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Abstract: The main purpose of this study was to apply the novel bivariate weights-of-evidence-based
SysFor (SF) for landslide susceptibility mapping, and two machine learning techniques, namely the
naïve Bayes (NB) and Radial basis function networks (RBFNetwork), as benchmark models. Firstly,
by using aerial photos and geological field surveys, the 263 landslide locations in the study area
were obtained. Next, the identified landslides were randomly classified according to the ratio of
70/30 to construct training data and validation models, respectively. Secondly, based on the landslide
inventory map, combined with the geological and geomorphological characteristics of the study area,
14 affecting factors of the landslide were determined. The predictive ability of the selected factors
was evaluated using the LSVM model. Using the WoE model, the relationship between landslides
and affecting factors was analyzed by positive and negative correlation methods. The above three
hybrid models were then used to map landslide susceptibility. Thirdly, the ROC curve and various
statistical data (SE, 95% CI and MAE) were used to verify and compare the predictive power of
the model. Compared with the other two models, the Sysfor model had a larger area under the
curve (AUC) of 0.876 (training dataset) and 0.783 (validation dataset). Finally, by quantitatively
comparing the susceptibility values of each pixel, the differences in spatial morphology of landslide
susceptibility maps were compared, and the model was found to have limitations and effectiveness.
The landslide susceptibility maps obtained by the three models are reasonable, and the landslide
susceptibility maps generated by the SysFor model have the highest comprehensive performance.
The results obtained in this paper can help local governments in land use planning, disaster reduction
and environmental protection.

Keywords: landslide susceptibility; weights of evidence; radial basis function network;
naïve Bayes; SysFor

1. Introduction

Landslide is a sliding geological phenomenon of slope rock and soil mass moving along a shear
failure surface. Landslides are natural disasters and existed before humans appeared. Now it has
become an important global issue that threatens the safety of human life and property. There are many
different scales of landslide occurrence in China every year. From January to July 2018, 1843 geological
disasters were reported nationwide, including 973 landslides. The disasters caused the deaths of
74 people and a direct economic loss of CNY 1.04 billion. With the acceleration of urbanization
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in mountainous areas, the occurrence of landslides has increased and the threat to human life and
property has also increased. Therefore, related risks need to be considered and evaluated. This requires
researchers not only to study the inducing factors of landslides, but also to predict the spatial and
temporal distribution characteristics of landslides. Due to many factors that induce landslides, such as
lithology, rainfall, land use and human engineering activities, it is a challenging study to conduct
spatial prediction research on the occurrence of landslides [1].

The role of the landslide susceptibility map (LSM) is to predict areas where future landslides may
occur by studying areas where landslides occur and areas similar to those areas [2]. The identification
of landslide susceptible areas is an important part of disaster management. For geologists, the landslide
susceptibility map can be used as a good tool for disaster reduction and slope management [2].
Various factors control the reliability of landslide susceptibility maps, such as the quality and quantity
of collected data, modeling methods, and accurate analysis [3]. Although a single model is widely
used in landslide susceptibility assessment research, the study found that hybrid models obtained
by combining different single methods in the same study area usually perform better in landslide
susceptibility research. In addition, the applicability of the new models and methods should be further
evaluated in different research areas, so as to obtain more accurate landslide susceptibility models and
ensure that the landslide susceptibility maps made are more conducive to the research area for disaster
management [4].

Over the years, scholars have undertaken a great deal of research into landslide hazard
assessment [5,6]. In the rapid development of the geographic information system, today, appropriate
integration processes and analyses can be performed for data collected from different sources using
different methods. Logistic regression (LR) [7–10], certainty factor (CF) [11–14], weights of evidence
(WoE) [15,16], evidential belief function (EBF) [17–19], and frequency ratio (FR) [19–21] methods were
used to determine factors and their weights and produce landslide susceptibility maps. Nowadays,
machine learning models have performed prominently in landslide susceptibility research, such as
bagging [22,23], MultiBoost [24,25], naïve Bayes (NB) [26–28], Random forest [29–31], support vector
machine (SVM) [12,32,33], logistic model trees [1,34,35] and boosted decision trees [36,37].

