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Abstract: Examining the relationships between vehicle crash patterns and urban land use
is fundamental to improving crash predictions, creating guidance, and comprehensive policy
recommendations to avoid crash occurrences and mitigate their severities. In the existing literature,
statistical models are frequently used to quantify the association between crash outcomes and available
explanatory variables. However, they are unable to capture the latent spatial heterogeneity accurately.
Further, the vast majority of previous studies have focused on detailed spatial analysis of crashes
from an aggregated viewpoint without considering the attributes of the built environment and land
use. This study first uses geographic information systems (GIS) to examine crash hotspots based on
two severity groups, seven prevailing crash causes, and three predominant crash types in the City of
Dammam, Kingdom of Saudi Arabia (KSA). GIS-based geographically weighted regression (GWR)
analysis technique was then utilized to uncover the spatial relationships of traffic collisions with
population densities and relate it to the land use of each neighborhood. Results showed that Fatal and
Injury (FI) crashes were mostly located in residential neighborhoods and near public facilities having
low to medium population densities on highways with relatively higher speed limits. Distribution
of hotspots and GWR-based analysis for crash causes showed that crashes due to “sudden lane
deviation” accounted for the highest proportion of crashes that were concentrated mainly in the
Central Business District (CBD) of the study area. Similarly, hotspots and GWR analysis for crash
types revealed that “collisions between motor vehicles” constitute a significant proportion of the total
crashes, with epicenters mostly stationed in high-density residential neighborhoods. The outcomes of
this study could provide analysts and practitioners with crucial insights to understand the complex
inter-relationships between traffic safety and land use. It can provide useful guidance to policymakers
for better planning and effective management strategies to enhance safety at zonal levels.

Keywords: road safety; traffic collisions; crash hotspots; land use; geographic information system
(GIS); geographically weighted regression (GWR)

1. Introduction

1.1. Road Safety in Kingdom of Saudi Arabia

Road traffic collisions pose a critical public health concern worldwide. It is estimated that over
1.3 million peoples are killed, and 50 million others are injured due to traffic crashes every year [1].
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The social and economic consequences of road traffic crashes (RTCs) are enormous, annually costing
around 518 billion USD globally [1,2]. Residents of developing countries like the Kingdom of Saudi
Arabia (KSA) are more vulnerable to traffic fatalities and injuries [3]. After exploring and exporting
crude oil since 1938, Saudi Arabia has experienced rapid economic growth resulting in urban expansion
and motorization over the past four decades. Due to such expansions, KSA is facing serious road
safety issues. World Health Organization (WHO) Global Status Report on Road Safety reported that
the annual fatality rate per 100,000 people due to RTCs in the KSA has increased from 17.4 to 27.4
since the last decade. Such an increasing fatality rate is the worst among the countries in the region
and is significantly above the fatality rates for other G-20 nations [1]. A study conducted by Turki
et al. suggests that, on average, more than 19 individuals lose their lives daily, and approximately four
persons are injured every hour due to RTCs on KSA roads [3]. The cost of traffic crashes in KSA is
estimated to be 5.6 billion dollars per year and accounts for approximately 4.3% of the KSA’s Gross
Domestic Product (GDP) [4]. A recent study conducted in the Eastern Province in KSA reported
that driver distractions, overspeeding, non-compliance with traffic control devices and regulations are
a few of the dominant causes for traffic crashes in the region [5].

1.2. Definition of Crash Hotspots

To reduce the burden of traffic crashes, it is critical to examine the time and locations of crashes
where they occur more frequently. Hotspot identification (HSID) is a vital task for road traffic safety
programs. Locations that have clusters of high concentrations of crashes are commonly known as
crash-prone locations or hotspots. The number of crashes occurring at any specific site or road segment
during a certain period of time is a non-negative integer and probabilistic in nature [6,7]. Even though
traffic crashes are unpredictable at the micro-level and random by nature, statistical models can
yield reliable estimations of expected crash frequencies as a function of explanatory variables such as
traffic flow, site characteristics, and road geometry data at the macro-level [8,9]. In previous studies,
numerous empirical relationships between such predictor variables and vehicle crashes have been
established [10–12]. Such crash prediction models are useful in determining the critical risk factors,
evaluating design and management alternatives, and improving the safety for road users [13,14].

