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Abstract: The rapid growth of transportation network companies (TNCs) has reshaped the traditional
taxi market in many modern cities around the world. This study aims to explore the spatiotemporal
variations of built environment on traditional taxis (TTs) and TNC. Considering the heterogeneity of
ridership distribution in spatial and temporal aspects, we implemented a geographically and
temporally weighted regression (GTWR) model, which was improved by parallel computing
technology, to efficiently evaluate the effects of local influencing factors on the monthly ridership
distribution for both modes at each taxi zone. A case study was implemented in New York City
(NYC) using 659 million pick-up points recorded by TT and TNC from 2015 to 2017. Fourteen
influencing factors from four groups, including weather, land use, socioeconomic and transportation,
are selected as independent variables. The modeling results show that the improved parallel-based
GTWR model can achieve better fitting results than the ordinary least squares (OLS) model, and it
is more efficient for big datasets. The coefficients of the influencing variables further indicate that
TNC has become more convenient for passengers in snowy weather, while TT is more concentrated at
the locations close to public transportation. Moreover, the socioeconomic properties are the most
important factors that caused the difference of spatiotemporal patterns. For example, passengers
with higher education/income are more inclined to select TT in the western of NYC, while vehicle
ownership promotes the utility of TNC in the middle of NYC. These findings can provide scientific
insights and a basis for transportation departments and companies to make rational and effective use
of existing resources.
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1. Introduction

With the popularity of mobile phone usage, transportation network companies (TNCs) that offer
app-based services, such as Uber, DiDi, and Lyft, claim to provide stability and convenience with
peer-to-peer (p2p) processes that connect passengers and private drivers on-line and in real-time [1].
As an emerging form of transportation based on network and mobile technology, the analysis of TNC
ridership has become a hot topic in urban transportation research. Much evidence has shown that
the rapid development of TNC has had a huge impact on the traditional taxi (TT), leading the taxi
industry to experience significant losses in terms of market share, revenue, labor power and facility [2].
This is particularly obvious in large modern cities such as New York City (NYC), where the annual taxi
load decreased from 145 million in 2015 to 113 million in 2017, decreasing nearly 23% in three years.
In contrast, the ridership by TNCs increased from 37 million to 110 million. The reduction in the
market share of the taxi industry will inevitably cause a decline in the income of taxi drivers and the
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compression of the taxi business scale, leading to economic difficulties and even the bankruptcy of taxi
companies. In May 2013, although the price of a yellow car’s license plate in NYC had been cut in half,
the licenses of many taxi company vehicles were idle because of the lack of new drivers [3].

Nevertheless, many researchers insist that it is premature to announce the inevitable demise of the
taxi industry based on the current success of TNC. For example, Wang et al. reported that the success
of TNCs lies in an aggressive but unsustainable price subsidy strategy [4]. Cramer and Krueger’s
study [5] observed that most trips on TNC are concentrated in daily traffic peak periods. Regarding
off-peak periods, traditional taxis still account for a large proportion of transportation and thus cannot
be replaced. Furthermore, according to the statistical results from [6], the average number of working
hours per week of Uber drivers was approximately half that of many taxi drivers in the U.S.

Regardless of these debates, it is indisputable that the taxi industry is currently facing a huge
challenge and competition from the TNC in many aspects. Therefore, analysis of the differentiation of
these two modes, such as the characteristics of the target passengers and travel pattern, is conducive
to a better understanding of the competitive relationships between them. However, as all these
differentiations are not uniform within a city and are driven by diverse factors, the widely used global
statistical models are limited to incorporate the significance of spatiotemporal heterogeneity and
autocorrelation. The spatiotemporal analysis between taxi/TNC ridership and the built environment is
still an open issue.

This paper presents the results of our research utilizing an improved GTWR model based on
parallel computation to efficiently explore the spatiotemporal relationships between TT/TNC and the
built environment in NYC, where about 659 million trips occurred from 2015 to 2017. The rest of
this paper is arranged as follows. Section 2 provides a brief review of the relevant research progress,
and Section 3 presents the details of the parallel-based GTWR model adopted in this study. Section 4
introduces the related dataset and describes how the data were processed. Section 5 mainly analyzes
the model accuracy and findings. Section 6 discusses the spatiotemporal patterns between taxi and
TNC. The last section elaborates upon the conclusions of this paper, as well as future research directions.

2. Related Literature

Taxis have historically comprised a far lower share and geographical coverage of urban
transportation than other transport modes, such as buses and subways; therefore, there are many
lesser extensive studies on taxis than on other transport modes. In general, researchers have found
taxis to be both complements and substitutes for public transit [2]. Despite their small share in urban
transportation, taxis fill a critical gap by providing mobility service and all-day operation, which
are not available in other transportation modes. More importantly, with the popularization of GPS
auto-collection devices, the spatiotemporal characteristics of ridership and trajectory by taxis provide a
valuable reference for mining the travel patterns of citizens and for traffic optimization [7]. Therefore,
the spatiotemporal analysis of taxis has become a research hotspot in recent years.

Early research on taxis mainly focused on market demand components based on the inherent
attributes of the taxi industry, such as price, tips, labor costs, and other factors [8]. Because the
measurement of cost, waiting time, and convenience is usually derived from investigations or relevant
departments, those data are biased and lack objectivity. With the GPS devices carried by taxis,
the spatiotemporal data of taxis can be tracked and collected in real-time. These data have the
advantage of spatial-temporal characteristics than previous data and can integrate with external
geographic factors, such as land use [9] and weather [10,11]. For example, Liu et al. used GPS data
of taxi and urban land use factors to identify ‘source-sink areas’ in Shanghai [12]. Nevertheless,
previous studies mostly adopted the ordinary least squares (OLS) method [13,14]. In the OLS model,
the aggregated pickup (PU) and drop-off (DO) locations of taxis are used as dependent variables,
and the relevant influencing factors, such as weather and land use, are selected as independent variables.
Given spatial autocorrelation and heterogeneity exists in the distribution of PU and DO locations for
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TT and TNC, the precondition of the OLS model that the observations should be independent of each
other is difficult to satisfy.

