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Abstract: Mining subsidence is time-dependent and highly nonlinear, especially in the Loess
Plateau region in Northwestern China. As a consequence, and mainly in building agglomerations,
the structures can be damaged severely during or after underground extraction, with risks to
human life. In this paper, we propose an approach based on a combination of a differential
interferometric synthetic aperture radar (DInSAR) technique and a support vector machine (SVM)
regression algorithm optimized by grid search (GS-SVR) to predict mining subsidence in a timely and
cost-efficient manner. We consider five Advanced Land Observing Satellite (ALOS)/Phased Array
type L-band Synthetic Aperture Radar (PALSAR) images encompassing the Dafosi coal mine area in
Binxian and Changwu counties, Shaanxi Province. The results show that the subsidence predicted by
the proposed InSAR and GS-SVR approach is consistent with the Global Positioning System (GPS)
measurements. The maximum absolute errors are less than 3.1 cm and the maximum relative errors
are less than 14%. The proposed approach combining DInSAR with GS-SVR technology can predict
mining subsidence on the Loess Plateau of China with a high level of accuracy. This research may
also help to provide disaster warnings.

Keywords: subsidence prediction; interferometric synthetic aperture radar (InSAR); support vector
machine regression (SVR)

1. Introduction

Geo-hazards and structural damage caused by coal mining have attracted much attention in
research over the past few years. Surface subsidence prediction methods are essential for accurate
assessment and mitigation by decision-makers. Traditionally, modeling mining-induced subsidence
behavior requires repeated monitoring of subsidence data [1,2]. The monitoring methods may include
measurements obtained by using total station instruments, automatic levels, Global Navigation Satellite
Systems (GNSS), and/or terrestrial laser scanners (TLS). These methods establish monitoring stations
along the main plane of a deformation basin and then measure the observed subsidence rate over
various periods. These approaches exhibit shortcomings such as low spatial resolution, high cost,
low efficiency, and high labor intensity, besides also being a life-threatening activity [3,4]. In the specific
case of China’s Loess Plateau, the practical applications of the traditional approaches for modeling
mining subsidence are dramatically limited due to the difficulty in establishing these observation lines.
The ravines and gullies of the Loess Plateau make establishing monitoring stations highly inconvenient.

Over the past 20 years, interferometric synthetic aperture radar (InSAR) technology has emerged
as a viable subject for research on this topic. A wealth of commercial InSAR data is now widely available
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to the research community. Instead of relying on limited discrete observational data, continuous
surface deformation information can be collected using radar interferograms. Specifically, InSAR has a
unique advantage in its ability to offer researchers wide coverage, high spatial resolutions, and almost
all-weather-independent reliability at low cost. Differential InSAR (DInSAR) technology was developed
in 1989 [5] for monitoring slight ground deformation along the line-of-sight (LOS) of the satellite.
Since then, other applications have used this approach, including the monitoring of landslides [6,7],
mining subsidence [8], urban water-loss settlement [9–11], volcanic activities [12,13], glacial shift [14,15],
earthquake deformation [16–18], and dam stability [19–22]. Due to the benefits mentioned, DInSAR
has emerged as a particularly efficient medium for surveying the subsidence that occurs in coal
mines [23]. However, DInSAR technology’s monitoring gradients may present crucial limitation in
mining subsidence analysis. This limitation occurs more specifically when a massive deformation
occurs in a short time. As a consequence, a decorrelation may appear in the interferogram generated.

Moreover, it is difficult to remove phase errors, including atmospheric delay and topography-
residual error, when using the traditional DInSAR. A least-squares (LS) database approach was
presented in [24] for SAR interferometric data, in which the subsidence velocity of persistent scatter is
computed via LS estimation. As a result, the shortcomings of DInSAR were successfully overcome,
and accurate subsidence data were achieved. After that, small baseline subset differential interferometric
synthetic aperture radar (SBAS-InSAR) technology was developed from the traditional DInSAR
technology. Berardino et al. [25] proposed the small baseline subset algorithm, which is based on
the least-squares model. The SBAS-InSAR method was successfully used in [26] in the South Wales
coalfield. Crosetto et al. provided a review about DInSAR-PS in 2016, demonstrated that it has ability
of measuring mill-metric displacements [27]. Wasowski and Bovenga assessed the quality of the
DInSAR products in 2014; they found that a precision of a few millimeters and 1 mm/year can be
achieved by SBAS-InSAR method under the best conditions [28].

