching
vehicles to call locations [7,8], and dynamically relocating available vehicles when other vehicles are
busy [9].

Brotcorne, Laporte and Semet [4] reviewed major studies on ambulance location and relocation
models and classified them as deterministic, probabilistic, and dynamic models. Li, et al. [10] separated
the operating models of ambulance facility depots into several types: covering models, which use a
predefined distance to cover EMS calls; p-median models, which determine the minimum average
distance to all demand points; and p-center models, which determine the minimum of the maximum
distances to all demand points. They treated emergency calls as the demand for EMS.

The initial location set-covering problem was proposed by Toregas, et al. [11], and this simplifies
real-time EMS management. The set-covering indicates that a demand point is covered if at least one
EMS facility can service the emergency call within a predefined distance. Then, covering models are
widely used and studied [10]. Furthermore, the maximal covering location problem was proposed
by [12]. It means that the available ambulance bases cannot sufficiently cover all the demand points.
This model maximizes the total demand covered by a limited number of ambulance bases.

Other extensions of the maximal covering location problem can be found in the literature, including
the double standard model proposed by [13], maximum expected covering location problem proposed
by [14], maximum availability location problem proposed by [15], dynamic double standard model
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proposed by [13], and dynamically available coverage location model propsoed by [16]. For example,
Erkut, et al. [17] incorporated a survival function into the covering model and proposed the maximum
survival location problem. Zarandi, et al. [18] developed a large-scale approach to solve the problem
within a reasonable time. Dell’Olmo, et al. [19] developed a multi-period optimization model by
considering an urban traffic network to maximize road control and minimize the number of accidents.

Most set-covering models for ambulance location and relocation use a plane with a homogeneous
surface as the starting point. They consider the travel distance as the variable and the minimum
acceptable range, or they reduce the overall travel distance, as previously mentioned. Some models
use the road distance (Manhattan distance) to measure the space between the EMS request and the
fire station [20,21], whereas most other models use the straight line distance (Euclidean distance).
However, most set-covering models employ a simulated number as the capacity constraint, instead of
using the EMS incident locations received by an ambulance station to determine the location of the new
ambulance station. Current and Storbeck [22] listed previouisly developed capacitated set-covering
location problems and capacitated maximal covering location problems.

The aforementioned covering models are static models, which are suitable for the strategic level,
but lack the flexibility required for the operational level. The demands of real-time emergencies vary
spatially and temporally. To maximize the coverage of emergency calls, idle EMS bases located in
low-demand areas should be moved to high-demand areas. Moreover, a decision maker can redeploy
ambulance bases to provide better coverage. In 1971, Scott studied a dynamic location–allocation facility
problem to anticipate the future demand. Recently, the real-time redeployment problem was thoroughly
studied and various models were proposed. These models considered temporally and spatially varying
demands in the dynamic location model. Maxwell et al. (2009) divided research on dynamic allocation
problems into three categories: (1) reposition ambulances in real-time, (2) precompute the optimal
position, and (3) incorporate system randomness into the model.

Many countries have similar traffic-related EMS incident problems. In Brazil, traffic-related
death (26.2%) is the second leading cause of preventable death [23]. Road traffic injury is also the
leading cause of premature death and disability in Iran [24]. Iran has one of the highest road traffic
accident rates in the world [25]. In Taiwan, motorcyclists account for 13% and 16% of all annual
traffic-related fatalities and inpatient injuries, respectively [26]. The Taiwan National Highway Traffic
Safety Administration reported that motorcyclists are approximately 30 times more likely to die in a
motor vehicle crash than motor vehicle occupants in 2011 [27]. Moreover, fatal motorcycle injury rates
are highest in the Americas [28]. Some studies have used peak periods to determine the ambulance
travel time [29–32]. Other studies have used weekday ambulance location data [33,34]. However,
no studies have used peak hour and weekday data as target location factors.

The dynamic allocation model for the real-time redeployment of ambulances must change
periodically to reposition the ambulance base locations throughout the day, in order to respond to the
real-time demand and reduce the response time [4]. In practice, dynamic relocation of a base is costly
and complicated; each relocation increases workloads for ambulance crews and potentially reduces
their readiness to respond to an emergency call. Therefore, in this study, we propose a dynamic floating
stations model that focuses on updating ambulance base locations by detecting historical traffic data.

3. Methodology

To improve the ambulance service in the city, we developed the DFSM approach. We first identified
areas with poor EMS services according to the existing service capacity. Within these poorly served
areas, we identified new locations for floating ambulance stations. We selected locations that were far
from existing fire stations and that had sufficient EMS incidents. Timing was also considered, with a
focus on peak hours with the heaviest traffic and high EMS requests. We established a new operational
model to address the aforementioned challenges and suggested several floating station locations on the
basis of the distribution of past EMS incidents. Model simulations suggested significant improvements
in both the area coverage and coverage ratio for EMS incidents after floating station implementation.
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This study formulated a new dynamic decision-making model to facilitate the selection of floating
ambulance stations by considering existing fire stations and the location and frequency of past EMS
incidents. The model is dynamic because when a new floating station has been selected, the covered
EMS incidents are excluded from the model itself and the next floating station receives a new set of
uncovered EMS points to inform location selection.