To address this issue, Fotheringham et al. proposed a local regression model called Geographically
Weighted Regression (GWR) [15], which improves the accuracy of regression results by constructing a
local spatial weight matrix for estimating variation in space. Furthermore, the GWR model extends the
traditional regression framework by allowing parameter estimates to vary in space and is therefore
capable to capture local effects. The GWR model has been widely applied in transit ridership
analysis [16,17]. For example, based on NYC’s taxi data, Qian et al. [18] used the GWR model to
analyze the relationship between taxi locations and urban environmental factors. The results show
that the GWR model can provide better model accuracy and interpretation than the OLS model.
One of the remaining problems is that the GWR model only obtains related variable coefficients in the
spatial dimension. While dealing with time series datasets, those data often need to be aggregated or
separated based on their timestamps, thereby ignoring the fact that the distribution of taxis or TNCs
varies with different scales of time. Recently, scholars have put forward many improved strategies to
account for both temporal and spatial variability, such as the GWR-TS [19] and linear mixed effect
(LME) + GWR models [20]; still, these models are generally based on the two-stage least squares
regression [21], first fitting the temporal effect using the LME model and then evaluating the spatial
heterogeneity effects with the GWR model. Those models cannot simultaneously consider temporal
and spatial effects.

To simultaneously model temporal and spatial effects, Huang et al. proposed an improved
GWR-based model, named Geographical and Temporal Weighted Regression (GTWR) [22], which is
thought to design simultaneous spatial and temporal weighting. Thus, the GTWR model can reflect
continuous variations for each location at each time. The initial implementation of the GTWR model
was carried out for house-price estimation, and the results showed that the accuracy of the GTWR
model was superior to that of the OLS and GWR models. Recently, the GTWR model has been extended
in many fields, such as air quality [23] and environmental research [24]. Moreover, some scholars have
put forward improved GTWR schemes successively. For example, Wu et al. proposed an improved
model, known as the Geographically and Temporally Weighted Autoregressive (GTWAR) model,
to estimate spatial autocorrelations [25], and Du et al. proposed a Geographically and circle-Temporally
Weighted regression (GcTWR) model for enhancing the seasonal cycle of long-term observed data [26].

The above research fully shows that the GTWR model has great advantages in spatiotemporal
modeling. Ma et al. applied the GTWR model to public transit and achieved good modeling
results [27]. Zhang et al. also adopted the GTWR model to taxi ridership analysis and achieved
a similar conclusion [28]. Nevertheless, due to the fact that the spatiotemporal nonstationarity of
taxis is more complicated than other modes of transit such as buses that have preset routes, previous
studies have generally been limited to taxis or TNC separately, and few studies take into consideration
the difference between taxis and TNC. Research on TNC remains relatively scarce, although its data
structure is similar to that of taxis. Thus, applying the GTWR model for simultaneous analysis of both
taxis and TNC is still an unsolved issue.

3. Methodology

In this section, we briefly review the basic framework for the GTWR model and how to determine
the parameters of the GTWR model. Then, we propose a parallel computing scheme to improve the
efficiency of the GTWR model and apply the model to ridership modeling.

3.1. The Basic Framework of the GTWR Model

The GWR-based model is a local-based spatially varying coefficient regression algorithm that
extends the OLS model by adopting local parameters to be estimated. It is capable of significantly
improving the estimation accuracy of spatial data, especially for those areas with complex spatial
nonstationarity. On this foundation, Huang et al. [22] proposed a GTWR model focusing on
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spatiotemporal kernel function definition and spatiotemporal bandwidth optimization, which can
simultaneously address spatial and temporal nonstationarity issues. Assuming that the observation of
taxi ridership is denoted as Yi, where i (I = 1, 2, . . . , n) represents a spatial unit, such as traffic analysis
zone (TAZ), thus the GTWR model can be mathematically expressed as follows:

Yi = β0(ui, vi, ti) +
∑

k

βk(ui, vi, ti)Xki + εi, (1)

where (ui, vi, ti) represents the center coordinates of TAZ i in a spatial location (ui, vi) at time ti; β0 is the
intercept value; βk(ui, vi, ti) denotes the slope for each independent variable Xki; and εi is the random
error. The variables Xki refer to the influencing factors that improve the associations between ridership
and urban environmental factors, such as weather, land use, socioeconomic, and transport condition.

For a given dataset, a locally weighted least squares method is usually employed to estimate the
intercept of β0, as well as the slopes βk for each variable. The GTWR models assume that the closer to
point i in the space-time coordinate system, the greater the weight of the measurements in predicting
βk will be. Thus, the coefficients of β̂ = (β0, β1, .., βk)

T can be estimated by:

β̂(ui, vi, ti) = [XTW(ui, vi, ti)X]
−1

XTW(ui, vi, ti)Y, (2)

where X is the n×(k+1) matrix of input variables. Y is the n-dimensional vector of the output variables.
The space-time weight matrix W(ui, vi, ti) is an n × n weighting matrix to measure the importance
of point i to the estimated point j for both space and time. The Gaussian function is one of the most
commonly used weight function:

Wi j = exp(−
di j

2

h2 ), (3)

where di j denotes a spatiotemporal distance between points i and j, and h is a nonnegative parameter
that presents a decay of influence with distance. By combining the temporal distance dT with the
spatial distance dS, the spatiotemporal distance can be expressed as:

dST = ds
⊗ dT, (4)

where ‘⊗’ can represent different types of operators. In this study, the ‘+’ as the combination operator
was selected to calculate the total spatiotemporal distance. With respect to the different scale effects
of space and time, an ellipsoidal coordinate system was constructed to measure the spatiotemporal
distance between each regressive point and the surrounding points [29]. The spatiotemporal distance
between taxi ridership can thus be expressed as the linear weighting combination indicated below:

(dST
ij )

2
= λ[(ui − u j)

2 + (vi − v j)
2] + µ(ti − t j)

2, (5)

where ti and t j denote the observed time of point i and j. λ and µ are the weights for balancing the
influences of differing units between space and time variability. The weight matrix is constructed by
using the Gaussian distance decay-based functions and Euclidean distance:

Wi j = exp[−
(dST

ij )
2

hST
2 ]

= exp{−
[(ui−u j)

2+(vi−v j)
2]+τ(ti−t j)

2

hs2 }

(6)

where the parameter τ stands for the non-negative parameter of scale factor calculated byµ/λ (λ, 0). hST
is a positive parameter named the spatiotemporal bandwidth. Thus, if the spatiotemporal bandwidth
and scale factor are determined, the weight matrix W(ui, vi, ti) and β̂(ui, vi, ti) can be obtained.
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The adjustment parameters of hST and τ can be acquired either utilizing a cross-validation (CV)
process via minimization in terms of the corrected Akaike information criterion (AICc) [30] as follows:

CVRSS(h) =
∑

i

[yi − y,1(h)]
2, (7)

AICc(h) = n log(
RSS(h)

n
)+nlog(2π)+n(

n + tr(H(h))
n− 2− tr(H(h))

), (8)

where y,1(hs) indicates the predicted value yi from the GTWR model with a bandwidth of h. Therefore,
the selection of the optimum h can be acquired through plotting CV(h) against the parameter h.
In Equation (8), RSS is the residual sum of squares, and tr(H(h)) is the trace of the hat matrix H(h).