From the above, the advantage of DInSAR is very high accuracy measured from space. This is
a highly advanced geodetic tool to observe ground surface changes; it can tell us what happened
accurately. But further, we want to know what will happen in future. So, a prediction algorithm
combined with DInSAR data needs to be found; and geological and geo-engineering interpretation
of these research data is conducive to evaluating geo-hazards and preventing structural damage
caused by future underground activities. A few scholars have proposed several methods to predict
mining-induced subsidence based on InSAR technology in recent years [29–31]. For instance, the InSAR
subsidence value was obtained in [8] and used as the input variable to invert the main parameters
of the probability integral method (PIM) in order to predict subsidence in deep coal mines. A model
was built using the InSAR technique and elastic–plastic algorithm in [32] to monitor the Crandall
Canyon Mine (Utah) collapse. The PIM model was directly coupled in [33] with InSAR-derived LOS
deformation, inverting most parameters. However, in these studies, some of the parameters of the
prediction algorithm were back-calculated from DInSAR, and the remaining parameters were empirical
parameters for the given coal mine. Hou et al. [34] proposed superposition models with rheology and
the PIM model to analyze subsidence in the mining area of a thick loose layer. Other scholars have
applied other modeling techniques of mining subsidence, such as the time function of Knothe, and the
influence function. However, these models have no extensive universality or suitability in general coal
mining environments.

In practice, accurate geology data associated with mines are helpful in studying deformation
mechanisms. Nevertheless, due to the fragile geological conditions and perilous operation environment,
it is difficult for engineers to monitor conditions under the ground in mines. The deformation data
obtained on the ground seem to be the only available data. Through analyzing existing data,
deducing new unknown data by traditional physical statistical models is meaningful work [35].
Deng et al. [36] demonstrated a wonderful piece of work combining a statistical model and DInSAR
data, which predicted the future land subsidence by analyzing existing data. However, they presented
a Grey–Markov model as the prediction model, which needs long time-series data sequences following



ISPRS Int. J. Geo-Inf. 2020, 9, 390 3 of 17

a smooth curve, or otherwise it tends to produce errors. Unlike statistical models, support vector
machine (SVM) regression models have the ability to describe the pattern of a system’s evolution with
only a limited amount of data. The model has fewer constraints on the data; it can solve small sample
learning problems better, and the SVM parameters can be determined by a gird search algorithm more
efficiently. Thus, an SVM regression model is suitable for predicting mining-related subsidence.

In this paper, we propose a novel approach that combines InSAR-derived deformation with an SVM
regression algorithm optimized by grid search (abbreviated as GS-SVR) for predicting mining-related
subsidence. We considered the consecutive DInSAR subsidence values from the Dafosi coal mine
area (NO.40301 working panel) as an input variable to invert the GS-SVR parameters and predict
mining-induced surface subsidence. The rest of this paper is organized as follows: Section 2 describes
the area of interest. Section 3 presents the materials and methods adopted in this study. Sections 4
and 5 present and discuss the results obtained in the experiments. Finally, Section 6 presents the main
conclusions and points out future directions.

2. Study Site

The NO.40301 working panel of Dafosi coal mine is located between the Binxian and Changwu
counties in Shaanxi province, China. It is one coal mine of the Binchang coalfield, which is the national
plan coal mining base. Mine geological structure is simple, consists of a series of folds (NE-NEE),
rare faults; coal seam is thick and gentle. It is located in the Weibei fold area which belongs to the
Ordos basin in Northwestern China. The geomorphological features are broken gullies and loose
soil in the Loess Plateau; the terrain is high in the northwest and low in the southeast at an altitude
of 900–1200. The Jinghe river, which is located in the south of the working panel, runs from the
northwest to the southeast. The types of land cover over the coal mine include agricultural lands 72%,
construction lands 8%, and other lands 20%. Among agricultural lands, 55% are arable lands, 38% are
grasslands, 5% are forest lands, and 2% are others. Among construction lands, 93% are urban and rural
construction lands, 6% are transportation and water conservancy, and 1% are others. Among other
lands, 17% are water, and 93% are bare land and wasteland. There is a national highway, a national
road and a railway running through the coal mine. Binxian city is located in the southeast of the
coal. Consequently, the subsidence induced by mining would threaten the safety of this infrastructure.
The area in which this coal mine is located has a typical continental monsoon climate; the mean annual
precipitation is 561.3 mm, and the mean annual temperature is 11.1 degrees centigrade. The soil is
classified as loessial, including the gully and plateau landforms. The vegetation coverage is low and
the vegetation type is monotonous; the dominant species are warm sparse shrub grasses.

