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Abstract: Sometimes it is necessary to know the transformation to apply to a mapping shape in
order to locate its true place. Such an operation can be computed if a corresponding reference object
exists and we can identify corresponding points in both shapes. Nevertheless our approach does not
need to match any corresponding point beforehand. The method proposed defines a polygon in the
frequency domain—two periodic functions are derived from a polygonal or polygon. According to
the theory of elliptic Fourier descriptors those two periodic functions can be expressed by Fourier
expansions. The transformation can be computed using the coefficients of the harmonics from the
corresponding shapes without taking into account where each polygon vertex is placed in the spatial
domain. The transformation parameters will be derived by a least squares approach. The geomatics
and geosciences applications of this method go from photogrammetry, geographic information
system, computer vision, to cadaster and real estates.
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1. Introduction

Transformation operations are usual in geomatic and geosciences, particularly in mapping
and survey fields. Most GIS (Geographical Information Systems) incorporate functions to
compute transformation between planar shapes (vector format) and images (raster format).
Such transformations depends on the applications requirements and they might involve similarity,
affine or projective parameters computation.

Geometrical transformation are also involved in the matching operations which are central issues
in computer vision [1], pattern recognition [2] and artificial and machine intelligence [3,4]. Digital
photogrammetry is a field where matching techniques have been studied most intensively—from shape
based stereo-matching [5,6], to features point-based matching [7]; particularly interesting are the
geometrical transformations applications shown in Reference [8], which implies an important remark
in photogrammetry. Recently some methods based on moment and correlation for measuring shape
change have been developed and applied to images [9,10].

Nowadays, in Spain, Cadastral and Land Registry administrations are requiring transformation
parameters from some surveyed parcels based into an affine transformation, because there are
small zones where cadastral parcels have small translation and rotation errors considering the
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ETRS89-UTM coordinate systems. Figure 1 shows an example where there is a displacement between
the orthophoto (correctly georeferred) and the corresponding cadastral parcel (vectorial shape in blue
color). This small errors could produce legal conflict about the property. For this reason Cadaster
and Land Registry consider the reality is the map delineated by a surveyor on the ground who has to
compute the transformation parameters between the misregistered cadastral parcel and the on the
ground surveyed map.

Figure 1. Horizontal displacement error observed between the orthophoto (correct) and the vector
cadastral parcel.

Most of the above mentioned GIS solutions for transformations require interaction with users,
that is, the process is not automated, which implies inefficient and time consuming tasks—the user
has to mark corresponding points by hand, in the misregistered and the correct parcel; the number of
corresponding points has to be large enough in order to allow a least square solution and consequently
knowing the error along the parcel border. Automation has been a constant issue in geosciences and
geomatic fields [11–13]. It would be interesting to find an algorithm that automatically transformed the
corresponding parcels from the erroneous position to the correct one. Several approaches have been
carried out in polygon transformation [6,14,15] which could facilitate the automation for cadastral
parcel transformation. Particularly interesting is the method from Reference [6] that is based on
the older ones [16,17], although the Fourier Descriptors applied to closed curves is described earlier
in Reference [14].

In our study we decided try the methodology from Reference [6] because it has three main
advantages—(a) automation could be absolute (no user interaction is necessary); (b) it is allowed the
starting points in the corresponding parcels are not corresponding points and (c) it does not matter the
corresponding parcels are composed by a different number of points. The key point in the Hsing and
Shenk method is to transform a polygon from the spatial domain to the frequency domain and express
such a function by Fourier series. We extend the Hsing and Shenk approach in three aspect—(a) the
cadastral application field, (b) the transformation do not change the size from the misregistered parcel,
(c) we compute some measures to support making decisions about the best nth harmonic and number
of iterations.
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2. Materials and Methods

A mapping polygon or a cadastral parcel can be expressed as two periodic functions x(t) and y(t)
where t is defined as t = 2πl/L. L is the total length of the perimeter and l is the partial distance from
a starting point p0 to an arbitrary point pt on the perimeter. Figure 2 shows a polygonal shape and its
representation by the two periodic functions.