The model aims to increase the service quality by reducing the travel time to save lives in
traffic-related accidents during peak hours. Given the aforementioned location challenges of existing
fire stations, the deployment of new floating stations at appropriate locations during peak hours would
reduce the travel time and, therefore, provide a better service.

The model first used the average capacity of each existing station to establish the optimum service
radius; each station has the resources to respond to EMS requests within its radius. Subsequently,
a circle was drawn around the existing stations, and the determined radius was used to define the
coverage area. After we identified the radii of all existing stations in the city, the areas uncovered by
circles indicated areas requiring floating ambulance stations.

Next, the model identified all of the intersections in the uncovered areas and calculated the radius
of each using the capacity given and measuring all points covered. At this stage, all of the potential
floating ambulance stations had similar EMS incident capacities. The model then searched for the first
smallest radius available from the potential stations and set that floating station as the suggested new
station. Once a new floating station was chosen, it was added to the existing fire stations and its service
radius was drawn. The process was then repeated to identify the next best potential floating station,
until the maximum number of stations was reached.

Because the model uses stations’ maximum capacity and minimum service radii, when the
iteration process identifies several locations, the one with the smallest radius is chosen as the suggested
floating station. If more than one suggested station is identified, the first location is chosen. The location
with the same conditions is chosen next, and so on. Figure 1 illustrates the steps involved in identifying
new floating stations.

The model proceeds as follows:

1. Draw a radius around each fire station that covers all EMS incidents in the area until the station’s
capacity is reached;

2. Mark all EMS points located within all fire station radii as “covered”;
3. From all road intersections, identify radii that contain uncovered EMS points until reaching the

capacity given;
4. Locate the first smallest radius from the road intersection points as the next new floating station;
5. If no new floating stations with appropriate EMS capacity points are identified, the process stops;
6. For any new floating station, draw a circle using the radius found and mark all of the EMS points

within that circle as “covered”;
7. If the maximum number of new floating stations is reached, the process stops.

The model has two stopping procedures: at step 5 and 7. Step 7 uses the given maximum new
floating station number to stop the model. Step 5 stops the model if no additional potential fire stations
reach the capacity given.
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Figure 1. Procedures of the dynamic floating stations model (DFSM).

The equations used in the DFSM are as follows:

Fi+1 = Min R(Ik) s. t. (1)

Ik < R(Fi), i = 1, 2, . . . n, (2)

R(Ik) <= C, k = 1, 2, . . . r, (3)

R(Fi) <= C, i = 1, 2, . . . n (4)

where W represents the study area; Fi represents the fire stations; and i = 1, 2, . . . n, where n represents
the total number of fire stations. The term Ik is the number of potential new predefined floating stations
(in this model, we used road intersections), and k = 1, 2, . . . r, where r is the maximum number of all
potential floating ambulance sites that are intersections. The term R(x) refers to the radius of location x
when it covers the maximum number of EMS points, x = { Ik | Fi }. C is the amount of capacity given.

Function (1) is the objective function from which we can identify the first smallest radius from the
potential floating stations. Function (2) indicates whether a potential new floating station is located
outside of the existing fire stations’ capacity radius. Function (3) seeks the appropriate radius for all
potential new floating stations that satisfy the capacity given. Function (4) is the same as function (3),
except that it uses existing fire stations. Through an iterative process, the DFSM identifies new floating
stations until the maximum number is reached or it is unable to locate a potential station with a
sufficient capacity.

The Cauchy distribution described by Pillai and Meng is ideal because it has infinite variance
and does not have an upper bound or a mean [35]. Most set-covering models consider the travel
distance and use the minimum acceptable range or reduction in overall travel distance as assumptions.
This study used the capacity of the service area as the main variable to determine the locations of new
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floating ambulance stations. A few studies have used the similar concept. The ambulance allocation
capacity model (AACM) created by Shiah and Chen used EMS incidents in Taichung City as the
demand and local fire stations as the supply, similar to the current study, to provide a fair distribution of
services to residents [36]. The multi-capacity ambulance location model (MCAL) developed by Shiah,
Hung, and Chen further considers the traveling distance, address point (population), and EMS incident
location as the factors to determine the locations and the number of ambulances required [36,37].

4. Case Study

4.1. Problem Definition

In this study, we considered New Taipei City—a major city in Taiwan with a population of more
than 4 million and an urban area of 2052.57 km2—in Taiwan as the research area [3]. Over the past
4 years, the city has recorded approximately 161,000 annual EMS requests, which is equivalent to
441 EMS requests per day, and these numbers are increasing. In March 2018, the New Taipei City Fire
Department had 69 fire stations with ambulances and approximately 125 ambulances in service.