Dafosi coal mine is located in the Loess Plateau tableland of the Wei-He river beam and gully
region, and the topography slopes down toward the middle valley from the Loess Tableland. There are
6.729 billion tons of coal reserves in Dafosi coal mine, and it has a total mine production capacity of
5 million tons per year. The direction of the NO.40301 working panel is from north to south, and it
was begun in July 2007. The red rectangle shown in Figure 1 presents the mining location of this
working panel. The mining activity adopted was long wall mining on the strike and comprehensively
mechanized coal mining. The average mining depth was 680 m and the coal seam thickness was
2.1–2.5 m. The mining location from July 2007 to January 2008 is shown in Figure 1. The mining
direction, known as the strike-line, was from northeast to southwest. The dip-line is the direction
perpendicular to the strike-line. Dafosi coal mine suffered from a large area of mining subsidence and
ground damage. Some houses were destroyed; some walls suffered cracks over 10 cm. Caved steps
collapsed over 30 cm in the farmland. Cracks larger than 10 cm appeared on the highway pavement.
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Figure 1. Geographical location of the NO.40301 working panel in Dafosi coal mine and Global
Positioning System (GPS) stations with the corresponding Google Earth image as the background.

3. Materials and Methods

3.1. SAR Data Description

In this paper, we took the NO.40301 working panel of the Dafosi mine area as an example,
choosing five Advanced Land Observing Satellite (ALOS)/Phased Array type L-band Synthetic
Aperture Radar (PALSAR) images with high resolution mode. The Japanese Earth-observation satellite
ALOS, developed by Japan Aerospace Exploration Agency (JAXA), was launched on 24 January 2006
and lost on 22 April 2011. PALSAR is an SAR system that was on board the ALOS satellite and has
advanced functions and performance. It has the advantage of imaging the Earth day and night and
ignoring atmospheric weather conditions. PALSAR has a high-resolution mode in which it can scan
wide swaths of 35–70 km.

In order to reduce the influence of time, the time interval of interference was selected so as to be
as small as possible. Therefore, five L-band (23.6 cm) ALOS/PALSAR scenes acquired from 4 July 2007
to 4 January 2008 were used in the experiment. These signals were assembled using a radar look angle
of 34.3◦ along the ascending orbits; the ground resolution of the original Single-Look-Complex (SLC)
images is 13.36 m in the range and 3.17 m in azimuth. Radar sensors can transmit horizontal (H) or
vertical (V) electric field vectors and receive horizontal (H) or vertical (V), or both, as return signals.
HH (transmit-horizontal and receive-horizontal) polarization means that signals are transmitted and
received in horizontal; and it is good for receiving the maximum signal intensity. The basic parameters
of the ALOS/PALSAR images are shown in Table 1.
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Table 1. Basic parameters of the Advanced Land Observing Satellite (ALOS)/Phased Array type L-band
Synthetic Aperture Radar (PALSAR) images.

Master Image Date
(yyyymmdd)

Slave Image Date
(yyyymmdd)

Temporal Baseline
(Day)

Perpendicular
Baseline

(m)
Polarization

20070704 20070819 46 217 HH
20070819 20071004 46 135 HH
20071004 20071119 46 345 HH
20071119 20080104 46 65 HH

3.2. GPS Data Description and Signal Processing

There were 11 GPS stations above the working panel (see in Figure 1)—6 stations in the strike-line,
4 stations in the dip-line, and 1 station in the cross—providing measurements between 4 July 2007 and
4 January 2008. The GPS results were used to test the accuracy of the predicted results.