P0

Pt

Figure 2. Polygonal shape expressed as two periodic functions.

The two periodic functions can being formulated by the Fourier descriptors shown in the
Equation (1) [

x(t)
y(t)

]
=

[
a0

c0

]
+

∞

∑
n=1

[
an bn

cn dn

] [
cos nt
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]
, (1)

where
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1
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1
2π

∫ 2π

0
y(t)dt
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1

2π

∫ 2π

0
x(t) cos nt dt; bn =

1
2π

∫ 2π

0
x(t) sin nt dt
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1

2π

∫ 2π

0
y(t) cos nt dt; dn =

1
2π

∫ 2π

0
x(t) sin nt dt

. (2)

Overlapping two corresponding cartographic shapes in an optimal manner could require rotation,
translation and scale transformation which could be achieved by similarity, affine or projective
transformations. In the case of misregistered cadastral parcels only translations and rotation would be
necessary because we assume the following principle—a parcel is almost an exact representation of
the real world. Taking into account that the principle of the most suitable transformation between two
corresponding shapes represented by their vertices (x′, y′) and (x, y) is expressed by Equation (3) in
the spatial domain. [

x′

y′

]
=

[
cos ϕ − sin ϕ

sin ϕ − cos ϕ

] [
x− xc

y− yc

]
+

[
xc

yc

]
+

[
∆x
∆y

]
, (3)

where
ϕ = rotation angle

(xc, yc) = centroid coordinates

The transformation from Equation (3), in general, does not allow an automated process because
of two main reasons:

1. The starting point for each shape is not the same point, see Figure 3, so that they have to be linked
manually.

2. Each shape consists of a different number of vertices.
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Nevertheless in the frequency domain, the problem of identifying the corresponding points
does not exist; we just need matching the corresponding Fourier descriptors belonging to different
harmonics. To compute the harmonics, the polygon vertices should be ordered in the same direction
(clockwise or counterclockwise) for both reference and misregistered parcels. Ordered vertices
means that two consecutive vertices on the polygon should keep consecutive in the vertices list
representing the polygon. The algorithm does not perform correctly if vertices are disordered.
The direction condition is easy to automate in case the reference and misregistered polygons are
different. The starting point in both the reference and the misregistered polygons could be different
to correctly perform the algorithm. Substituting Equation (1) in Equation (3) leads us to compute the
zero coefficients and the others separately.
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Figure 3. The corresponding points in the corresponding shapes have different numbers due to
two reasons: the start vertices are different and also the direction (clockwise in the blue polygon,
and counterclockwise in the red polygon).

Because the (a0, c0) and (a′0, c′0) are the centroid from the corresponding shapes (see Equation (2)),
the translation computation is straightforward (Equation (4)):[

∆x
∆y

]
=

[
a0

c0

]
−

[
a′0
c′0

]
. (4)

The rest of the Fourier coefficients can be computed independently for each harmonic because
they are orthogonal. Our cadastral parcels do not need to be scaled so that the transformation is limited
to a translation (Equation (4)) and a rotation. For the nth harmonic the rotation component of the
transformation is achieved by Equation (5).[

a′n b′n
c′n d′n

]
=

[
cos ϕ − sin ϕ

sin ϕ cos ϕ

] [
an bn

cn dn

]
. (5)

If the starting point of corresponding shapes are not corresponding points, for example, in Figure 3
the starting point in the blue shape is 1 while the corresponding point in the red shape is approximately
the number 4. The consequence is that the Fourier coefficients are different except for the zero
coefficients. This is interpreted as a phase shift (∆t) and the transformation between coefficients taking
into account the ∆t is shown in Equation (6)[

a′n b′n
c′n d′n

]
=

[
an bn

cn dn

] [
cos n∆t − sin n∆t
sin n∆t cos n∆t

]
. (6)

The rotation and phase shift combined is expressed by Equation (7).[
a′n b′n
c′n d′n

]
=

[
cos ϕ − sin ϕ

sin ϕ cos ϕ

] [
an bn

cn dn

] [
cos n∆t − sin n∆t
sin n∆t cos n∆t

]
. (7)
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At this moment the only unknowns are the rotation angle ϕ and the ∆t and we can solve the
unknowns using a least squares approach, where for each harmonic their observations equations have
the form of Equation (8).