The current study used the fire department’s database of 632,024 records with exact location
coordinates. In total, 98.3% of EMS requests required the ambulance to travel fewer than 5 km in a
straight line. In terms of the distance, the highest frequency (mode) was 700 m (7.02% of all requests),
and the average number of trips for all fire stations at this distance was 643. The next most common
distance was 800 m, representing 6.98% of all trips and 639.7 trips on average per station. The fire
station with the highest EMS request frequency reported 26,215 trips over the past 4 years (4.15% of
all EMS requests), and the station with the lowest frequency required only 306 trips (0.05% of all
requests). The two stations with the highest and lowest frequency had 6554 and 76 average yearly trips,
respectively. Therefore, the busiest fire station had approximately 18 trips per day, whereas the least
busy fire station only averaged one trip every 5 days. Furthermore, over the past 4 years, 33 stations
(nearly half of all fire stations) have received more than six requests a day, with 12 stations receiving
more than 12 requests a day. These numbers illustrate the unequal workload between stations.

The unequal distribution also relates to the location of the station and the resulting travel distance.
Sanchong station is one of the busiest stations in this study area, whereas Snow Mountain station
(with only 306 trips a year) is the least busy of all stations. The travel distance distribution between
these two stations is disparate (Figure 2). Most trips from Sanchong station involved shorter distances
than the city average. However, distributions for Snow Mountain station were spread less evenly.
This means that ambulances from Sanchong station were more likely to reach the EMS incident location
within a few minutes than ambulances departing from Snow Mountain station. This unique problem is
caused by the location of both stations, as well as that of all other stations. Sanchong station is located
in a high-density urban area, whereas Snow Mountain station is located in a mountainous area.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 7 of 16 
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4.2. Data Description

The study area is mostly surrounded by rivers (Figure 3), isolating it from other areas by
minimizing the border effect. The study area consists of two districts of New Taipei City—Sanchong
and Luzhou—covering 23.76 km2 of highly developed land (1.16% of New Taipei City’s area) and
containing 14.73% of the city’s population. Figure 2 illustrates that large areas in the middle right of
the study area are far from any existing fire stations. This is because no space is available for a new fire
station in that area.

The border effect, as used in this study, refers to two types of EMS incidents: (1) an EMS incident
that is located outside of the study area, but is served by a fire station inside the study area, and (2)
an EMS incident that is located inside the study area, but is served by an outside fire station. Events
that involve crossing the study area border are referred to as the border effect. The border effect
employed in this study is similar to the concept of a “busy fraction” that has been used in numerous
studies [4,29,38–41].

The study area has seven fire stations with a total of 16 ambulances, representing 12.8% of the city’s
125 ambulances, which is less than the proportion of the city’s population living in the area. The average
annual workload (in terms of EMS incidents) of each ambulance in the study area and the whole city
was 1588 and 1273, respectively (Table 1). The differences between the study area and the city average
in terms of traffic-related EMS requests, weekday EMS incidents, and weekday peak-hour incidents
were 485 versus 377, 357 versus 279, and 103 versus 85, respectively. When considering an average of
250 workdays a year, each ambulance in the study area responded to approximately 0.41 EMS incidents
every working day, compared with an average of 0.34 for the entire city. The aforementioned numbers
for the study area were between 122% and 129% of the values for the entire city. Therefore, the study
area clearly lacks sufficient fire stations and ambulances compared with the rest of the city. Because
no space is available in the study area to construct a new fire station and the area has a shortage of
ambulances, the only option to address these concerns is to request assistance from outside ambulances
and use a model to establish floating ambulance stations at appropriate locations and times.

Another problem that must be addressed is the need for a detailed analysis of EMS data in
various categories from New Taipei City and the provision of appropriate solutions. Acute illness
and traffic-related EMS incidents, for example, are distinct categories in ambulance operations and
are discussed later. Set-covering research on ambulances has typically used all EMS data as the main
reference to determine future EMS deployment sites [40,42,43]. Thus far, no study has divided EMS
incidents into different categories to discuss differences between them. The current research observed
large differences between traffic-related EMS incidents and other categories, depending on the time of
day. For that reason, the decision-making process used for the floating station location was different
from that in other cover models.