The GPS data were collected using Chinese Southsurvey GPS receivers in real-time kinematic
(RTK) mode. One receiver was installed at the base station, located on a stable surface; others
monitored displacements at the GPS stations. The horizontal and vertical accuracy of the GPS receiver
are ±

(
10 + 1× 10−6

×D
)

mm and ±
(
20 + 1× 10−6

×D
)

mm (where D is the distance), respectively.
GPS-RTK was measured three times from 4 July 2007 to 4 January 2008. The first time, a GPS

receiver with a tripod was installed on the reference station which was located at the stable surface.
The antenna height was measured, the receiver was opened, and then the reference station height,
antenna height, and WGS84 coordinate were recorded. We then turned on the radio and checked
then channel. We then opened the roving station GPS receiver with centering rod, input the exact
parameters, and checked the radio channel and the number of satellites. The reference station and
roving station GPS receiver make simultaneous observations. A roving station GPS receiver was used
to measure the 11 GPS stations’ coordinates and heights. Data were obtained at the sampling rate of
20 Hz; the observation time was more than 180 s. The second time, the 11 GPS stations were measured
again in the same way after 115 days. The third time, the 11 GPS stations were measured in the same
way after 230 days. The deformation value was calculated by the difference value of these three times.

It should be emphasized that quality control measurements were performed every time.
The method of comparison with quickly static measurement was used to verify the reliability of
the RTK results. At least 3 points were selected as the check points every time; the observation time of
quickly static measurement is more than 600 s. After data processing, the maximum error between
quickly static measurement and RTK was less than 2 cm in height. The RTK measurements of 11 GPS
stations are listed in Table 2.

Table 2. The real-time kinematic (RTK) measurements of GPS stations, (unit: meter).

Times GPS1 GPS2 GPS3 GPS4 GPS5 GPS6 GPS7 GPS8 GPS9 GPS10 GPS11

First 981.361 979.898 979.422 949.667 951.544 952.766 947.581 948.535 949.214 955.647 949.233
Second 981.340 979.814 979.378 949.593 951.402 952.703 947.581 948.535 949.155 955.566 949.211
Third 981.336 979.800 979.350 949.519 951.241 952.560 947.566 948.532 949.142 955.553 949.207

3.3. Consecutive DInSAR

DInSAR technology is based on wave interference. It uses two microwave images obtained from
satellites flying over the same area twice (repeat track mode). The technology then processes these
two images, produces interference fringes, and produces an image reflecting the change in phase.
This image is called an interferogram. Ideally, the real phase value of each point can be calculated
from the unwrapped interferogram; and then the height can be calculated. According to the theory of
DInSAR technology, the composition of the interferogram phase can be expressed as follows:

∆ϕ = ∆ϕtopo + ∆ϕde f + ∆ϕ f lat + ∆ϕnoise (1)
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where ∆ϕ expresses the unwrapping phase of the interferogram, ∆ϕtop expresses the phase of
topographic data, ∆ϕde f expresses the phase of deformation, ∆ϕ f lat expresses the phase of earth-flat,
and ∆ϕnosie expresses the phase of noise, including the system thermal noise, as well as the noise due
to the loss of time and space correlation. In order to obtain an accurate deformation phase ∆ϕde f ,
the other terms should be eliminated by the item on the right side of Equation (1). This study used the
ENVI5.5 SARscape software procedure, including co-registration, creating an interferogram, filtering,
unwrapping, calculating the differential interferometric phase, and geocoding. Ultimately, this method
generates a deformation image. We were able to create four figures based on the interference data
displayed in Table 1.

3.3.1. Co-Registration

The purpose of co-registration is registering the slave SAR image to the reference geometry of the
master image. It consists of spatially registering two or more images with subpixel accuracy. First,
a shift estimate is performed based on the initial orbit data. Second, the shift estimate is improved
to subpixel accuracy by using a grid of small windows. Third, the final shift is further refined to the
accuracy of 1/10 of a pixel by using oversampled data.

3.3.2. Creating an Interferogram

Assume that there is a pixel footprint in both master and slave images mapping on the ground P.
The master and slave images measure phase ϕm and ϕs from the sensor to P respectively.

ϕm =
4π
λ

MP (2)

ϕs =
4π
λ

SP (3)

where MP is the distance from first sensor to ground P; SP is the distance from second sensor to ground
P; λ is the wavelength of the radar sensor.