a′n
b′n
c′n
d′n

+


va′n
vb′n
vc′n
vd′n

 =


an bn −cn −dn

bn −an −dn cn

cn dn an bn

dn −cn bn −an




cos ϕ cos n∆t
cos ϕ sin n∆t
sin ϕ cos n∆t
cos ϕ sin n∆t

 . (8)

In order to use the least squares method we need to linearize the Equation (8) for each harmonic
and compute the first approximations of its coefficients. Such a first approximation can be derived
using the harmonic n = 1 and n = 2. From Equation (8), we can denote

p1 = cos ϕ cos n∆t; p2 = cos ϕ cos n∆t
q1 = cos ϕ sin n∆t; q2 = cos ϕ cos n∆t
r1 = sin ϕ cos n∆t; r2 = cos ϕ cos n∆t
s1 = cos ϕ sin n∆t; s2 = cos ϕ cos n∆t

. (9)

and 
p1

q1

r1

s1

 =


a1 b1 −c1 −d1

b1 −a1 −d1 c1

c1 d1 a1 b1

d1 −c1 b1 −a1


−1 

a′1
b′1
c′1
d′1




p2

q2

r2

s2

 =


a2 b2 −c2 −d2

b2 −a2 −d2 c2

c2 d2 a2 b2

d2 −c2 b2 −a2


−1 

a′2
b′2
c′2
d′2


(10)

From Equation (10)

A1 = p1 − s1 = cos(ϕ + ∆t0)

B1 = q1 − r1 = sin(ϕ + ∆t0)

A2 = p2 − s2 = cos(ϕ + 2∆t0)

B2 = q2 − r2 = sin(ϕ + 2∆t0)

. (11)

From Equation (11) we can compute the initial values for ϕ and ∆t

ϕ0 = 2 arctan(B1/A1)− arctan(B2/A2)

∆t0 = arctan(B2/A2)− arctan(B1/A1)
. (12)

The A matrix (Equation (13)) in the least squares solution is a 4 × 2 matrix where odd rows
represent the first column and the even rows represent the second column
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A =



− an sin ϕ cos n∆t− bn sin ϕ sin n∆t− cn cos ϕ cos n∆t− dn cos ϕ sin n∆t

k(−an cos ϕ sin n∆t + bn cos ϕ cos n∆t + cn sin ϕ sin n∆t− dn sin ϕ cos n∆t)

− bn sin ϕ cos n∆t + an sin ϕ sin n∆t− dn cos ϕ cos n∆t + cn cos ϕ sin n∆t

k(−bn cos ϕ sin n∆t− an cos ϕ cos n∆t + dn sin ϕ sin n∆t + cn sin ϕ cos n∆t)

− cn sin ϕ cos n∆t− dn sin ϕ sin n∆t + an cos ϕ cos n∆t + bn cos ϕ sin n∆t

k(−cn cos ϕ sin n∆t + dn cos ϕ cos n∆t− an sin ϕ sin n∆t + bn sin ϕ cos n∆t)

− dn sin ϕ cos n∆t + cn sin ϕ sin n∆t + bn cos ϕ cos n∆t− an cos ϕ sin n∆t

k(−dn cos ϕ sin n∆t− cn cos ϕ cos n∆t− bn sin ϕ sin n∆t− an sin ϕ cos n∆t)


. (13)

The B matrix is

B =
[

a′n b′n c′n d′n
]T

(14)

and [
ϕ1 − ϕ0

∆t1 − ∆t1

]
= N−1 ∗ AT ∗ B, (15)

where
N = AT ∗ A

We have programmed the algorithm in Matlab and it requires the points to be ordered in the
same direction, although it is allowed that the starting points not to be corresponding points as in
Figure 3—for example, point 1-blue correspond to 4-red. The Figure 4 shows the result of computing
the 4th harmonic and 3 iterations in the least square process (overlapped shapes). We can obtain an
approximation of the mean, median and maximum separation between shapes if we compute a large
enough sample of separations between shapes.
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Figure 4. Transformed shapes using Fourier descriptors. The corresponding points between shapes are
shown before (a) and after (c) transformation.
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3. Results and Discussion

We have tested our algorithm on a correct digitized parcel (green in Figure 5) composed of 12
vertices while the misregistered parcel is composed of 24 vertices (blue in Figure 5). You can observe
that starting points in both parcel are different, so that, we expect a shift phase value ∆t 6= 0 .