3.2. Implementation of GTWR for Ridership Analysis

Figure 1 presents a flowchart of the implementation using GTWR for ridership analysis. Before
constructing the GTWR model for taxi ridership analysis, the observed spatial unit and temporal
resolution must be determined first. The spatial unit is generally related to the geographic extent of the
study area, which can be divided by administrative regions or a regular cell. Due to the limitation
of TNC data obtained from NYC, the spatial unit adopted in this study was based on TAZ rather
than Zip Code Tabulation Areas (ZCTA). In terms of the temporal resolution, different resolutions,
such as yearly, monthly, daily, and hourly scales, can be adopted. Since the dataset we adopted was
from 2015 to 2017, the month was considered an appropriate minimum unit of time to reduce the
cost of computation. Using the same dataset, the OLS and GTWR models were respectively applied
to estimating the globe and local coefficients for both modes and their relationship with the urban
architecture environment.
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To quantitatively evaluate the spatiotemporal variation of ridership for taxis and TNC,
three variables, including the ridership for two types of TT (yellow + green), the ridership of
TNC and the proportion of TNC (PoT = TNC/(TT+TNC)), were selected as dependent variables. With
respect to independent variables, we extracted four groups of explanatory variables from multiple
open datasets. More details about raw data processing can be found in Section 4.

Several aspects need to be adjusted when applying the GTWR model to taxi ridership analysis.
Firstly, compared with the fixed kernel function, the adaptive kernel function can adjust bandwidths
according to the density of data points. Thus, it might be a more reasonable way to obtain the weights
Wi j for the irregular sharp of TAZs. For simplicity, we use the q-nearest neighbors based on the
following modified bi-square function:

Wi j =

 [1− (di j/hi)
2]

2
, if di j < hi

0, otherwise
, (9)

where hi stands for the different bandwidths, which express the q nearest neighbors to consider in
the estimation of regression at location i. Thus, the adjustment parameter of fixed bandwidth hST is
replaced with the number of nearest neighborhood points q. Note that the q should be constrained to
q ≥ 40, otherwise the model will suffer over-fitting problem [25].

The computation of the GTWR model is intensive because each sample uses an adaptive type of
bandwidth, which leads to (t*(n − 1)n) combinations of possible values that must be computed for the
optimal bandwidth [15]. The computing time will exponentially increase as the number of samples
and timestamps increases by, for example, using grid-based data as the spatial unit or constructing
the daily GTWR model based on several years of data. An optimized modeling approach is needed
to reduce computation consumption. In particular, we employed parallel computing to break down
the computational loops of optimal parameter selection into independent parts with different values
of q and τ. These parts can be executed simultaneously by multiple processors communicating via
shared memory, the results of which are combined upon completion as part of the overall algorithm.
Thus, the optimal values of q and τ could be efficient found. According to the principle of GTWR,
the main computing power is consumed by iteration for obtaining both adjustment parameters.
Since the process of finding the optimal adjustment parameters is independent for each iteration,
it is suitable for parallel programming. The GTWR algorithm adopted in this study is programmed
based on Matlab®, which provides a function called fminbnd for obtaining the optimal value q and
τ. The process of parallel computing can be realized through a loop process, namely parfor [31].
The platform for efficiency comparison is based on an Inter® i7-4790 CPU, which has four cores for
parallel computing. Figure 2 shows the flow chart of GTWR model using parallel computing. To verify
the robustness of the results, different proportions of training samples were randomly selected for the
GTWR model, while the remaining samples were used for verification.
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4. Data Preparation

4.1. Study Area

The study area of NYC consists of five boroughs, including the Bronx, Brooklyn, Staten Island,
Queens, and Manhattan. As shown in Figure 3, NYC is divided into 263 taxi zones, including three
airport zones, 55 yellow zones (only yellow cabs are allowed to pick up passengers) in Manhattan,
and 205 borough zones, in which both types of taxis are allowed to operate. TNCs are allowed in all
areas. Previous scholars’ research [32] reported that 95% of yellow passengers are concentrated in the
Manhattan area, indicating that there were obvious imbalances in terms of spatial distribution and
emphasizing the need to establish the GTWR model.
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4.2. Taxis and TNC Data

The raw data from 2015 to 2017 were download from the NYC Taxi and Limousine Commission
(TLC, available at http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml). The department
provided three types of data from 2009 to 2018, including two types of traditional taxis (yellow and
green) and TNC data, in CSV format. Each trip record on taxis included the PU and DO timestamps and
locations, number of passengers, travel time, travel distance, and price attributes. However, instead of
Pick-Up (PU) and Drop-Off (DO) points, the TNC trip data that was public since 2015 only provided
the taxi zones due to privacy protection. Currently, NYC has three typical taxi modes, including:
(1) yellow taxi serving anywhere within the city boundary; (2) green taxis (Boro taxi) serving only
serving city remote areas except for two airports; (3) TNC serving the same extent as yellow taxis.
Table 1 provides more details about the summary statistics of the three types of taxis, respectively.
The total number of recorded PUs by yellow cars was 390 million, the total number of recorded PUs by
TNCs was 212 million, and the total number of recorded PUs by green cars was only 57 million.

Table 1. Statistical description of two types of taxis and TNC data.

Type 2015 2016 2017 Total

Yellow 146,112,989 131,165,043 113,496,706 390,774,738
72.28% 59.80% 47.46% 59.15%

TNC 36,910,806 69,131,726 106,676,500 212,719,032
18.26% 31.52% 44.60% 32.20%

Green 19,116,598 19,054,688 18,990,815 57,162,101
9.46% 8.69% 7.94% 8.65%

Total 202,140,393 219,351,457 239,164,021 660,655,871

Due to the limitation of data security, the downloaded TNC data only included the timestamp of
PU and DO and the TAZ’s ID where both coordinates were located. Therefore, to ensure the unity of

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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spatial reference, the taxi zone defined by TLC was adopted as the basic spatial unit, and number of
months was selected as the temporal unit.

After determining the spatiotemporal unit, i.e., each observation represented the total number
of ridership at one taxi zone in a certain month, the dependent variables of monthly ridership were
derived based on the spatial and temporal aggregations of each trip. First, the raw data were imported
into the PostGIS spatial database. The data cleansing process was employed to exclude unavailable
data (such as missing coordinates and missing timestamps). Then, all PU geolocations or taxi zone ID
were aggregated into 263 TAZs. Second, we count trips in the same month as monthly ridership for
every TAZ.