The differences between traffic EMS and nontraffic EMS incidents are clear and straightforward.
First, the fire department data revealed that the distribution of traffic-related EMS incidents is
concentrated on main roads or on the roadside. By contrast, nontraffic-related EMS incidents are also
located close to roads, but extend more to the housing or buildings nearby (Figure 3). The nontraffic
EMS locations are distributed in a fashion resembling city blocks (Figure 3, left panel), whereas the
traffic-related EMS locations are distributed along lines (Figure 3, right panel). This difference greatly
constrains site selection for floating ambulance stations. Conventional set-covering models do not
consider the lined distribution of traffic-related EMS locations, mainly because traffic-related EMS
incidents do not constitute the largest proportion of all EMS incidents. Acute illness incidents tend to
affect the location of new floating ambulance stations because they comprise nearly half of all EMS
records. Traffic-related EMS incidents comprised less than one-third of all EMS incidents evaluated in
this study. Therefore, conventional models might not be suitable for such incidents.
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The next consideration is time. New Taipei City EMS data revealed that the weekday and
peak-hour frequencies (07:00–08:00 and 17:00–18:00) differ from all traffic-related EMS incidents,
despite being in the same category. This difference also strongly suggests that they represent different
types of EMS requests and should be treated separately. The daily and hourly frequency distributions
for traffic- and nontraffic-related EMS incidents are illustrated in Figure 4 The right panel represents
all EMS incidents in the study area alongside the traffic- and nontraffic-related EMS frequencies.
The traffic-related EMS line and the nontraffic-related EMS line intersect at 07:00 and 20:00 on a typical
day and are located on opposite sides of the line representing all EMS incidents in the study area.
Nontraffic-related EMS incidents exhibit a higher frequency at night and a lower frequency at noon
than traffic-related EMS incidents. The two peak periods (07:00–08:00 and 17:00–18:00) are the busiest
periods of the day. These two hours account for 26.56% of all daily EMS requests.

The left panel of Figure 4 reveals that Friday is the dividing day. After Friday, the frequency of
traffic-related EMS incidents and peak hour lines fall sharply, whereas nontraffic-related EMS lines
remain relatively stable, with a slight increase on Sunday. The line representing all EMS incidents
remains relatively stable throughout the week. The thick line representing traffic-related EMS incidents
remains at the same level of 14% to 15% during weekdays and drops to 12% by Sunday. Traffic-related
EMS incidents during peak hours are approximately 16% during weekdays and drop sharply to less
than 9% on Sunday. These data indicate that traffic-related EMS incidents during peak hours have
considerably different characteristics to other types.

Relative to EMS incident rates for the entire city, the study area had 15.97% more general EMS
incidents and 16.48% more traffic-related EMS incidents, which are both higher than the area’s
population proportion of 14.73%. The average number of annual EMS incidents during peak hours in
the study area was 236.3 incidents, which is 153% of the city average of 154.1. The workload of each
fire station in the study area is almost double that of the city average, which is one of the reasons why
this area was chosen for this study.
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Figure 4. EMS incident frequencies for weekdays (a) and hours of the day (b) for Sanchong and
Luzhou districts.

Traffic-related EMS incidents during peak hours represent the busiest periods for the New Taipei
City Fire Department. Fire stations outside of the study area responded to 7.43% of all traffic-related
EMS incidents in the study area. For peak hours, the number was 7.86%. Reducing the travel time
for each EMS incident to provide the seven fire stations with more time to attend to their own EMS
incidents without outside support is a critical concern for the fire department.

The EMS database revealed 42,527 EMS incidents in the city during weekday peak hours,
representing 30.5% of all weekday traffic-related EMS incidents, 22.59% of all traffic-related EMS
incidents, and only 6.68% of all EMS incidents. This small portion of EMS incidents not only has
unique characteristics, but can also help solve a major problem for the fire department.

In the study area, the average travel distance for EMS incidents was 1162 m, and the mode was
900 m (representing 7.8% of all EMS incidents in the study area); the next most common distance was
800 m (7.65% of the total). The average travel distance was only slightly higher than the mode, which
suggests that, in the study area, the average travel distance is concentrated around the average (1162 m)
and the mode (900 m). The study area data in Table 1 reveal that only 0.68%, 0.1%, and 0.001% of EMS
trips involved distances greater than 5, 10, and 15 km, respectively. These numbers are substantially
lower than the city-wide average.

The average travel distance for traffic-related EMS was 1424.6 m for the entire city; the mode
was 900 m (6.85% of all traffic-related EMS incidents), followed by 700 m (6.48%). The corresponding
distance in the study area was 1233.5 m; the mode was 900 m (8.37% of total), followed by 700 m (7.03%).
The number in the study area without the aforementioned border effect was 1144.6 m; the mode was
900 m (8.4% of the total), followed by 700 m (7%).

The travel distance during peak hours for all EMS incidents in the entire city was 1458.9 m;
the mode was 900 m (6.7% of total), followed by 700 m (6.4%). The peak hours travel distance in the
study area was 1386.8 m; the mode was 900 m (7.9% of total), followed by 700 m (6.5%). The peak
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hours travel distance in the study area without considering the border effect was 1190.7 m; the mode
was 900 m (8.3% of total), followed by 700 m (6.7%). We observed that our study area had shorter
travel distances for all of the aforementioned categories (89.3% and 74.8% of the city-wide average for
the average travel distance and peak hours distance, respectively).