In this paper, landslide susceptibility mapping was carried out for Zichang County, China.
Three machine learning methods, including the radial basis function network (RBFNetwork), naïve
Bayes tree (NB), and SysFor (SF) models, were employed. Three models were used to establish the
landslide susceptibility map, and then a more accurate landslide susceptibility map was obtained
according to the results of different statistical methods.

2. Geological and Geomorphological Setting

Zichang County is located within a longitude of 109◦11′58′′E~110◦01′22′′E and latitudes of
36◦59′30′′N~37◦30′00′′N (Figure 1). It belongs to the warm temperate semi-arid continental monsoon
climate area with an annual average temperature of 9.1 ◦C and annual average precipitation of 514.7 mm.
The study area has no obvious tectonic movements to transform it, and so it always maintains the
characteristics of a stable sedimentary basin. The geomorphological types of the study area are more
complicated. The soil and water loss around the beams and ridges are serious, accompanied by the
development of a large number of landslides, collapses and other loess gravity landforms. The study
area covers a variety of lithologies, such as loess, mudstone and sandstone, as shown in Table 1.
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Figure 1. Geographical position of the study area.

Table 1. Geological formations.

Group Lithology Geologic Ages

A Sandy gravel, loess-like silt Quaternary
B Malan loess, silty clay, sandy cobble Quaternary
C Lishi loess, silty clay, alluvium Quaternary
D Loess of Wucheng, silt interbedded with caliche nodule Quaternary
E Silt mudstone interbedded with calcium structure Tertiary
F Medium-coarse arkose Cretaceous
G Muddy limestone, shale siltstone interbedded Jurassic
H Sandstone, mudstone, argillaceous siltstone Jurassic

I Sandstone, shale and mudstone interbedded, pebbly
sandstone, coal, oil Jurassic

J Mudstone sandy mudstone conglomerate, coal, oil, oil shale Jurassic
K Mudstone sandstone siltstone interbedded, coal Triassic
L Fine sandstone siltstone mudstone interbedded, oil Triassic

3. Materials and Methods

3.1. Methodology

The research method used in this paper can be divided into the following steps, as shown in
Figure 2: (i) data collection; (ii) preparing the landslide conditioning factors and determining the
landslide location; (iii) correlation analysis between landslide and affecting factors (WoE); (iv) selection
of landslide affecting factors using the Linear Support Vector Machine (LSVM); (v) RBFN, NB and
SF models are applied to assess landslide susceptibility in the study area; (vi) model validation and
comparison; (vii) generating landslide susceptibility maps.
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Figure 2. Flowchart of the study.

3.2. Preparation of Training and Validation Datasets

Landslide inventory and mapping is the foundation of landslide susceptibility mapping. In this
study, the landslide survey data come from the following three methods: consulting the geological
report of the study area; conducting a field survey with the help of the global positioning system (GPS);
analyzing remote sensing images [38]. Finally, 263 landslides were identified in the study area, as shown
in Figure 1. Rainfall and human engineering activities (engineering construction, urban construction
and construction of highways and railways, etc.) are the main triggers of landslides [39], and loess
landslide is the dominant type of landslide in the study area. Based on the analysis under GIS
environment, the largest landslide in the study area is greater than 1 × 107 m3, and the smallest
landslide is close to 120 m3. Each landslide polygon in the data set was expressed using the centroid.
Furthermore, it is necessary to randomly select the same number of non-landslide points in the study
area—defining 263 landslide pixels as “1”, and then defining 263 non-landslide pixels as “0”. In this
study, the original data were randomly divided into training data set and validation data set with
the ratio of 70/30, because today there is no uniform specification for the division of the data set in
LSM [1,40].

3.3. Landslide Affecting Factors

When the landslide inventory is compiled, the next step is to select landslide-affecting factors.
The principles to be considered in the selection of conditioning factors are the characteristics of
the geological environment and the data availability in the area [41–43]. According to the relevant
literature [44–46], 14 landslide affecting factors were selected, including altitude, profile curvature,
plan curvature, aspect, slope, SPI, TWI, STI, distance to rivers, distance to roads, lithology, soil, land-use
and NDVI, as shown in Figure S1. The lithology map was extracted from geological maps with a scale
of 1:200,000, the land use map was extracted from land-use maps with a scale of 1:100,000, the soil
map was extracted from soil type maps with a scale of 1:1,000,000 and NDVI was produced using the
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Landsat 8 operational land imager. The remaining 11 factors were derived from ASTER GDEM with
30m resolution. Finally, all factors are eventually converted to the same resolution (30 × 30 m).