The subtraction of these two phases ϕs −ϕm forms the interferogram:

∆ϕint = ϕs −ϕm =
4π
λ
(SP−MP) (4)

The interferometric phase ∆ϕint is related to the distance subtraction of SP and MP, which is
fundamental to generate the Digital Elevation Model (DEM) [27]. In practice, the ground point P moves
to P’ during the satellite repeatedly flying. The slave images measurement of phase ϕs is different
from above:

ϕs =
4π
λ
(SP + PP′) (5)

where PP’ is the deformation distance of ground point P.
The interferogram phase is informed in following:

∆ϕint =
4π
λ
(SP + PP′ −MP) =

4π
λ
(SP−MP) +

4π
λ

PP′ (6)

If the external DEM is obtained, the phase 4π
λ PP′ can be calcuted which related to the deformation

of point P. In practice, the noise may also be mixed up in the interferogram during measurement.

3.3.3. Filtering

An iterative, adaptive filtering procedure is performed to remove the noise in the interferogram,
thus preserving information about local deformation. The coherence values are used to set the filter
window size; the mean intensity difference among adjacent pixels is used to identify a stationary area,
which defines the maximum dimension (in any case not bigger than the input parameter setting) and
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the shape of the filtering windows. The process is aimed at preserving even the smallest interferometric
fringe patterns.

3.3.4. Unwrapping

The differential interferogram is unwrapped using the minimum cost flow (MCF) method. In order
to limit the possibility of introducing erroneous phase jumps in the output unwrapped phase image,
it is suggested to avoid setting a high coherence threshold; good values are typically between 0.15 and
0.2 [37]. We set a coherence threshold of 0.2.

3.3.5. Calculating the Differential Interferometric Phase

This step is crucial for correct transformation of the unwrapped phase information into
displacement values. It removes the topographic phase, earth-flat phase from the unwrapped
phase values, leaving only the displacement phases. The Shuttle Radar Topography Mission (SRTM)
DEM was used to remove these phases. It was interpolated and re-sampled, then simulated as an
interferogram phase. The topography-related errors were negatively correlated with perpendicular
baselines. All perpendicular baselines were less than 345 m (Table 1), and the altitude of ambiguity [38]
was larger than 190 m. Hence, topography-residual phase in the interferograms can be neglected [13].

3.3.6. Geocoding

The SAR images are projected into the slant range geometry. This step is performed to geocode
the displacement phases from the SAR projection into a map projection. During this procedure,
SAR projection and geodetic transforms are considered in order to convert the displacement values
from the SAR system into the Global Cartesian coordinate system (WGS-84).

Nevertheless, in this study we focused on consecutive DInSAR technology; to obtain consecutive
DInSAR interferograms, the four advanced SAR images were each used as the master image in turn,
and the subsequent one was used as the slave. Consecutive DInSAR means that for two scenes of
SAR images for which the time interval is the shortest, we produce interferograms one by one and
ultimately obtain complete time series interferometric results. Subsidence within a single period can
be acquired; meanwhile, interferometric phase changes can be analyzed easily in a quantitative way.
As an advantage, this helps to evaluate the various characteristics of mining subsidence from different
spatio-temporal perspectives.

3.4. Support Vector Machine Regression

The principle of the prediction algorithm based on a support vector machine (SVM) regression
algorithm optimized by grid search (GS-SVR) supposes that there is a set of training sample data
D = {(X1,Y1),(X2,Y2), . . . ,(Xi,Yi), . . . ,(Xn,Yn)} (where Yi∈R, i = 1,2,3, . . . ,n), and we hope to find a
function f (X) = Y. If so, we can easily obtain Yn + 1, which is the prediction value.

f (x) = ω · x + b (7)

Here, ω is a feature space vector, x→ Rn , and b is a threshold.
We introduced the loss function parameter ε and make the function f (x) subject to the

following expression:

s.t.

 yi − (ωxi + b) ≤ ε(
ωTxi + b

)
− yi ≤ ε

(8)

min
1
2
‖ω‖2 (9)
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If the function cannot estimate all the data with the loss function parameter ε, error ζ must be
added. The expression mentioned above should be expressed as follows [39]:

min
1
2
‖ω‖2 + c

l∑
i=1

(
ζi + ζ∗i

)
(10)

s.t.


yi −

(
ωTxi + b

)
≤ ε+ ζi(

ωTxi + b
)
− yi ≤ ε+ ζ∗i

ζi, ζ∗i ≥ 0
(11)

where c is the penalty factor, ζ is the error, and ε is the loss function parameter.
By introducing Lagrange functions and dual variables, the function f (x) in Equation (7) was

found. However, it could only solve a linear regression problem; mining subsidence prediction is a
nonlinear regression problem. The kernel SVM function κ

(
xi, x j

)
needs to be introduced to solve a

nonlinear regression problem. The kernel SVM can handle the complexity of ascending dimension
and avoid a high-dimension kernel function expression by using the expansion theorem. There are
three kernel SVM forms: radial basis function (RBF), polynomial, and sigmoid kernel. Our purpose
was to acquire an optimal regression model to predict mine subsidence using the least amount of data.
The RBF function is suitable for this, as shown in Equation (11). Compared with other functions, it has
the advantages of fewer parameters and faster calculation speed [40]. It is also robust against the
interference of noise in the data.