The selection of an ideal location for a new floating station from the potential candidates was the
main focus of the model. The annual average number of ambulance trips during weekday peak hours
was 103 for the study area and 85 for the city. Therefore, the floating station model used 100 and 150 as
the capacities required for operation and to generate results for comparisons and discussion (Table 1).

Table 1. Study area descriptions (unit: number of incidents).

Study Area
(A)

New Taipei
City (B) (A/B) %

Area km2 23.76 2052.57 1.158%
Population 587,306 3,986,911 14.731%

Number of fire stations 7 69 10.145%
Number of ambulances 16 125 12.800%

EMS records 644,544
EMS with locations 101,609 636,395 15.966%

Yearly average for stations 3629 2306 157.383%
Yearly average of ambulances 1588 1273 124.737%

Traffic-related EMS 31,027 188,286 16.479%
Yearly average for stations 1108 682 162.432%

Yearly average of ambulances 485 377 128.739%
Weekday EMS 22,859 139,383 16.400%

Yearly average for stations 816 505 161.658%
Yearly average of ambulances 357 279 128.126%

Weekday peak hours EMS 6616 42,527 15.557%
Yearly average for stations 236.29 154.08 153.349%

Yearly average of ambulances 103 85 121.540%

Average travel distance intervals for all
EMS of each fire station

700 m 7.506% 7.020%
800 m 7.651% 6.984%
900 m 7.795% 6.906%

Greater than 5 km 0.677% 1.721%
Greater than 10 km 0.100% 0.187%
Greater than 15 km 0.001% 0.023%

Average travel distance
All EMS 1162.45 1302.40 89.254%

Traffic-related EMS 1233.51 1424.57 80.344%
Weekday peak hours EMS 1091.73 1458.88 74.834%

5. Results

The simulated results from the implementation of the four new floating stations in the study area
are illustrated in Figure 5 Given that each station had a capacity of 100 annual traffic-related EMS
incidents during peak hours in the study area (Figure 5), implementation of the first floating station
increased the coverage rate of traffic-related EMS incidents during peak periods by 5.54% (Table 2), and
the second to fourth increased the rate by 5.39%, 4.22%, and 6.17%, respectively. The total coverage of
traffic-related EMS incidents during peak hours increased from 31.1% when no floating stations were
active to 36.614%, 42.005%, 46.225%, and 52.390% as one, two, three, and four floating stations were
implemented, respectively. The radius of the three new stations was 400 m and 600 m for the other.
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points with a capacity of 100 incidents per year during peak periods.

Given that each station had a capacity of 150 annual traffic-related EMS incidents during peak
hours (Figure 6), the coverage rate of stations one to four increased by 9.281%, 8.078%, 9.298%, and
9.677%, respectively. The total coverage increased from 46.571% with no floating stations to 55.852%,
63.930%, 73.228%, and 82.905% as one to four new stations were installed, respectively. The radii of
the new floating stations were 600, 600, 700, and 1200 m, respectively. The coverage increased by
68.6% and 78% when using floating stations with capacities of 100 and 150 EMS incidents, respectively,
constituting significant improvements.

Table 2. Results of the four floating stations installed.

Before 1 Floating
Station

2 Floating
Stations

3 Floating
Stations

4 Floating
Stations

Using capacity 100
EMS uncovered 4181 3845 3518 3262 2888

% 68.925% 63.386% 57.995% 53.775% 47.610%
EMS covered 1885 2221 2548 2804 3178

% 31.075% 36.614% 42.005% 46.225% 52.390%
Increase covered 336 327 256 374

% 5.539% 5.391% 4.220% 6.166%
Radius 400 400 400 600

Using capacity 150
EMS uncovered 3241 2678 2188 1624 1037

% 53.429% 44.148% 36.070% 26.772% 17.095%
EMS covered 2825 3388 3878 4442 5029

% 46.571% 55.852% 63.930% 73.228% 82.905%
Increase covered 563 490 564 587

% 9.281% 8.078% 9.298% 9.677%
Radius meters 600 600 700 1200

Note: Data from the Fire Department of New Taipei City Government.



ISPRS Int. J. Geo-Inf. 2020, 9, 336 12 of 15
ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 12 of 16 

 

 

Figure 6. The four new floating stations suggested, with existing fire stations and uncovered EMS 
points with a capacity of 150 incidents per year during peak periods. 

Table 2. Results of the four floating stations installed. 