Figure 4 shows the statistical PU samples for the three types of trips over 36 months. The ridership
operated by green taxis was small and decreased slightly over time; ridership of the yellow taxis
decreased at a rate of approximately 12% per year. Meanwhile, seasonal variations were also observed,
i.e., there were two peak periods from March to May and from September to November in every year;
On the contrary, the ridership of TNCs grew very rapidly, especially in July 2017, the monthly ridership
of TNC firstly exceeded yellow taxis. Finally, we obtain 9120 valid observations, 348 observations were
excluded due to no trip record. According to the literature [18], we carried out the log transformation
for the three dependent variables to eliminate the influence of the non-normal distribution.
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4.3. Influencing Factors

Much previous literature has reported that the spatiotemporal distribution of taxis can be affected
by a range of external factors. In this case, we extracted four groups of explanatory variables from
multiple open datasets, including weather, land use, socioeconomic, and transport condition. Table 2
lists the definitions of all factors, as well as their summary statistics. To be specific, the weather-related
variables were downloaded from the NOAA website (https://www.ncdc.noaa.gov), specifically from
the NYC station number USW00094728. Four daily ground observations of weather, i.e., snow depth,
maximum and minimum temperature, and average wind speed, were selected by calculating their mean
value for each month; the second group of land use-related data was downloaded from MapPLUTO®,
which is maintained by the NYC Department of City Planning. Considering the case study in [18],
we extracted three factors, i.e., residential area, commercial area, and manufacturer area, in each
taxi zone. The third group contains five transport-related factors, including the road and bike line
lengths and the number of bus stations, subway stations, and bicycle parking zones (called CityRacks).
The last group is socioeconomic-related factors, which were obtained from the NYC Geodatabase,
which contains eight variables related to demographics, employment, income, vehicle ownership,

https://www.ncdc.noaa.gov
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education, and commuting. It is important to note that the minimum values for these factors in Table 2
are all zero, because the samples with a default value of zero belong to Central Park, which has taxi
ridership data but is missing the corresponding socioeconomic data. The log transformation was also
applied for factors from SE1 to SE6 to account for differences in size between TAZs.

Table 2. List of influencing factors.

Group Label of Factor Description Min/Max Avg

Weather

W1 Number of snowy days in each month 0/7 1.05
W2 Average maximum temperature in each month (◦C) 0.08/30.50 17.78
W3 Average minimum temperature in each month (◦C) −8.9/22.10 9.74
W4 Average wind speed in each month (km/h) 1.54/3.34 2.36

Land use
LU1 Percentage of land use for residential purpose in each TAZ (%) 0/96.81 38.40
LU2 Percentage of land use for commercial purpose in each TAZ (%) 0/64.05 11.93
LU3 Percentage of land use for manufacturer purpose in each TAZ (%) 0/92.29 9.47

Transport

T1 Length of road per km2 in each TAZ (/km) 0/58.71 26.22
T2 Number of subway station per km2 in each TAZ 0/17.09 1.45
T3 Number of bus stop per km2 in each TAZ 0/33 7.21
T4 Length of bike line per km2 in each TAZ (/km) 0/16.07 3.55
T5 Number of CityRacks per km2 in each TAZ 0/389 38.5

Socioeconomic

SE1 Number of residents with at least Bachelors’ degree per km2 in each TAZ 0/35,295 5723
SE2 Number of employed residents per km2 in each TAZ 0/32,885 8474
SE3 Number of households with more than $75,000 annual income per km2 in each TAZ 0/18,608 3062
SE4 Number of vehicle ownership per km2 in each TAZ 0/2680 1379
SE5 Number of adults between the ages of 20 and 44 per km2 in each TAZ 0/22,430 7040
SE6 Number of employees per km2 in each TAZ 0/47,037 13,894
SE7 Average commuting time (minute) in each TAZ 0/60.27 38.83
SE8 Percentage of commuting to work by public transportation (excluding taxicab) in each TAZ 0/81.92 53.83

5. Model Estimations and Performance

5.1. Selection of Independent Variables

The multicollinearity of the independent variables will cause bias and affect the credibility of
the modeling results. To eliminate the collinearity between the factors, we calculate the Pearson
correlation coefficient of factors in this study. According to Qian’s suggestion [18], if the pairwise
correlation coefficients of factors are greater than 0.7, then at most, one of the variables can be included
in the model.

Table 3 shows the test results between every two factors. Most of the pairwise correlation
coefficients were below 0.7. However, for the weather-related group, all four factors (W1-W4) are
highly correlated, so only one of them needs to be retained. Meanwhile, for the socioeconomic
factors, the density of residents with at least a Bachelor’s degree (SE1) is correlated with the density
of employed residents (SE2, 0.92), high income (SE3, 0.99), adults age (SE5, 0.84), and employees
(SE6, 0.84), thus these factors (SE2, SE3, SE5 and SE6) need to be removed. Moreover, considering the
complex situation of flow at airport, we add a dummy factor to denote whether a TAZ has an airport.
In this study, three TAZs containing JFK, EWR, and LGA airport were set to 1, the others were set to 0.
As a result, fifteen factors, including thirteen independent variables, the number of month (T), and a
dummy variable of airport (AP) are collected and normalized from the initial set of variables.
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Table 3. Pearson correlation coefficient for explanatory variables.

Correlations W1 W2 W3 W4 LU1 LU2 LU3 T1 T2 T3 T4 T5 SE1 SE2 SE3 SE4 SE5 SE6 SE7 SE8

W1 1.00 −0.79 −0.79 0.73 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.01
W2 −0.79 1.00 0.99 −0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
W3 −0.79 0.99 1.00 −0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
W4 0.73 −0.91 −0.92 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LU1 0.00 0.00 0.00 0.00 1.00 −0.46 −0.46 −0.34 −0.43 −0.16 −0.53 −0.38 −0.32 −0.27 −0.32 0.52 −0.29 −0.21 0.56 −0.08
LU2 0.00 0.00 0.00 0.00 −0.46 1.00 −0.16 0.56 0.67 0.52 0.51 0.52 0.58 0.55 0.59 −0.19 0.54 0.49 −0.57 −0.01
LU3 0.00 0.00 0.00 0.00 −0.46 −0.16 1.00 −0.10 0.01 −0.19 0.02 0.08 −0.10 −0.14 −0.10 −0.40 −0.11 −0.17 −0.16 0.12
T1 0.01 0.00 0.00 0.00 −0.34 0.56 −0.10 1.00 0.47 0.45 0.63 0.38 0.52 0.59 0.52 0.04 0.62 0.57 −0.50 0.28
T2 0.00 0.00 0.00 0.00 −0.43 0.67 0.01 0.47 1.00 0.20 0.46 0.49 0.36 0.36 0.36 −0.23 0.40 0.32 −0.47 0.09
T3 0.00 0.00 0.00 0.00 −0.16 0.52 −0.19 0.45 0.20 1.00 0.43 0.38 0.63 0.70 0.61 0.13 0.69 0.72 −0.37 0.26
T4 0.00 0.00 0.00 0.00 −0.53 0.51 0.02 0.63 0.46 0.43 1.00 0.65 0.61 0.59 0.59 −0.30 0.60 0.55 −0.62 0.24
T5 0.00 0.00 0.00 0.00 −0.38 0.52 0.08 0.38 0.49 0.38 0.65 1.00 0.60 0.56 0.59 −0.22 0.56 0.52 −0.56 0.13