κ
(
xi, x j

)
= exp

(
−gamma‖xi − x j‖

2
)

(12)

Here, the penalty factor c in Equation (11) and the kernel parameter gamma (henceforth denoted
g) are vital parameters of the SVM regression model. To improve the accuracy of the SVM regression
algorithm, a grid search (GS) algorithm was applied. This GS algorithm was used for model parameter
optimization. We determined the initial values of g and c, searched for g and c globally using the grid
method, in order to obtain the optimal values for g and c, and, finally, establish the prediction equation.

3.5. Summary of InSAR and GS-SVR

Based on the concept described previously, the time series subsidence data in the coal mine
obtained via InSAR technology are used as training sample data. These data are characterized by a
nonlinear relationship: {xi} = {x1, x2, . . . xn}. We considered the values of these data as the GS-SVR
algorithm training samples, to establish a prediction function such as Equation (7), and solve Equation
(10) to establish the prediction model. We compared the predicted values with the surveyed values
to determine the accuracy of the prediction model. The mine prediction model was computed using
MATLAB software, and constructed as follows:

Step 1: The dataset of InSAR subsidence values was acquired as the training dataset, and the GPS
measurement data were selected as the validation dataset.

Step 2: The fixed range for parameter c was split up into a set of values with the same interval
between. Further, the fixed range for g was segmented evenly to form a set with the same cardinality
as that for c. Each c and g were grouped together, and each (c, g) pair was established as a grid cell.

Step 3: For each (c, g) pair in the grid, the prediction accuracy of the model was obtained by
cross-validation. The InSAR subsidence values were divided into a training dataset and a testing
dataset using leave-one-out cross-validation.

Step 4: The (c, g) pair with the highest accuracy was used as the SVM regression parameters.
The InSAR subsidence values were used as the model input in the training dataset, and the prediction
values were then calculated.
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Step 5: The accuracy of the prediction values was evaluated by determining the absolute error [13]
and relative error (RE), which are defined as follows:

AE =
∣∣∣mi −m′i

∣∣∣ (13)

RE =

∣∣∣∣∣∣mi −m′i
mi

∣∣∣∣∣∣× 100%, (14)

where mi represents the GPS measurement values and m′i represents the prediction values obtained by
the GS-SVR algorithm.

The mean absolute percentage error (MAPE) was used as an index for assessing prediction results.
Willmott’s Index of Agreement (WIA) was used for evaluating the generalization performance of the
prediction method. MAPE is an indicator of relative error, and WIA varies between 0 and 1. The WIA
value is a standardized measurement of the degree of SVM regression model error. They are defined
as follows:

MAPE =

∑n
i=1

∣∣∣mi −m′i
∣∣∣/mi

n
× 100% (15)

WIA = 1−

∑n
i=1 (mi −m′i )

2∑n
i=1

(∣∣∣mi −mi
∣∣∣+ ∣∣∣m′i −mi

∣∣∣)2 (16)

where mi is the GPS measurement values, m′i is the prediction values acquired by the GS-SVR, n is the
number of test samples, and mi is the mean value of all m′i .

4. Results

4.1. DInSAR Results

Figure 2a–d shows the DInSAR coherence maps. As an indicator evaluating the quality of an
interferogram, the values of a coherence map are defined as dimensionless quantities from 0 to 1.
Higher values mean better image quality. The coherence value is more than 0.2 in most areas. There is a
cornfield in the southern section of the working panel; the growth and harvesting from July to October
induce incoherence. Even so, the quality indicated by these coherence maps is good enough for the
unwrapping phase.