  Before 1 floating station 2 floating stations 3 floating stations 4 floating stations 
Using capacity 100      

EMS uncovered 4181  3845  3518  3262  2888  
% 68.925% 63.386% 57.995% 53.775% 47.610% 

EMS covered 1885  2221  2548  2804  3178  
% 31.075% 36.614% 42.005% 46.225% 52.390% 

Increase covered  336  327  256  374  
%  5.539% 5.391% 4.220% 6.166% 

Radius   400 400 400 600 
Using capacity 150      

EMS uncovered 3241  2678  2188  1624  1037  
% 53.429% 44.148% 36.070% 26.772% 17.095% 

EMS covered 2825  3388  3878  4442  5029  
% 46.571% 55.852% 63.930% 73.228% 82.905% 

Increase covered  563  490  564  587  
%  9.281% 8.078% 9.298% 9.677% 

Radius meters  600 600 700 1200 
Note: Data from the Fire Department of New Taipei City Government. 

 
The area coverage of the seven existing fire stations was 31.1%, but increased to 52.4% after the 

installation of the four floating stations (with a capacity of 100 EMS incidents each), resulting in a 
68.6% improvement (Table 2). When using floating stations with a capacity of 150 incidents per year, 
the area coverage improved from 46.57% to 82.91% (a 78% increase). Both improvements were 
significant. 

Figure 6. The four new floating stations suggested, with existing fire stations and uncovered EMS
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The area coverage of the seven existing fire stations was 31.1%, but increased to 52.4% after the
installation of the four floating stations (with a capacity of 100 EMS incidents each), resulting in a 68.6%
improvement (Table 2). When using floating stations with a capacity of 150 incidents per year, the area
coverage improved from 46.57% to 82.91% (a 78% increase). Both improvements were significant.

When using four floating stations with a capacity of 100 incidents each, the average travel distance
during peak hours was 1074 m; the mode was 400 m (11.1% of all trips), followed by 500 m (7.9%).
The average travel distance without the border effect was 989.4 m; the mode was 400 m (12% of
all trips), followed by 500 m (8.5%). For the four floating stations with a capacity of 150 incidents
each, the average travel distance during peak periods was 889.7 m; the mode was 500 m (12.2% of all
trips), followed by 600 m (11.4%). The average travel distance without the border effect was 824 m;
the mode was 500 m (13.1% of all trips), followed by 600 m (12.2%). Relative to the same numbers in
Table 1, significant improvements were observed in the travel distance for both capacity conditions.
The average travel distance during peak hours was 87.1% and 72.1% that of typical values after the
implementation of floating stations with capacities of 100 and 150 incidents, respectively. Without the
border effect, these values were 71.3% and 59.5% that of typical values when stations with a capacity of
100 and 150 were installed, respectively.

6. Conclusions

This study has proposed a new dynamic decision-making model to facilitate the selection of
floating ambulance stations by considering existing fire stations and the location and frequency of
past EMS incidents. Traditional covering models are static models, which are suitable for the strategic
level, but lack the flexibility required for the operational level. The demands of real-time emergencies
vary spatially and temporally. In practice, the dynamic relocation of a base is costly and complicated;
each relocation increases the workloads for ambulance crews and potentially reduces their readiness to
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respond to an emergency call. Furthermore, most set-covering models consider the travel distance and
use the minimum acceptable range or reduction in overall travel distance as assumptions.

The dynamic allocation model for the real-time redeployment of ambulances must change
periodically to reposition the ambulance base locations throughout the day, in order to respond to the
real-time demand and reduce the response time. Therefore, in this study, we have proposed a dynamic
floating stations model that focuses on updating ambulance base locations by detecting historical traffic
data. The Cauchy distribution has been applied for the frequency of traffic EMS incidents. This study
used weekday peak hours as the target category for floating stations, mainly to facilitate operations
and management.

For the case simulation, the new floating stations cover large areas of EMS points; those points were
previously served by existing fire stations farther away than the new floating stations. With those new
floating stations, the average travel distance will certainly be shortened, which is the expectation for
this type of operation. Simulations revealed significant improvements when using our model; however,
the reality may differ considerably. For more accurate results, this model should be implemented in a
real-world system using everyday data and making corrections from on-site feedback. Before such
implementation, we can only use the results from the model simulation to prove the improvements.
The results also revealed that the model only improved the problem areas with the limited ambulances
provided, instead of affecting coverage in the full study area where the service should ideally be
provided. However, based on this discussion, the applicability of the floating stations might be
appropriate for other cities or countries which have limited ambulance resources.

Our model considered capacity as the main constraint when identifying new floating station
locations. Only four ambulances were available to assign. Therefore, it was a small-scale operation;
however, it did address EMS concerns in terms of the travel distance and workload. Because of the
limited ambulance resources, we used the first found maximum capacity to identify potential new
stations to prioritize support in areas with the greatest difficulties.

Through this dynamic deployment of ambulances, ambulance resources can be effectively used
during peak traffic hours. In the non-peak period of traffic, the original service mode of the ambulance
unit will be restored, without the need to activate the dynamic deployment mode of ambulances.
Because the speed of ambulances can be faster during non-peak traffic hours, and the service coverage
of ambulances is also larger than that during peak traffic hours, the original ambulance can meet the
response time of the ambulance during the non-peak period of traffic.