SE1 0.00 0.00 0.00 0.00 −0.32 0.58 −0.10 0.52 0.36 0.63 0.61 0.60 1.00 0.92 0.99 0.04 0.84 0.84 −0.62 0.15
SE2 0.01 0.00 0.00 0.00 −0.27 0.55 −0.14 0.59 0.36 0.70 0.59 0.56 0.92 1.00 0.90 0.22 0.98 0.98 −0.52 0.36
SE3 0.00 0.00 0.00 0.00 −0.32 0.59 −0.10 0.52 0.36 0.61 0.59 0.59 0.99 0.90 1.00 0.05 0.82 0.82 −0.62 0.11
SE4 0.01 0.00 0.00 0.00 0.52 −0.19 −0.40 0.04 −0.23 0.13 −0.30 −0.22 0.04 0.22 0.05 1.00 0.19 0.30 0.41 0.13
SE5 0.01 0.00 0.00 0.00 −0.29 0.54 −0.11 0.62 0.40 0.69 0.60 0.56 0.84 0.98 0.82 0.19 1.00 0.98 −0.51 0.44
SE6 0.01 0.00 0.00 0.00 −0.21 0.49 −0.17 0.57 0.32 0.72 0.55 0.52 0.84 0.98 0.82 0.30 0.98 1.00 −0.44 0.43
SE7 0.00 0.00 0.00 0.00 0.56 −0.57 −0.16 −0.50 −0.47 −0.37 −0.62 −0.56 −0.62 −0.52 −0.62 0.41 −0.51 −0.44 1.00 0.13
SE8 0.01 0.00 0.00 0.00 −0.08 −0.01 0.12 0.28 0.09 0.26 0.24 0.13 0.15 0.36 0.11 0.13 0.44 0.43 0.13 1.00



ISPRS Int. J. Geo-Inf. 2020, 9, 475 12 of 23

5.2. Comparison of Model Accuracy

The OLS model is first calibrated to explore significant factors that influence the three dependent
variables and the results are presented in Table 4. It shows the estimated coefficients and t-probability
for each independent variable and indicators for the goodness-of-fit of the model. Most of the factors
are significant at 0.01 level, revealing that these factors are highly related to the ridership for three
models. However, several factors are not statistically significant, including W1, T2, and AP for TT
model, T2 for TNC model, and LU2 for PoT model. The variance inflation factor (VIF) values of most
factors are within a reasonable range (<7.5), indicating that those factors are well selected so that the
multicollinearity problem is avoided [33].

Table 4. Estimation results for OLS models.

Variable
TT TNC PoT

VIF
Coefficient t-prob Coefficient t-prob Coefficient t-prob

Intercept 9.499 0.000 6.633 0.000 0.032 0.067 -
W1 −0.090 0.116 −0.248 0.000 −0.047 0.000 1.077
LU1 −0.679 0.000 0.553 0.000 0.179 0.000 2.665
LU2 3.330 0.000 3.549 0.000 0.029 0.050 3.714
LU3 2.955 0.000 3.172 0.000 0.036 0.006 1.971
T1 −1.572 0.000 −0.707 0.000 0.120 0.000 2.610
T2 0.197 0.184 −0.204 0.134 −0.086 0.000 2.271
T3 1.381 0.000 0.528 0.000 −0.150 0.000 2.161
T4 0.598 0.000 0.242 0.047 −0.048 0.001 3.513
T5 1.360 0.000 2.231 0.000 0.142 0.000 2.336

SE1 1.193 0.000 −1.007 0.000 −0.438 0.000 3.258
SE4 3.014 0.000 3.626 0.000 0.123 0.000 2.244
SE7 −12.495 0.000 −7.268 0.000 0.789 0.000 3.838
SE8 6.752 0.000 3.832 0.000 −0.367 0.000 1.630
AP 0.146 0.420 0.440 0.008 0.059 0.004 1.199
T −0.717 0.000 2.546 0.000 0.467 0.000 1.077
R2 0.8067 0.6729 0.7333

R2
adj 0.8064 0.6724 0.7329

RSS 17692.73 14868.11 221.37
RMSE 1.2473 1.3680 0.1558

According to the adjusted R2, 80.67%, 67.29% of the variation can be explained for the TT
and TNC ridership, and 73.33% for the proportion change of TNC. Based on the coefficient values,
most of the factors in our study show an intuitive relation with the taxis and TNC ridership,
e.g., three factors, including the number of snowy days (W1), length of roads (T1), and commuting time
(SE7), are negatively correlated with variation of ridership in both modes. In addition, eight factors,
including LU2, LU3, T3, T4, T5, SE4, SE8 and AP show positive effect on increase of TT and TNC
ridership. Furthermore, the remaining four factors exhibit different correlations in the two models.
For example, the factor of time (T) is negatively correlated with the ridership of TT (−0.721) but
positively correlated with the TNC (2.545), which is consistent with the opposite temporal variation
presented in Figure 2.

However, for those factors that are homogenous over space and time, it is difficult for the OLS
model to explain. For instance, the negative sign of LU1 in TT and TNC ridership models implies that
low percentage of residential land use in a TAZ may increase the number of PU points. This situation
is contrary to our intuitive understanding. A possible reason is that taxi trips are asymmetric [34]
and are more heavily used for trips to residential areas than trips from them. As a result, we conduct
further investigations using GTWR models.

The GTWR model needs to estimate each sample independently to obtain coefficients, resulting in
voluminous coefficients that vary according to time and place. Table 5 presents the distribution of each
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factor for three dependent variables, respectively. The optimal parameter of q is set to 400 and τ is
350 (unit: meter/month) through a CV process via minimization in terms of the R2. As shown in Table 5,
the adjusted R2 is 0.9787 for TT model and 0.9403 for TNC model and 0.9329 for PoT model, which
corresponds to 0.1723 (21%), 0.2679 (39%) and 0.20 (27%) improvement in the amount of variation
explained compared to OLS models. Moreover, significant improvements are also achieved for two
indicators of residual sum of squares (RSS) and root mean square error (RMSE). It is evident that,
by addressing the spatial–temporal heterogeneities effect, the reduction in the RSS and the RMSE
values prove the superiority of the GTWR model over the global OLS model in the explanatory power
and the goodness of model fit based on the same dataset.