The establishment of the altitude maps is the first step in conducting research. In the study
area, it is divided into seven levels according to the interval of 100 m: (1) 933–1000; (2) 1000–1100;
(3) 1100–1200; (4) 1200–1300; (5) 1300–1400; (6) 1400–1500; (7) 1500–1574. The profile curvature reflects
the rate of change of the surface elevation at the maximum slope of the surface. This study calculated
the profile curvatures in ArcGIS software and divided them into five categories: −7.29 to−1.65; (2)−1.65
to −0.46; (3) −0.46 to 0.58; (4) 0.58 to 1.97; (5) 1.97–9.45. This study calculated the plan curvatures in
ArcGIS software and divided them into five categories: (1) −9.24 to −1.79; (2) −1.79 to −0.54; (3) −0.54
to −0.38; (4) −0.38 to 1.43; (5) 1.43–7.56. Aspect is an important factor for landslide susceptibility
maps [47–50]. The aspect layer was divided into nine classes: (1) Flat; (2) North; (3) Northeast; (4) East;
(5) Southeast; (6) South; (7) Southwest; (8) West; (9) Northwest. The slope angle is directly related to the
study of the landslide and is an indispensable factor in the preparation of the landslide susceptibility
map [51]. The slope in the study area can be divided into six categories: (1) < 10; (2) 10–20; (3) 20–30;
(4) 30–40; (5) 40–50; (6) > 50.

The stream power index (SPI) refers to the erosion of flowing water, the thickness of the soil layer
and the content of sand and silt. SPI has been widely used in the study of landslide susceptibility [52].
These factors will affect the occurrence of slope damage events [53]. SPI has the following formula:

SPI = As tan B (1)

where As represents a specific catchment area and B represents a local slope [53]. According to the
calculated value, the SPI is grouped into five categories: (1) < 10; (2) 10–20; (3) 20–30; (4) 30–40; (5) > 40.

The topographic wetness index (TWI) can reflect the moisture content in the soil. TWI can be
expressed by the formula [54]

TWI = ln(
∂

tan B
) (2)

where ∂ is a local uphill contribution area representing the amount of water flowing to a particular
location and tan B is a local slope. The TWI map of the study area consisted of the following six
categories: (1) 1.11–2; (2) 2–3; (3) 3–4; (4) 4–5; (5) > 5.

The sediment transport index (STI) value represents the degree of land current erosion and
sedimentation [55]. According to the value of STI, it was divided into five categories: (1) 0–10; (2) 10–20;
(3) 20–30; (4) 30–40; (5) > 40.

The distance to rivers map was divided with five different buffer ranges including: (1) 0–200;
(2) 200–400; (3) 400–600; (4) 600–800; (5) > 800. The relationship between the river and the landslide can
be established through these buffer zones [55–57]. The distance to roads was used as a landslide-affecting
factor because the road repaired near the slopes reduces the load on the terrain and the heel of the
slope [51]. We calculated the pavement buffer every 100 m in the study area: (1) 0–100; (2) 100 –200;
(3) 200–300; (4) 300–400; (5) > 400.

Different lithology units have a different magnetic susceptibility [58,59]. A total of five lithologic
units are in the study area: Quaternary, Tertiary and Cretaceous, Jurassic and Triassic. The soil in
the soil map can be divided into five categories: alluvial soils; red clay soils; lakes and reservoirs;
cultivated loess soils; all other values.

The main land-use of the study area is farmland, forestland, grassland and water bodies, residential
areas and others. The NDVI can accurately reflect the surface vegetation coverage. The data come
from satellite remote sensing images. In this study, this can be classified as: (1) 0.15–0.01; (2) 0.01–0.04;
(3) 0.04–0.07; (4) 0.07–0.09; (5) 0.09–0.31.
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3.4. Weights of Evidence

The weights-of-evidence model is built from the logarithmic form of Bayes’ rule. The weighted
values for the classes of landslide-affected factors can be written as in Equations (3) and (4) [60]:

W+ =

P1
P1+P2

P3
P3+P4

(3)

W− =

P2
P1+P2

P4
P3+P4

(4)

where P1 and P2, respectively, represent the number of pixels that appear and do not appear in the
same given factor category. P3 represents the number of pixels that have no landslides in a particular
factor category. When there is neither a landslide nor a landslide pixel in a particular factor category,
P4 is used [61].