Considering that existing fire departments are immovable and urban development is unpredictable,
floating stations seem to constitute a suitable solution for urban areas. The scenario in urban areas
and non-urban areas may require different deployment approaches. The road network in non-urban
areas is not as dense as that in urban areas. Future studies may extend research to non-urban area
coverage, as another constraint measurement, to identify the optimum solutions. Moreover, excluding
nontraffic-related EMS incidents and determining the floating ambulance station locations were the
goals of this study. In future studies, we may develop another model to simulate nontraffic-related
EMS incidents, such as those for acute illness.
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17. Erkut, E.; Ingolfsson, A.; Erdoğan, G. Ambulance location for maximum survival. Nav. Res. Logist. (NRL)

2008, 55, 42–58. [CrossRef]
18. Zarandi, M.F.; Davari, S.; Sisakht, S.H. The large scale maximal covering location problem. Sci. Iran. 2011, 18,

1564–1570. [CrossRef]
19. Dell’Olmo, P.; Ricciardi, N.; Sgalambro, A. A multiperiod maximal covering location model for the optimal

location of intersection safety cameras on an urban traffic network. Procedia-Soc. Behav. Sci. 2014, 108,
106–117.

20. Boscoe, F.P.; Henry, K.A.; Zdeb, M.S. A nationwide comparison of driving distance versus straight-line
distance to hospitals. Prof. Geogr. 2012, 64, 188–196. [CrossRef]

21. Nordin, N.A.M.; Zaharudin, Z.A.; Maasar, M.A.; Nordin, N.A. Finding shortest path of the ambulance
routing: Interface of A∗ algorithm using C# programming. In Proceedings of the 2012 IEEE Symposium on
Humanities, Science and Engineering Research, Kuala Lumpur, Malaysia, 24–27 June 2012; pp. 1569–1573.

22. Current, J.R.; Storbeck, J.E. Capacitated covering models. Environ. Plan. B Plan. Des. 1988, 15, 153–163.
[CrossRef]

23. Gawryszewski, V.P.; Rodrigues, E.M.S. The burden of injury in Brazil, 2003. São Paulo Med J. 2006, 124,
208–213. [CrossRef] [PubMed]

24. Ardalan, A.; MASOUMI, G.; GOUYA, M.M.; Sarvar, M.; Hadadi, M.; Miadfar, J.; Rezvani, F.; SHAH, M.M.
Road traffic injuries: A challenge for Iran’s health system. Iran. J. Public Health 2009, 38, 98–101.

25. Paravar, M.; Hosseinpour, M.; Salehi, S.; Mohammadzadeh, M.; Shojaee, A.; Akbari, H.; Mirzadeh, A.S.
Pre-hospital trauma care in road traffic accidents in kashan, iran. Arch. Trauma Res. 2013, 1, 166. [CrossRef]

http://dx.doi.org/10.1136/emj.20.2.188
http://www.ncbi.nlm.nih.gov/pubmed/12642542
http://dx.doi.org/10.1016/S0377-2217(02)00364-8
http://dx.doi.org/10.1016/j.seps.2009.04.002
http://dx.doi.org/10.1016/j.ejor.2011.10.043
http://dx.doi.org/10.1109/TITS.2010.2101063
http://dx.doi.org/10.1007/s00186-011-0363-4
http://dx.doi.org/10.1287/opre.19.6.1363
http://dx.doi.org/10.1016/S0167-8191(01)00103-X
http://dx.doi.org/10.1287/trsc.17.1.48
http://dx.doi.org/10.1287/trsc.23.3.192
http://dx.doi.org/10.1016/j.cor.2006.04.003
http://dx.doi.org/10.1002/nav.20267
http://dx.doi.org/10.1016/j.scient.2011.11.008
http://dx.doi.org/10.1080/00330124.2011.583586
http://dx.doi.org/10.1068/b150153
http://dx.doi.org/10.1590/S1516-31802006000400007
http://www.ncbi.nlm.nih.gov/pubmed/17086302
http://dx.doi.org/10.5812/atr.8780


ISPRS Int. J. Geo-Inf. 2020, 9, 336 15 of 15

26. Hsieh, C.-H.; Hsu, S.-Y.; Hsieh, H.-Y.; Chen, Y.-C. Differences between the sexes in motorcycle-related injuries
and fatalities at a Taiwanese level I trauma center. Biomed. J. 2017, 40, 113–120. [CrossRef] [PubMed]

27. Administration National Highway Traffic Safety Administration (N. H. T. S.). Motorcycles Traffic Safety Fact
Sheet; Administration National Highway Traffic Safety Administration (N. H. T. S.): Washington, DC, USA,
May 2013.