Table 5. Estimation results for GTWR models.

Variable
TT TNC PoT

LQ MED UQ LQ MED UQ LQ MED UQ

Intercept 6.86 12.25 15.81 7.05 10.64 13.80 −0.08 0.17 0.77
W1 −0.14 −0.02 0.08 −0.61 −0.09 0.14 −0.09 −0.01 0.01
LU1 −3.30 −0.66 1.96 −1.67 0.27 2.84 −0.04 0.14 0.38
LU2 −1.79 1.25 6.25 −0.87 1.76 6.44 −0.14 0.08 0.34
LU3 −2.27 1.97 6.43 −1.19 2.22 5.68 −0.12 0.08 0.37
T1 −5.10 −2.54 1.65 −4.23 −1.77 1.18 −0.07 0.11 0.37
T2 −1.08 1.31 6.43 −1.01 0.74 5.50 −0.48 −0.09 0.07
T3 −0.63 0.53 3.60 −0.64 0.55 3.24 −0.20 −0.02 0.11
T4 −4.33 −0.12 2.97 −2.60 0.06 2.41 −0.21 0.01 0.29
T5 −4.63 1.48 8.00 −9.94 0.95 3.61 −1.25 −0.12 0.04

SE1 −6.99 2.09 12.94 −10.30 0.83 6.82 −1.31 −0.19 0.25
SE4 −3.17 0.67 3.15 −2.09 0.51 3.15 −0.17 0.06 0.30
SE7 −16.35 −5.44 0.94 −10.56 −2.20 3.17 −0.16 0.45 1.37
SE8 −2.82 1.07 6.49 −3.73 −0.66 3.36 −0.62 −0.20 0.16
AP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
R2 0.9787 0.9404 0.9430

R2
adj 0.9787 0.9403 0.9329

RSS 1948.0 2708.1 47.3015
RMSE 0.4531 0.5259 0.0720

Moreover, the GTWR model also provides an in-depth understanding of how influencing factors
vary locally. The coefficients of the regression model can be used to quantitatively analyze the
relationship between influencing factors and the dependent variable. To be specific, if the sign of a
coefficient is negative, there is a negative correlation between the factor and dependent variable, which
reflects a trend of elimination; otherwise, the factor and dependent variable are positively correlated,
indicating a mutually reinforcing relationship. According to the three-column summary, i.e., the lower
quartile (LQ), the median (MED), and the upper quartile (UQ), we observed that the median values of
the W1, T1, and SE7 are negatively correlated with both TT and TNC ridership, which implies that
snowy weather, high-density roads, and lengthy commuting time probably decrease the taxi ridership.
It is clear that taxi drivers are less willing to operate on snowy days or traffic congestion caused by
high-density roads, resulting in a drop in ridership. Meanwhile, since the lengthy commuting TAZs are
mainly located far from the central city, the correlation coefficients are consistent with the actual spatial
distribution of taxi/TNC ridership decreasing with the increase of distance from the central zone.

The parameter estimation for the number of the subway station (T2) is always positive in TT and
TNC models, which suggests that an increase in subway stations will generate more TT and TNC
trips. The positive correlation can be explained in two aspects. First, subway stations are usually
crowed thus there is a large passenger volume, which will attract and generate more TT and TNC trips.
Secondly, the TT and TNC may be widely used for last-mile trips when passengers get off the subway
and commute by TT/TNC to final destinations. Except for these two factors mentioned above, the other
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factors show moderate disparity, suggesting that these influencing factors may be positive or negative,
which vary significantly over space and time.

6. Discussion

6.1. Temporal Effects of Influencing Factors for TT and TNC Ridership

For the temporal effect of influencing factors on TT and TNC ridership, we take the month as the
time interval and use the median of coefficient values of two GTWR models, i.e., TT and TNC to plot
the corresponding temporal variation for each influencing factors respectively. According to Figure 5,
some interesting findings can be summarized.
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Firstly, the trend of snowy weather (W1) on TT ridership is stable around 0, indicating that
ridership of TT is less affected by snowfall weather. Meanwhile, the initial value of TNC is negatively
correlated at the beginning of 2015, indicating that snowfall weather will reduce the ridership of TNC,
which is mutually verifiable with a previous study [35]. However, the coefficient values of snowy
weather on TNC increased dramatically from June 2015 to December 2016 and became competitive
with TT. The rapid growth of the coefficient of weather might be contributed to the fact that surge
pricing, which was established by TNCs for improving their market competitiveness and quality of
service, indeed encourages an increase in supply.

Secondly, for three land use-related factors, the residential land use factor (LU1) shows a negative
correlation with taxis but positive with TNC. This pattern is consistent with the OLS model because the
independent variable that we chose is PU points rather than DO points. Since the spatial distribution
of PU for taxi is asymmetric, i.e., the trips targeting residential areas are larger than those originating
from residential areas [34], the coefficients of LU1 for TT are negative. On the contrary, the coefficients
of same factor for TNC show a positive correlation because the TNCs serve the outer boroughs more
extensively, where residential land use is more prevalent. Another possible reason might because
TNC can provide a more personalized service based on the user’s current location, rather than relying
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on the taxi driver’s own experience and habits to pick up passengers. For the commercial land-use
factor (LU2) and the manufacturer land-use factor (LU3, mainly refers to the airport, train stations,
and external transportation area), the temporal trend of two modes both show significant positive
correlation, but the coefficient for TNC is higher than for TT in most of the time. The difference of
temporal trends reveals that the increase in the ridership of TNC was more closely related to land use
than TT in 2015–2016, resulting in TNC gaining market share rapidly in TAZs with large commercial
and manufacturer areas during this period.

Thirdly, for transport-related factors, it can be seen that except for road density, the rest of the
Points of Interest (POI) factors in the two models are positively correlated. These temporal variations
suggest that taxis and TNC in NYC have mutual promotion effects with other transportation modes,
such as buses, subways, and bicycles, reflecting the key role of TT and TNC in meeting the need of the
last mile of trips. Moreover, we found that TT is more attractive than TNC where TAZs have more
subway stations (T2) and CityRacks (T5), but less attractive at TAZs that have more bus stops and higher
densities of bike lines (T4). One possible reason that this pattern occurs is that TT preferred to wait
for passengers on POI, while subway stations and CityRacks exist more often near POI. The opposite
happens with bus stops, which are spread throughout the city where a TT may be not as available
as TNC.