The positive weight (W +) not only indicates that the affecting factors leading to landslides exist,
but also that the value reflects the positive correlation between the factors and landslides. The negative
weight (W-) reflects the degree of negative correlation between them [60]. The difference between the
two weights can be expressed as Equation (5):

C = W+
i −W−i (5)

where C is the weight contrast. According to the value of C, the relationship between predictor
variables and landslides can be reflected more comprehensively.

3.5. Naïve Bayes

The model can be built by following a few steps: (i) collect examples; (ii) estimate the prior
probability of each class; (iii) estimate the mean of the class; (iv) construct a covariance matrix and
find the inverse and determinant for each class; (v) for each class formation, create a discriminant
function [62]. The unique point of this model is that only a small amount of training data is required
for evaluation and analysis to obtain the parameters required for classification [62]. More importantly,
building a model is simple [63]. The NB method is widely and successfully used in landslide
susceptibility evaluation research [12,32,64].

3.6. Radial Basis Function Network

The radial basis function (RBF) originates from solving the multivariate interpolation problem.
Later RBF networks were used in other programs [65,66]. The RBF network model is based on an
algorithm from K-means clustering [67]. The essence of the RBF network is a radial function. It provides
convenience in solving non-linear problems [68]. First, the data are imported into the input layer
without calculation and then the nonlinear problem of the hidden layer neuron is processed and sent
to the linear output layer. There is only one hidden layer in the RBF network itself, but there is no
hidden layer in the model [69]. The hidden layer can be activated by a function, f : Rn→R, if properly
trained. Typically, the basis function commonly used in RBF networks is the Gauss function.

For all the possible choices for f, the Gaussian function can be written as:

fi(x) = fi(e
−||xp−ci ||

di ), i = 1, 2, ...., n (6)

Y = WT fp (7)



ISPRS Int. J. Geo-Inf. 2020, 9, 443 7 of 20

where Ci ∈ Rn indicates the center of the basis function. There are n hidden layer nodes. Let f i di ∈ R
be the radius of the first hidden layer node. Through the weight matrix (W ∈ Rni × n) to connect the
hidden layer nodes and network output, f p is the hidden node vector.

3.7. SysFor

SysFor is built for a great many good quality decision trees by both low-dimensional and
high-dimensional datasets and is applied to many applications [70]. A SysFor can be built by following
a few steps: (i) follow the user’s instructions to find a set of “good properties” and corresponding split
points; (ii) build the number of trees based on good attributes and user definitions; (iii) take the level 1
node of the tree built from step 2 and select an optional good attribute from the set of good attribute;
(iv) return all the trees built in steps 2 and 3 as Sysfor [71].

This technique can be used to study a data set and master the mode of recording for the purpose
of classifying a record as one of “class values”. Importantly, the model can predict the “class value” of
an unknown tag. The model functions similar to decision trees and decision forests [72].

3.8. Support Vector Machine

The quality of the selected model and input data will affect the quality of landslide susceptibility
assessment [73]. Using this method to test the affecting factor can be expressed as (Equation (8)):

g(x) = sgn
(
wTa + b

)
(8)

where wT represents an inverse matrix, the weight matrix of each landslide affecting factor in this
study, a = (a1, a2, . . . , a14) is the input vector (14 landslide-affecting factors) and b is the offset from
the origin of the hyperplane. The closer the weight wi is to 0, the less important the landslide-affecting
factors are to the prediction of landslides [74].