Figure 6a shows the correspondence between the points from the correct parcel (green) to the
misregistered one (blue). Figure 6b shows the transformation applied to the misregistered parcel,
so that it overlaps the correct one. The parameters used for the transformation has been the following:
3th harmonic and 3 iterations; and the resulting transformation is described by ∆t = 4.6178 and
ϕ = 10.6856◦.
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Figure 5. Digitized parcels: green is the correct parcel (left) and blue is the parcel to be transformed.
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Figure 6. Transformed parcels using Fourier descriptors. The corresponding points between shapes
are shown before (a) and after (b) transformation.

In order to compute the parameters influence on the fitted transformation we have tried different
settings of nth harmonic and iterations numbers and we have computed the corresponding mean,
median and maximum separation values between the matched parcels. In order to get a visual
information of separation values we have built an histogram for such a measure. Figure 7a shows the
area between parcel after transformation (green color) where separation values are mean (1.169 m),
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median (0.953 m) and maximum (4.499 m); and Figure 7b shows the corresponding histogram with
1000 samples distributed into 20 bins. The parameters setting used to obtain Figure 7 was 2nd harmonic
and 2 iterations.

Figure 7. (a) Separation between reference and misregistered polygons, (b) separation histogram from 1000
samples measures between homologous point corresponding to reference and misregistered polygons (20 bin
has been created in order to assign every measure to a bin and create the histogram): the mean value for the
separation between reference and misregistered polygons is 1.167 m.

The Table 1 shows 9 settings (treatment) which combine nth harmonic and number of iterations.
We can observe from Table 1 the mean separation between corresponding parcels is around 1.7 m and
the largest difference between treatment considering the mean value is 2 mm; taking into account that
the parcel size is approximately 205 × 130 m, the data seem to indicate there is not a great influence
between treatments. If we focus in the maximum separation between corresponding shapes we observe
it occurs between 5th harmonic 2 iterations (4.461 m) and the 3rd harmonic 5 iterations (4.529 m),
and even in this case the differences is only of 68 mm which is also a small difference.

Table 1. Least squares parameter settings: nth harmonic(nth harm) and number of Iterations (N Iter).
Mean, Median and Maximum expressed in m. Digitized parcel.

nth Harm / N Iter Mean Median Max

2 – 2 1.169 0.953 4.499

2 – 5 1.169 0.959 4.484

2 – 10 1.169 0.958 4.483

3 – 2 1.170 0.949 4.517

3 – 5 1.171 0.941 4.529

3 – 10 1.171 0.941 4.529

5 – 2 1.169 0.966 4.461

5 – 5 1.169 0.962 4.471

5 – 10 1.169 0.962 4.471

For a more consistent conclusion about the number of harmonic to use in the transformation,
we think it is necessary to take into account parcels like those corresponding to buildings. Buildings
are the most frequent parcels in urban areas and the most expensive. For this reason an accurate
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positioning in urban parcels is more important that in countryside ones. A main property in this kind
of parcels is that they have both orthogonal and parallel sides. To continue our experiment we have
selected three building cadastral parcels that are misregistered, see Figure 8.