The last group is socioeconomic-related factors, which has an obvious difference between TT and
TNC in our case. To be specific, the temporal trend of bachelors’ degree factor (SE1) reveals that TT
is more attractive to passengers who have higher education, and this has become more obvious in
recent years. We assume that this phenomenon is because passenger with higher education might
have better chance to make more incomes (0.98 correlate with SE3 in Table 2), and they will use taxis
more often; on the other hand, the rapid growth of TNC is observed to be contributed to by a high
density of vehicle ownership (SE4) due to the fact that TNC platforms allow people to use an assert
(their private car) to make an income [36]. Based on the temporal trend of commuting time (SE7) and
public transportation usage rate (SE8), the negative correlation with SE7 infers that for those TAZs that
are far away from the city center and have lengthy commuting time, both taxi modes are inadequate
to cover the travel needs of these areas, and public transportation might be better choices compared
with the expensive cost of taxis and TNC. Meanwhile, the positive coefficients of SE8 factor for the
TT further verifies that TTs are most prevalent in central cities, such as Manhattan, where the highly
developed public transit network has aggregation effects on TTs.

6.2. Spatial Effects of Influencing Factors for TT and TNC Ridership

Another important advantage of the GTWR model is that the local estimated coefficients that
denote local relationships can be mappable and thus allow for visual analysis. It is important to
note that, similar to the GWR model, many of GTWR’s coefficients might be insignificant, leading to
the difficulty to explain heterogeneity in the study area. However, when significance statistics are
evaluated and insignificant parameters are removed, the spatiotemporal patterns will become much
easier to interpret. In this study, we applied the multiple testing solution proposed by da Silva and
Fotheringham [37] to test the significance of local parameter estimates in GTWR to avoid excessive
false discoveries. In addition, since the number of local parameter estimates obtained by GTWR at
each location corresponds to the valid number of time, it is necessary to assess whether the majority of
significant parameters are sufficient to represent the significance of the factor in the TAZ as a whole.
In this study, we simply defined an influencing factor in a TAZ as significant when the number of its
significant coefficients for all time was greater than 90%. Therefore, we can use the median value of the
significant coefficients from GTWR model to produce a spatial variation map for each TAZ.

Taking the coefficients of the PoT model as an example, Figure 6 shows the spatial distribution of
coefficients for weather- and land use-influencing factors using graduated colors as rendering style.
Figure 6a shows that the spatial distribution of the coefficients for snowy weather is positive in the
southern of Manhattan, the central of Staten Island and the JFK airport, which naturally reflects the
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fact that TNC trips are aggregated in these TAZs to create higher fares that come from short, frequent
trips in midtown or long-distance trips from the airport during snowy days.
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For the land-use related-factors, Figure 6b–d visualize the spatial distribution of the coefficients of
land use for residential, commercial, and manufactural purposes, respectively. In general, the majority
of TAZs in Queens and Staten Island are found to be significantly positive for the increment of TNC
ridership, while the TAZs in Manhattan, Bronx, and Brooklyn mainly show negative coefficients.
Based on the online statistic reports that around 85% of taxi PUs occurred in Manhattan (most of those
were made by yellow taxis), it is no surprise that TT has lost its advantages in the outer boroughs where
a large number of TNC trips were generated from 2015 to 2017. However, although more land-use
area is expected to bring more trips, we found that the land-use patterns are diverse. For example,
the residential land-use factor is observed to present more positive effects on increasing TNC ridership
in southern Queens, while in eastern Queens, the land use for commercial and manufactural purpose
plays a more critical role for the growth of TNC trips. These findings are consistent with the previous
analysis reported by Poulsen et al. [38].

The spatial distribution for five transport-related factors is presented in Figure 7a–e. The spatial
distribution of road density coefficients in Figure 7a shows that while high-density roads have positive
effects on the share of TNC ridership in general (T1, 0.11), such as in Brooklyn and Staten Island,
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they also exhibit negative effects in downtown Manhattan and Queens. Normally, TAZs with a higher
distribution of other transport POI, such as buses, subways, and bicycles, are correlated with higher
passenger density and may produce more taxi/TNC ridership. Figure 7b shows that, in the middle
of NYC where the subway system was highly developed, the number of subway stations appear to
positively correlation for the increase of proportion for TNC. With respect to the east side of NYC,
especially for those areas near the boundary, the negative correlation was observed, revealing this as
another pattern of the TNCs experience of growth due to the insufficient of subway stations. Figure 7c
shows that the reasons of the increase of TNC trips in Staten Island might be attributed to two aspects:
(1) the bus stops in these areas bring in massive amounts of passengers with travel needs; (2) the lack
of subway stations and low concentration of TTs in these areas causes these passengers to only rely on
TNC, eventually leading to an increase in TNC’s market share.

For the socioeconomic-related factors, Figure 8a–d visualize the spatial distribution of the
coefficients for SE1, SE4, SE7, and SE8 respectively. The temporal changes of SE1 in Figure 4 imply
that TAZs with people who received relatively higher education levels may use TTs more often.
On the contrary, areas with more private cars (SE4) may generate more TNC trips. By comparing the
Figure 8a,b, we observed a consistent pattern, that the spatial distribution of coefficient for Bachelor’s
degree is opposite to the distribution of vehicle ownership. To be specific, we found that highly
positive coefficients of education are mainly distributed in the remote TAZs, such as East Queens
and South Staten Island. As TTs rarely reach these areas and public transportation is inadequate,
the probability of hailing a TNC by people with high education/income is significantly increased.
Meanwhile, in high-traffic TAZs such as Manhattan, the coefficient is positive due to the better flexibility
provided by TNC. It can be seen from Figure 8b that the highest value of coefficients for vehicle
ownership was observed at the central of NYC. This indicates that a higher density of private cars in
these areas may generate more TNC trips. Although the correlation is positive in general, TAZs in East
Queens present negative correlation. A possible explanation is that it is difficult and costly to ride a taxi
from these places [18]. As a result, people may use their own vehicles. Finally, the spatial distribution
of coefficients for average commuting time and public transportation usage is shown by the following
Figure 8c,d. The spatial pattern of the coefficients for commuting time (SE7) takes the greatest around
the center of Manhattan, which indicates that the lengthy commuting increases the utility of TNC and
thus reducing the taxi ridership. However, considering the fact that public transportation (SE8) is more
developed in the west than in the east, the coefficients for SE8 exhibit opposite spatial distribution
characteristics as the commuting time. The reasons that SE8 is more positive for TNCs in Western
NYC could come from two aspects: the huge amount of passengers brought by the developed public
transportation network in the central city, and the absence of TTs in remote areas such as Staten Island.
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6.3. The Efficiency of the Parallel-Based GTWR Model