4. Results and Analysis

4.1. Correlation Analysis of Affecting Factors

In this paper, the WoE model is used to analyze the correlation between landslide occurrence and
affecting factors, as shown in Figure 3. The overall spatial correlation between the predictable variable
and the landslide can be reflected by C. WoE results analysis, which showed that the correlation with
the landslide decreased with the increase in elevation. An increase in altitude is accompanied by an
increase in precipitation, a decrease in temperature, and accelerated weathering, thereby promoting
the occurrence of landslides [75]. Therefore, an altitude >1500m had the highest correlation compared
with other elevation ranges. In terms of profile curvature, it was only positively correlated with the
occurrence of landslides at (−0.46 to 0.58) and (0.58–1.97), and 42% and 29% of landslides occurred at
the two profile curvature points. The plan curvature is positively correlated with the occurrence of
landslides in the range from (−0.54) to 0.38 and from 1.44 to 7.56, and negatively correlated in other
ranges. Both the profile curvature and the plan curvature control the speed of flowing water affect the
degree of slope erosion [76]. If the slope direction is different, then the slope surface is different from
the sun exposure and rainfall erosion, resulting in different slope materials [50]. In the southern part,
15% of landslides occur, and the correlation is highest in this orientation with landslides. When the
slope is <10◦ or >50◦, the occurrence of the landslide is randomly distributed; the correlation with the
landslide is the highest in the range of 10–20, and 30% of the landslides occur in this range, meaning
that this affecting factor has a high incidence of landslides in this range. The SPI value has the highest
correlation, with an occurrence of landslides in the range of 10–20.
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Additionally, the C values for STI values in the range of 10–20 and 20–30 are 0.12 and 0.35,
respectively, indicating that the landslides are predictable and positively correlated with the STI values.
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TWI is positively correlated with the occurrence of landslides only in the 2–3 range. The WoE results
show that the correlation of this variable with landslides decreases with increasing distance to rivers, and
the same results are also shown in the distance to road. The closer to the river, the stronger the erosion at
the bottom of the slope, which affects the slope stability [51]. At the same time, building roads changes
the original stability of the terrain [15]. Different lithologic units have different compositions and
structures, etc., and thus produce different capabilities regarding resistance to landslide occurrence [77].
The WoE analysis of the lithology in the study area revealed that Tertiary, Jurassic and Triassic were
positively correlated with the occurrence of landslides. The relationship between land use and slope
stability is that different types of land-use will produce different vegetation, and the roots of different
vegetation will help maintain the stability of the slope differently [78]. When the soil is alluvial soil and
red clay soils, it is positively correlated with the occurrence of landslides. In land-use, 54% of landslides
occur in Group C and are positively correlated with landslides in this region. However, the highest
correlation is in Group E. Finally, WoE finds that the NDVI value has the highest positive correlation
with the occurrence of a landslide in the range of 0.07–0.09 and the highest negative correlation in the
range of 0.01–0.04.

4.2. Selection of Landslide-Affecting Factors

The prediction ability evaluation and comparison of 14 landslide impact factors show that,
although the contribution of each factor is different, they contribute to landslide prediction modelling,
as shown in Figure 4. The result shows that distance to rivers has the highest predictive capability (14),
followed by slope angle (13), SPI (11.9), TWI (10.9), slope aspect (10.1), altitude (8), soil (6.7), land-use
(6.5), NDVI (5.9), distance to roads (4.4), profile curvature (4.4), STI (4.2), plan curvature (3.1) and
lithology (1.9). Therefore, all 14 affecting factors were selected for the models.
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Figure 4. The prediction capability of landslide affecting factors.

4.3. Constructing Landslide Susceptibility Maps

Generating the landslide susceptibility map generally requires the following two steps [38]: first,
obtain the landslide susceptibility index (LSI) of all the evaluation units; then reorganize the LSI
obtained in the first step. The specific operation is to calculate the LSI of each evaluation unit by using
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the probability distribution function of the evaluation model and then re-divide the obtained LSI by the
natural discontinuous point grading method in the ArcGIS software. In this study, NB, RBFNetwork
and Sysfor models generated three landslide susceptibility maps, as shown in Figure 5. Figure 5a is the
landslide susceptibility mapping generated by the NB model. The LSI is divided into five ranges of
0–0.133, 0.133–0.322, 0.322–0.537, 0.537–0.769, and 0.769–1. Figure 6 shows that the very low level has
the largest area.
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Figure 6. Histogram of landslide susceptibility classes.