Figure 3a–d shows the differential interferogram maps. In theory, the differential interferogram
maps only contain subsidence phases. It is important to execute the filtering and baseline estimation
stages, because these stages can remove the noise phase and Earth-flat phase. Benefitting from the
higher coherence and shorter perpendicular baseline, the absolute subsidence phase value could be
obtained, as shown in Figure 3. The subsidence phase fringes are represented with different colors;
the color variation is visibly continuous in Figure 3. This is beneficial to accurately transforming the
differential interferogram phase to vertical displacement and determining the surface subsidence.
The deformation phases were detected in different positions during these four periods. Two deformation
phases appeared from 4 July 2007 to 19 August 2007 (see in Figure 3a outlines A and B). In the period
between 19 August 2007 and 4 October 2007, two deformation regions were detected. Region A was in
the same position as the previous period, and Region C was to the west of B (see in Figure 3b). With the
development of underground mining activities, deformation phase D was detected (see in Figure 3c
outline D). The deformation regions continued to expand from 19 November 2007 to 4 January 2008
and deformation phases A, D, and E were detected; the scope of D was larger than before, and E was a
new deformation region (see Figure 3d).
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In the last step of the DInSAR procedure, the differential interferogram phases were transformed
into subsidence values and geocoded into the WGS84 projection coordinate system. We acquired
four subsidence maps from 4 July 2007 to 4 January 2008. The subsidence values were extracted and
overlaid. Consecutive subsidence values of mining were rendered in color, as shown in Figure 4,
which displays the total subsidence value for the region over 184 days. Meanwhile, the subsidence
regions in each time period are marked by gray oval outlines. They were characterized by forward
movement of the footprint of the ground surface in the mining area, i.e., surface subsidence caused
by underground mining. The subsidence value continuously increased and the deformation area
gradually expanded toward the southern direction—the same direction as mining expansion. As of
January 2008, the ground surface formed three mining-induced subsidence bowls and a critical bowl
located in the middle of the working panel.
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4.2. Prediction Results

The consecutive subsidence monitoring data acquired from the DInSAR dataset (Table 1) were used
to conduct subsidence prediction. There were 11 GPS stations above the working panel (see Figure 1),
selected as prediction objectives. The GPS monitoring results could then be used as verification data.
Figure 4 is a cumulative subsidence map; it displays the cumulative subsidence value at 184 days.
The spatial resolution is 30 m. There are four dotted purple outlines which circle four sub-regions of
subsidence area in different periods; they are consistent with forward movement of the footprint of
differential interferometry phase maps. The DInSAR results were converted into vertical subsidence
from LOS displacement. The GPS monitoring results, DInSAR results, and prediction results for these
11 stations are shown in Figures 5 and 6.

To verify the proposed prediction method, the DInSAR subsidence data from 4 July 2007 to 19
November 2007 were obtained as training samples for the GS-SVR algorithm. The subsidence data
from 4 July 2007 to 4 January 2008 were used as the test sample. The GS algorithm was used to select
the optimal parameters for the SVM regression method. The initial values g = 0.0002 and c = 2 were
iterated through every possibility within the ranges of c and g. The range of g was [0.0001, 0.01] and
that of c was [1, 1000]. The search was stopped when the convergence precision became less than
0.001. After obtaining the parameters of the GS-SVR, the future subsidence caused by mining could be



ISPRS Int. J. Geo-Inf. 2020, 9, 390 13 of 17

calculated via the procedure in Section 3.4. The results predicted for 4 July 2007 to 19 February 2008
are shown in Figure 5 along the strike direction and in Figure 6 along the dip direction. The maximum
surface subsidence was about 0.27 m along the strike direction and 0.13 m along the dip direction.
Confined by the locations of the GPS stations, these were not the maximum values in the subsidence
bowls. Such large subsidence would destroy buildings and highways near the working panel.
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5. Discussion

The nonlinearity and large gradient of mining deformation limit the coherence and phase
unwrapping in the InSAR procedure. Nevertheless, Figure 2 demonstrates that the coherence is
higher than 0.2, and it was set as a coherence threshold. Figure 3 shows that there was no empty
data; all the wrapped phase were unwrapped and the two-pass DInSAR results were robust. First,
this was due to the low vegetation coverage in the study area. Second, the PALSAR L-band sensor is
applicable to monitoring deformations in mining areas. Third, consecutive DInSAR interferometry
divided a temporally long cumulative deformation process into several small-temporal-interval InSAR
procedures. The small-temporal-interval unwrapping phases were then accumulated, and the true
consecutive DInSAR results were obtained.