To test the efficiency of the parallel-based GTWR model, we randomly selected the sample set with
different proportions and then recoded the calculation time of the basic GTWR model and the improved
model. The same process was repeated 10 times to avoid noisy measures due to other processes that
could be running at the same time. Table 6 shows a comparison of the average computation time of
both models. With the improvement of parallel computing, we observed that the calculation time
was reduced by 49% to 61% based on a four-core CPU. Moreover, we found that a 10% sampling
level can guarantee the robustness of the algorithm for modeling in our case. However, random
sampling is a simple strategy and may cause some valuable information to be omitted, thus weaken
the stability of the model result. A better approach is to use systematic or artificial pre-defined
methods, based on time-varying features (e.g., cycles and seasonality) to improve the robustness of
the algorithm. Moreover, with the popularity of cloud computing technology, the introduction of
distributed computing or cloud computing to the GTWR model is also an effective improvement
direction [39].
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Table 6. Comparison of the efficiency between GTWR and parallel-based GTWR models. (Unit: second).

Percentage of
Training Samples

Number of
Training Samples Basic GTWR Parallel-Based

GTWR Time Reduction

10% 913 13.2 5.7 57%
30% 2739 88.1 34.5 61%
50% 4565 199.6 101.2 49%

100% 9126 1314.4 652.3 50%

7. Conclusions

The rapid development of TNC has been indeed a useful supplement to the traditional taxi
industry in the early development stage, but the growth of the urban demand for taxis has been
relatively stable. As a result, the relationship between the two modes will inevitably be mutually
competitive, and this competitive relationship will demonstrate nonstationarity in time and space.
In response to this problem, we select NYC as a case study to illustrate that the GTWR model can be
an effective tool for analyzing spatiotemporal heterogeneity. Moreover, the effects of the influencing
factors for the TT and TNC can be quantitatively evaluated in the temporal term, and spatial variations
can also be analyzed by the coefficients at different spatial units (i.e., administrative division-based or
grid-based).

This study compares GTWR with OLS while exploring the relationships between built environment
and the PU ridership. The global coefficients of OLS models are observed to be deficient when dealing
with spatial problem. The GTWR model, on the other hand, shows better performance than the
OLS model, especially in the fact that the GTWR model can help to eliminate potential bias from
spatiotemporal heterogeneity and provide localized regression statistics at each location. By visualizing
distributions of median values of coefficients for each factor, the spatiotemporal variations of the
factors could be better interpreted. Our study demonstrates that the relationships between ridership
and influencing factor of built environment vary over space and time in NYC. Moreover, the effects
of influencing factors on TT and TNC are significantly different on both spatial and temporal terms.
For example, the model results reveal that the TNC’s surge pricing policy has a significant effect on
increasing TNC trips in snowy conditions, especially in western Manhattan. While TTs have always
been dominant in downtown Manhattan, the share of TNC has risen significantly in the adjacent
neighborhoods due to the availability of transit alternatives, such as subways, buses, and private
cars, which is probably correlated with commuting time (SE7). Meanwhile, the increases of TNCs are
also observed in remote places, which are positively correlated with densities of multiple land use,
educated populations, and levels of public transportation usage. Compared to the current saturation of
demand in the central city, future competition between TT and TNC might be concentrated in remote
areas, such as eastern Queens, which is not adequately covered by public transportation. We believe
these findings of spatial variations of taxi demand could provide useful scientific guidelines for the
taxi industry and TNC to optimize their existing resources thus improving efficiency. Furthermore,
the basic modeling steps described in this paper, such as data aggregation, factor selection, parameter
optimization, modeling analysis, and visual presentation, can also be applied to other research fields
for spatiotemporal modelling. For example, considering the recent outbreak of Coronavirus Disease
2019 (COVID-19), the GTWR model might be an appropriate approach to assess the local relationships
between the contagiousness of the virus and the influencing factors of urban environment.

Several challenges remain when applying GTWR models to explore detailed variations in
relationships between taxis and built environment research. As the variation in transportation
environments in different cities is enormous, the result of GTWR can only be adapted to specific
cities. In the follow-up study, we will apply the GTWR model to other large cities for comparison
and evaluation. The model will incorporate with different type of influencing factors, such as POI,
real-time population flow, and Internet of Things data, which will help to improve the interpretation of
how the urban spaces and times result in taxi demand.
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We also notice that using a four-core CPU might be insufficient to fully evaluate the performance
of the proposed parallel-based GTWR model. In fact, the optimization of computational performance
for GWR-based models is always a technical bottleneck that plagues the widespread application of
spatiotemporal modeling, especially in the face of a massive spatial and temporal dataset. In this study,
the most important thing that we focus on is to apply the GTWR model to evaluate the relationship
between the taxi ridership and the influencing factors of built environment. Due to the length limitation
of this paper, we only provide a simple technical idea of the design of the parallel-based GTWR
model and perform it with a small-scale case study (less than 10,000 samples). The efficiency of the
current use of a four-core CPU already meets the needs of this study. According to some literature [39],
the efficiency of parallel computing is correlated with many factors, such as the structure of the
algorithm, the selection of software, and the size of the data, and in some cases the computation is even
less efficient than serial computation. Therefore, evaluating the efficiency of the parallel-based GTWR
model could be a complex technical problem, which we believe is necessary to conduct in future.

Another issue that must be considered is that the GTWR model uses statistical local least squares
to estimate the coefficient of variables; therefore, the model’s accuracy depends on the independence
of the observed samples. When there is a strong autocorrelation between the data samples, and this
autocorrelation is not considered well, it will cause the overfitting problem and affect the final
explanatory results of the model. In this respect, the GTWAR model that can estimate the spatial
autocorrelation for each variable might be a better solution. However, the GTWAR model increases the
computational complexity of the algorithm; therefore, whether this model is necessary for transportation
analysis needs to be further evaluated. Regarding the time dimension, seasonal change might be
considered. There are more taxis to be operated in summer than in winter, although, in our study,
we use weather factors to reflect seasonal changes. The GcTWR model proposed in [26] might be an
alternative way to improve the general GTWR model. The question is that the definition of the seasonal
span of the GcTWR model is manually preset. In actual situations, periodicity varies. Adopting a
certain adaptive method to auto-identify the seasonal span of transportation distribution is another
problem that must be considered carefully.
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