Figure 5b is the landslide susceptibility mapping generated by the RBFNetwork model, and the
landslide susceptibility categories were also divided into five categories. The LSI is divided into five
ranges of 0.203–0.288, 0.288–0.407, 0.407–0.543, 0.543–0.721 and 0.721–0.88, as shown in Figure 6. In this
study, the structure of the network consists of three layers: an input layer of 14 neurons; a hidden layer
(called an RBF unit); an output layer containing a neuron, as shown in Figure 7. The learning process
of the RBFNetwork can be divided into two parts: (a) using the K-means algorithm to calculate the
number of clusters (hidden neurons); (b) the optimal estimation of kernel parameters [1].
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The SysFor model should be optimized before generating a landslide susceptibility map. The best
parameters for the SysFor model were found through testing—the confidence was 0.1 and the
numberTrees value was 60. Figure 5c is the landslide susceptibility mapping generated by the SysFor
model, and the LSI is also divided into five categories. The LSI is divided into five ranges of 0–0.114,
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0.114–0.314, 0.314–0.549, 0.549–0.78 and 0.78–1. Figure 6 shows that the very low level has the
largest area.

4.4. Models Validation and Comparison

The landslide susceptibility map is the most direct and authoritative evidence to test the
performance of the landslide susceptibility model [79]. Without model validation, the establishment
of landslide susceptibility maps has no practical significance [24]. Therefore, the receiver operating
characteristic (ROC) curve and the area under the curves (AUC) [80,81] are used to evaluate the
predictive power of each model.

Figure 8a and Table 2 show the ROC curve and its parameters under the training data set,
respectively. Under the training data set, the areas under the NB and Sysfor model curves were 0.792
(79.2%), 0.777 (77.7%) and 0.876 (87.6%), respectively. Figure 8b and Table 3 show the ROC curve
and its parameters under the validation data set, respectively. In the validation data set, the areas
under the NB, RBFNetwork and Sysfor model curves were 0.764 (76.4%), 0.729 (72.9%) and 0.783
(78.3%), respectively. In addition, evaluation statistics (MAE) are used to verify the model. The mean
absolute error (MAE) is a measure of the difference between two continuous variables (predicted and
observed values). The SysFor model has the smallest MAE value under training data (MAE = 0.245)
and validation data (MAE = 0.320), indicating that the model also performs well in the prediction and
observation comparison of landslide occurrence, as shown in Figure 9.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 14 of 21 
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Table 2. Parameters of ROC curves with the training dataset. CI: confidence interval.

Variable AUC SE 95% CI

NB model 0.792 0.0233 0.746 to 0.832
RBFNetwork model 0.777 0.0240 0.731 to 0.818

SF model 0.876 0.0174 0.838 to 0.908

Table 3. Parameters of ROC curves with the validation dataset.

Variable AUC SE 95% CI

NB model 0.764 0.0377 0.690 to 0.828
RBFNetwork model 0.729 0.0397 0.653 to 0.797

SF model 0.783 0.0360 0.710 to 0.844
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The Wilcoxon signed-rank test was used to determine the significance of the differences between
the susceptibility models, where the main determinants were p and z. The test is used to determine
whether there is a significant difference in the susceptibility model—whether the p value is less than
the significance level (0.05), and whether the z value is within the range of the critical value (−1.96,
+ 1.96) [1]. It can be seen from the analysis in Table 4 that the performance difference between the SF
model and the other two models (RBFN and NB model) is statistically significant. In contrast, for the
NB and RBFNetwork model, the performance difference was not statistically significant.

Table 4. Results of the Wilcoxon signed-rank test (two-tailed).

Pair-Wise Comparison z-Value p-Value Significance

NB vs. RBF Network 1.081 0.280 No
NB vs. SF 5.677 0.000 Yes

RBFNetwork vs. SF 5.350 0.000 Yes

Comparing the performance rankings of the models obtained under the training data set and the
validation data set, it can be found that the performances of the models under the two sets of data
have the same ordering—the Sysfor model has the highest accuracy (0.783), followed by the NB model
(0.764) and RBFNetwork model (0.729). Other statistical methods show that the Sysfor model has a
minimum standard error (SE) and a 95% confidence interval (CI).