28. Rodrigues, E.M.; Villaveces, A.; Sanhueza, A.; Escamilla-Cejudo, J.A. Trends in fatal motorcycle injuries in
the Americas, 1998–2010. Int. J. Inj. Control Saf. Promot. 2014, 21, 170–180. [CrossRef]

29. Budge, S.; Ingolfsson, A.; Zerom, D. Empirical analysis of ambulance travel times: The case of Calgary
emergency medical services. Manag. Sci. 2010, 56, 716–723. [CrossRef]

30. Schmid, V.; Doerner, K.F. Ambulance location and relocation problems with time-dependent travel times.
Eur. J. Oper. Res. 2010, 207, 1293–1303. [CrossRef]

31. Zhen, L.; Wang, K.; Hu, H.; Chang, D. A simulation optimization framework for ambulance deployment and
relocation problems. Comput. Ind. Eng. 2014, 72, 12–23. [CrossRef]

32. Takeda, R.A.; Widmer, J.A.; Morabito, R. Analysis of ambulance decentralization in an urban emergency
medical service using the hypercube queueing model. Comput. Oper. Res. 2007, 34, 727–741. [CrossRef]

33. Dolney, T.J.; Sheridan, S.C. The relationship between extreme heat and ambulance response calls for the city
of Toronto, Ontario, Canada. Environ. Res. 2006, 101, 94–103. [CrossRef]

34. Eaton, D.J.; U, H.M.L.S.; Lantigua, R.R.; Morgan, J. Determining ambulance deployment in santo domingo,
dominican republic. J. Oper. Res. Soc. 1986, 37, 113–126. [CrossRef]

35. Pillai, N.S.; Meng, X.-L. An unexpected encounter with Cauchy and Lévy. Ann. Stat. 2016, 2089–2097.
[CrossRef]

36. Shiah, D.-M.; Chen, S.-W. Ambulance allocation capacity model. In Proceedings of the 2007 9th International
Conference on e-Health Networking, Application and Services, Taipei, Taiwan, 19–20 June 2007; pp. 40–45.

37. Shiah, D.-M.; Hung, C.-T.; Chen, S.-W. Multi-capacities ambulance location model. In Proceedings of the 2009
5th International Conference on Testbeds and Research Infrastructures for the Development of Networks &
Communities and Workshops, Washington, DC, USA, 6–8 April 2009; pp. 1–6.

38. Ingolfsson, A.; Budge, S.; Erkut, E. Optimal ambulance location with random delays and travel times.
Health Care Manag. Sci. 2008, 11, 262–274. [CrossRef] [PubMed]

39. Jagtenberg, C.J.; Bhulai, S.; van der Mei, R.D. An efficient heuristic for real-time ambulance redeployment.
Oper. Res. Health Care 2015, 4, 27–35. [CrossRef]

40. Revelle, C.; Hogan, K. The maximum reliability location problem and α-reliablep-center problem: Derivatives
of the probabilistic location set covering problem. Ann. Oper. Res. 1989, 18, 155–173. [CrossRef]

41. Shariat-Mohaymany, A.; Babaei, M.; Moadi, S.; Amiripour, S.M. Linear upper-bound unavailability set
covering models for locating ambulances: Application to Tehran rural roads. Eur. J. Oper. Res. 2012, 221,
263–272. [CrossRef]

42. Chanta, S.; Mayorga, M.E.; McLay, L.A. Improving emergency service in rural areas: A bi-objective covering
location model for EMS systems. Ann. Oper. Res. 2014, 221, 133–159. [CrossRef]

43. Moeini, M.; Jemai, Z.; Sahin, E. Location and relocation problems in the context of the emergency medical
service systems: A case study. Cent. Eur. J. Oper. Res. 2015, 23, 641–658. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.bj.2016.10.005
http://www.ncbi.nlm.nih.gov/pubmed/28521902
http://dx.doi.org/10.1080/17457300.2013.792289
http://dx.doi.org/10.1287/mnsc.1090.1142
http://dx.doi.org/10.1016/j.ejor.2010.06.033
http://dx.doi.org/10.1016/j.cie.2014.03.008
http://dx.doi.org/10.1016/j.cor.2005.03.022
http://dx.doi.org/10.1016/j.envres.2005.08.008
http://dx.doi.org/10.1057/jors.1986.21
http://dx.doi.org/10.1214/15-AOS1407
http://dx.doi.org/10.1007/s10729-007-9048-1
http://www.ncbi.nlm.nih.gov/pubmed/18826004
http://dx.doi.org/10.1016/j.orhc.2015.01.001
http://dx.doi.org/10.1007/BF02097801
http://dx.doi.org/10.1016/j.ejor.2012.03.015
http://dx.doi.org/10.1007/s10479-011-0972-6
http://dx.doi.org/10.1007/s10100-014-0374-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review 
	Methodology 
	Case Study 
	Problem Definition 
	Data Description 

	Results 
	Conclusions 
	References