We applied the Fourier-based automatic transformation to the aforementioned three buildings
and the graphical result is shown in Figure 9 where the blue color indicates the correct position
for a parcel, the red color refers to the misregistered cadastral parcel and the green polygon is the
transformed cadastral parcel after apply the Fourier-based algorithm. For each building we computed
the same measures per treatment as in Table 1, that is, mean, median and maximum. Each treatment is
defined by combination of 2 parameters, the nth harmonic and the number of iterations. The results
are shown in Table 2. From Figure 9 we can see that the Building 1 is the best fitted, this is because the
cadastral parcel and the reference one has approximately the same shape and size; Building 2 keeps
the sides parallel but the size is smaller than the reference one; and Building 3 lacks of parallelism
in their sides. It seems that geometric features from those buildings explain the results included in
Table 2. We observe that in Building 1 (the more similar between cadastral and reference parcels) there
are hardly any differences in the measures when we take into account the nth harmonic parameter.
On the other hand Buildings 2 and 3 have remarkable difference between the 2th and the 3rd harmonic.
If we take into account only the number of iterations (N Iter) parameter, the variation in measures is
significant from N Iter i to N Iter i+1 only when the 2th harmonic is fixed; when the 3th or the 5th
harmonic is fixed the measures variation is not significant from N Iter i to N Iter i+1.

According to the previous analysis it seems a reasonable election to use the following parameters:
3rd harmonic and 5 iterations.

Figure 8. Buildings: cadastral parcel misregistered (red) and correct ones (blue).
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Figure 9. Buildings: cadastral parcel misregistered (red) and correct ones (blue) and misregistered after
Fourier transformation (green).

Table 2. Least squares parameter settings: nth harmonic(nth harm) and number of Iterations (N Iter).
Mean, Median and Maximum expressed in m. 3 Buildings.

Building 1 Building 2 Building 3

nth harm / N Iter Mean Median Max Mean Median Max Mean Median Max

2 – 2 0.259 0.208 0.285 1.254 1.152 3.037 1.093 0.941 3.411

2 – 5 0.259 0.208 0.667 1.430 1.302 3.404 1.090 0.940 3.400

2 – 10 0.259 0.208 0.667 1.439 1.318 3.420 1.090 0.940 3.400

3 – 2 0.151 0.138 0.285 0.747 0.768 1.586 0.935 0.884 1.911

3 – 5 0.151 0.138 0.285 0.747 0.771 1.583 0.934 0.881 1.904

3 – 10 0.151 0.138 0.285 0.747 0.771 1.583 0.934 0.881 1.904

5 – 2 0.152 0.141 0.291 0.747 0.769 1.585 0.935 0.882 1.914

5 – 5 0.152 0.141 0.291 0.747 0.772 1.583 0.935 0.882 1.907

5 – 10 0.152 0.141 0.291 0.747 0.772 1.583 0.935 0.882 1.907

4. Conclusions

Transformation operations applied to a mapping shape is a frequent task in geosciences and
geomatic fields. In this paper we have focused on the case of two corresponding polygons (representing
cadastral parcels), which have small differences in their shapes although they are more or less similar.

Usually transformation parameters referring to similar, affine or projective transformation have
been computed identifying corresponding points by hand, which does not imply process automation
at all. The main advantage of the Fourier-descriptor-based approach explained in this paper is the



ISPRS Int. J. Geo-Inf. 2020, 9, 482 11 of 12

whole process automation. We only need to express a polygon in the frequency domain starting from
its spatial representation (a list of vertices). Representing a polygon (mapping shape, or cadastral
parcel) in the frequency domain has several advantages with respect to its spatial representation in
order to compute the transformation parameters—(a) the number of points in the correct shape can be
different to the misregistered shape to be transformed; (b) you do not have to match corresponding
points between shapes. We applied the Fourier descriptors approach to the mapping shapes used
by Cadaster and Land Registry administrations. The correct parcel, usually has been measured by a
surveyor, so that we do not want its scale to be changed; therefore the only transformation parameters
we need are translation (∆x, ∆y) and rotation (ϕ).

We have tried several level of harmonic (from 2nd to 55) in order to determine the harmonic
level influence in the transformation, and remarkable differences appear in building parcels when
non-parallelism and different scales exist between the cadastral and reference parcels. According to
our study it seems a reasonable election to use the 3rd harmonic and 5 iterations as parameters for
getting the transformation.

The results obtained after automatic transformation, based on Fourier descriptors, show a suitable
fit between the corresponding parcels. For this reason it is advisable to use Fourier-descriptors-based
transformations by Land Registry and Cadaster administrations when they need parcel transformations.
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