4.5. Comparison of Landslide Susceptibility Maps

In this study, SF model was selected as the benchmark model, and the susceptibility maps generated
by the other two models were matched with the susceptibility maps generated by the SF model using
the method developed by Xiao et al. [82]. The difference between them is defined by subtraction
in ArcGIS, as shown in Figure S2. The raster values of the three susceptibility maps are between 0
and 1, so the value range of the comparison maps is (−1, 1). The three levels of underestimation,
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approximation and overestimation are based on the values obtained from the comparison map. Table S1
shows the percentages of different levels in the total area. The values of both comparison maps break
at −0.50 and 0.50. To obtain the key factors that cause differences between susceptibility maps, it is
necessary to associate overestimated and underestimated pixels with all the adjustment factors used
in the susceptibility analysis. Underestimations and overestimations of each category of factors are
counted, as shown in Tables S2 and S3. For each class, the ratio of each class to the total area is defined
as A. The ratio of the underestimated pixels in the class to the total underestimated pixels is defined as
B. “B–A”, as the ratio of the differences between the two maps, can be used to identify the key classes
of underestimated anomalous clustering. The value of “B–A” can be used to determine the class with
the highest degree of imbalance, as shown in Table 5. Figure S3 shows underestimations of “SF-NB”
and “SF-RBFN” driven by red clay soils, underestimations of “SF-RBFN” driven by SPI. Figure S4
shows overestimations of “SF-NB” driven by distance to rivers, and overestimations of “SF-RBFN”
driven by distance to rivers.

Table 5. Imbalanced class causing spatial distribution of underestimation and overestimation.

Classification Comparison Maps Imbalanced Classes

Underestimation
SF-NB Red clay soils

SF-RBFN SPI, 10–20; Red clay soils

Overestimation
SF-NB Distance to rivers, 0.200

SF-RBFN Distance to rivers, 0.200

5. Discussion

The analysis of the weight values shows that natural factors are not the only factors affecting the
occurrence of landslides, and the intensification of human activities and engineering construction may
also affect the geological environments and occurrence of landslide disasters [83]. Landslide occurrence
in Zichang County is the highest at the slope angle of 40–50, and when the slope angle is >50, the values
of W+ and C are 0, supporting that prediction. Through the WoE analysis of the distance to roads,
it is found that the closer the distance to roads, the larger the positive weight of W+, indicating that
closeness to a road means that land is greatly affected by human activities, thus promoting the
occurrence of landslides [84,85]. In general, the growth density of vegetation is inversely proportional
to the possibility of a landslide, and land-use is of high importance for landslide susceptibility
assessment [86,87]. Group C (Grassland) has a higher vegetation coverage than Group B (Forestland),
so the correlation is higher than Group B. Each landslide-affecting factor contributes to the landslide
susceptibility assessment, but each has its differences. Table 1 shows that 60% of the landslides occurred
in the lithology type 1 (Quaternary loess), but the five groups in the study area lithology WoE analysis
found in the region of the lithology for Type 1 had a poor correlation with the occurrence of landslides.

The three landslide susceptibility maps show similar landslide susceptible areas—especially
the gullies on the study area. The study area is located in the middle of the Loess Plateau in
northern Shaanxi. The cultivated loess soils cover almost the whole area. The special topography
and geotechnical condition define the deformation and failure modes of the slopes and at the same
time, they control the developmental characteristics of the landslide disasters, which determines the
research. The area belongs to a high-incidence area of landslide disasters, which further reflects the
importance of landslide susceptibility assessments in the study area [88].