The consecutive subsidence maps provide some interesting data regarding mining subsidence
trends. A tendency towards deformation area expansion was seen in Figure 3a–d. These four graphs
suggest that in the 184 days from 4 July 2007 to 4 January 2008, as the accumulation of mining subsidence
became larger, the surface above the working panel became a subsidence basin. The subsidence
formation developed from north to southeast, which is in the same direction as the underground
mining. In addition, another subsidence area located in the southeast of the NO.40301 working panel
was detected. After exploration at this spot, an illegal mine was discovered, which was closed in
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2010. Fortunately, it was far away from the NO.40301 working panel, and the subsidence was mainly
influenced only by the NO.40301 working panel, which gives good conditions for inversion of the
prediction parameters of the SVM regression.

According to the theory of DInSAR technology’s monitoring gradient [41,42], the monitoring
gradient is correlated with wavelength, coherence, and spatial resolution. ALOS/PALSAR has a long
wavelength and high spatial resolution; its gradient is 11.8 cm at 46 days in one pixel. That means
DInSAR can’t detect deformation when the ground sinks more than 11.8 cm over 46 days. Fortunately,
the maximum subsidence value in this mine area was 11 cm at 46 days. This indicates that using
consecutive DInSAR is appropriate. Moreover, long wavelength can reduce atmospheric delay,
and short perpendicular baseline can reduce topography-residual error. The altitude of ambiguity is
larger than 190 m when the perpendicular baseline is less than 345 m. That means an external DEM’s
190 m relative elevation error will cause 2π phase error in the interferogram. The relative elevation
error of SRTM DEM is less than 10 m [43]. Topography-residual error is so small as to be negligible.
Above all, consecutive DInSAR combined with L-band and short perpendicular baseline is a feasible
method to detect mining deformation.

The prediction error distribution for each GPS station is shown in Figure 7. The maximum AE
(abbreviate to MAX. AE) of the prediction results, at GPS5, was less than 3.1 cm, and the maximum RE
(abbreviate to MAX. RE) occurred at GPS4, with less than 14%. The MAX. AE and MAX. RE of the
prediction results are recorded in Table 3 and can help us to quantitatively analyze the prediction result
errors. Here, as we know, the underground mining activity was intense over the 230 days, and GPS4
and GPS5 were in the center of the subsidence basin. The deformation values at these two stations were
influenced by many factors, such as geological structure, mining speed, coal pillar, and others. Here,
in order to improve the prediction accuracy, a long time-series SAR system and a prediction model
with multiple parameters should be taken consideration. The WIA value was 0.994 and the MAPE was
5.6%, as shown in Table 3. These values indicate that the prediction function established in Equations
(1), (4) and (6) is valid, suggesting that the combined approach using consecutive DInSAR and the
GS-SVR method is effective for coal mining subsidence prediction in the Loess Plateau of China.
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6. Conclusions

In this paper, we presented a theoretical and experimental study of DInSAR technology and a
GS-SVR prediction algorithm. Considerable attention has been paid to InSAR technology in recent
years. The contribution of this paper was to introduce a new mining subsidence prediction algorithm
for the Loess Plateau of China, where coal mining is widespread. Based on the above experiment
and discussion, DInSAR technology is highly efficient in mining surface monitoring, and the GS-SVR
prediction algorithm is valid for mining subsidence prediction.

The results demonstrate that InSAR technology is an effective method of monitoring mining
surface subsidence in all weathers on the Loess Plateau of China. DInSAR can be used to obtain the
entire dataset for a mining subsidence area. Consecutive DInSAR technology can reveal developing
mining settlement trends, and these data are good samples for a prediction model of mining subsidence.

The abovementioned GS-SVR prediction algorithm is a new method for predicting mine subsidence
with fewer learning samples. The experimental results indicate that the GS-SVR method calculates
accurate prediction values, with a maximum relative error and an absolute error of 13.3% and 3.08 cm,
respectively. These results prove that the GS-SVR algorithm is reliable and practical.

In the future, we plan to use long time-series SAR images, such as PALSAR-2 images, to predict
mine subsidence. The prediction model should also take geological structure, mining speed, coal pillar,
and other factors into consideration. For example, SVR and rheology could be combined as a prediction
model, or we could combine the influence function and Knothe function.
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