After statistics, it is found that the number of overestimations and underestimations is limited (the
overall discrepancies range from 0.04% of the total area in SF-NB to 0.07% in SF-RBFN). Through visual
analysis, it is found that the distribution of overestimation and underestimation is not random, and
a certain spatial pattern can be found on the comparison map. The existence of this spatial pattern
may be due to a systematic error in the susceptibility analysis [82]. Such systematic errors indicate
the finiteness and effectiveness of the model. Comparing the SF model as the benchmark model
with the NB model and the RBFN model, respectively, it is found that there are extreme values of
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overestimation and underestimation. The analysis found that the occurrence of overestimation and
underestimation had some relationship with the geomorphology of the study area and formed a
spatial pattern. Regarding the underestimated spatial distribution, two comparisons showed similar
trends, both caused by the third type of soil (red clay soil). However, the red clay soil has a large
clay content and is a good water barrier. Under the action of earthquakes or rainfall, it is easy for the
overlying slope to slide slowly along the bedding plane [89]. The comparison of “SF-RBFN” is clearly
driven by SPI (10–20) (“B−A” = 38%). Regarding the overestimated spatial analysis, two comparisons
found that both are driven by the distance to rivers (0–200m) and have a great spatial overlap with
the overestimated pixels. The distance to rivers (0–200m) in the “SF-RBFN” comparison includes all
overestimated pixels. In general, compared with the other two models, the SF model can better utilize
the geographic information of the distance to rivers in a susceptibility assessment. However, it is easy
to ignore the two categories of soil (red clay soil) and SPI (10–20) that affect landslide occurrence in
landslide susceptibility analysis.

All three models contributed to the assessment of landslide susceptibility in the study area,
and the performance of Sysfor is better than those of NB and RBFN models. The NB method
is one of the classic machine learning algorithms, with high efficiency, easy implementation,
and being suitable for multi-classification tasks. However, it not only has certain sensitivity to
the expression of input data, but also has unstable classification performance. Because the NB
method is based on the assumption of the conditional independence of input parameters, obviously
this assumption is not realistic. The results obtained in this study are consistent with the previous
research results [90,91]—the prediction performance of the NB model is poor, especially in the case of
landslide problems. The SysFor builds a forest (a set of decision trees) and can explore more logical
rules from a data set, and this work cannot be completed by a single tree [71]. At the same time,
related literature shows that SysFor has higher prediction performance than other commonly used
prediction methods [92]. The Sysfor method is relatively new, so it is not widely used in landslide
susceptibility mapping [93]. In this study, the performance of the NB model is better than the RBFN
model. However, there is a phenomenon that the RBFN model is superior to NB model in the research
of other scholars [94]. Therefore, the performance of the landslide susceptibility model is related to the
geological environment characteristics of the study area. Furthermore, the popular machine learning
methods (e.g., MultiBoosting, credal decision tree (CDT), Random forest (RF), etc.) in recent years,
and their hybrid models, have performed well in LSM [4,95,96]. Therefore, there is still a lot of research
space on the evaluation methods and models of landslide susceptibility in the study area.

In this paper, the methods used to verify and compare the performance differences among the
three models are the ROC curve, SE and 95% CI. By observing the parameters of the ROC curve, it can
be found that the AUC value of the SF model is the best. The AUC values of the training and validation
are 0.876 and 0.783, respectively, and the average is 0.83. Secondly, for the NB and RBFNetwork
models, the AUC values under the validation data set are 0.764 and 0.729. Furthermore, the Wilcoxon
signed-rank test was used to perform a two-sided test on the three models. By comparison, it is found
that the performance of the SysFor model differs from those of the NB and RBFN models. The three
models have performed well in this study, and the results obtained in this study can provide a tool to
reduce landslides in the area, thereby reducing the losses caused by landslide disasters.

6. Conclusions

Since landslides pose a serious hazard to human life and property, governments and relevant
agencies in various countries are working to assess the susceptibility and risk of landslides, and by
mapping, landslide susceptibility maps can help solve this problem. In this study, three landslide
susceptibility maps were generated using RBFNetwork, NB, and Sysfor models. The LSVM model
was used to evaluate the occurrence of landslides and 14 landslide-affecting factors. The validation
results show that the areas under the NB, RBFNetwork, and SysFor model curves were 0.764 (76.4%),
0.729 (72.9%) and 0.783 (78.3%), respectively. At the same time, the SysFor model performs well
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under various statistical data. Therefore, the landslide susceptibility mapping generated by the
SysFor model shows the strongest performance, followed by the NB model, with the RBFN model
ranking last. After comparing the differences in the morphology of the landslide susceptibility map,
it was found that systematic errors may occur in the susceptibility analysis, which proves that the
susceptibility model has limitations and effectiveness. Finally, these landslide susceptibility maps may
help local governments in landslide control and land-use planning, and they may also be used in other
landslide-prone areas around the world.
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