1.3. Existing Methods for Crash Hotspots Identification

Crash HSID methods are frequently studied under two main categories: observed crash frequency
and expected crash frequency [15,16]. The methods based on the crash frequency or crash rate is
calculated as the number of crashes per vehicle-kilometer for road segments or per vehicle-entering
at road junctions. However, methods solely based on observed crash frequency are considered
inefficient, since crashes are random events that are likely to change both spatially and temporally.
This randomness of crash occurrences can be attributed to several factors, including the conditions of
the drivers, vehicles, roadways, traffic, and the physical environment. Given the limitations of methods
based on crash frequency, the methods based on expected frequency are gaining rapid attention,
whereby expected measures for HSID are estimated by different statistical models, including basic
Poisson models, Negative Binomial models, and Empirical Bayesian methods [17]. It is believed
that methods based on expected crash frequency will more accurately reflect the expected risk levels at
specific locations during a given time period [18].

Numerous methods have been suggested for HSID of traffic crashes in recent years [16,19–21].
Each method has its own characteristics, benefits, and shortcomings, making each suitable for HSID
under specific conditions. The most commonly used methods for HSID for traffic crashes include
the kernel density estimation method (KDE) [22,23], local indicators of spatial association (LISA)
method [24], and the nearest neighborhood hierarchical (NNH) clustering method [25]. KDE is a
non-parametric technique frequently adopted to estimate the probability density function of a random
variable [26]. To measure local crash risk, each spatial unit is assigned a local density estimate (LDE)
where spatial units exceeding a certain given LDE threshold are labeled as hazardous. If a group
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of neighboring spatial units shares the LDE higher than that certain threshold, the road segment
and surrounding junctions can be identified as a hotspot [27]. Similarly, with the LISA approach,
each spatial unit is allocated a LISA index. This index evaluates the spatial association for observed
crashes at adjacent units. Higher LISA index would indicate an increased spatial concentration of
crashes and vice-versa. Finally, the NNH is a hierarchical clustering technique that clusters the spatially
distributed points together based on predefined criteria [28]. Clustering is repeated until all the points
within the threshold distance are grouped into single cluster (referred to as hotspot), or the clustering
criteria fails.

Empirical Bayes (EB) and full Bayesian (FB) are other approaches and techniques that are
increasingly being used for HSID [20,29]. The EB method accounts for both historical and expected
crash trends to yield the crash estimates for similar sites. It also accounts for the regression-to-mean
phenomenon. Unlike other conventional HSID methods, previous studies suggest that the EB method
is more reliable and accurate for HSID [30,31]. Regression-to-the-mean (RTM) implies the short-term
fluctuations in crash frequencies around the average/expected crash frequency over a particular period.
When a period with a comparatively high crash frequency is observed, it is statistically probable
that the following period will have a comparatively low crash frequency (even in the absence of
no countermeasures). This tendency also applies to the high probability that a low crash frequency
period will be followed by a high crash frequency period. On the other hand, the FB HSID method
uses a probability function (as Poisson-lognormal distribution) for crash frequency and caters to the
area-specific myriad of risk factors as safety performance functions (SPFs) [17,32].

1.4. Relationship between Land Use and Crash Hotspots

Identifying crash clusters or hotspots provide key insights to safety specialists for a better
understanding of crash patterns and management of road safety. Understanding the role of the built
environment and urban land use is an essential problem in road safety studies. The relationship
between land use and traffic crashes is apparent since different land use tends to attract and generate
different types of trips [33]. Trip making behavior is a crucial predictor variable for determining the
nature and volume of traffic. Although several previous studies have reported that traffic violations
and crashes are closely related to characteristics of drivers and travel behavior [34–37], yet it is rational
to assume that they are likely to increase as the land use intensifies. Earlier studies have proposed
different methods to explore spatio-temporal variations of crashes [15,18]. Only a few have investigated
the influence of land use on the crash patterns [33,38]. Further, conventional studies have primarily
focused on determining crash hotspots based on aggregated crash frequencies, thus ignoring the
significance of individual crash characteristics and contributing factors. However, it is well established
that “not all crashes are equal,” making it inevitable to identify hotspots for different crash attributes.

A number of previous studies reported that that urban zones with low densities such as rural
and residential areas have high injury severities when compared to those with high densities such as
commercial and congested residential areas [39,40]. A study conducted by Xie et al. used generalized
structural equation modeling (GSEM) to assess the effect of land-use conversion on severe crashes
(SC) [41]. The study results showed that urban residential, business and commercial, and mixed
residential-commercial land uses had the highest risk of exposure to SC. Pulugurtha et al. utilized a
negative binomial model to explore the impact of land use characteristics on zonal risk estimation and
found that urban residential land use and mixed areas were highly correlated with crash frequencies [42].
In another study, the applicability of the empirical Bayes (EB) method was examined for the association
between land use traffic collisions in three districts of Hong Kong [43]. It was concluded that commercial
areas were more hazardous based on average crash counts and as well as injury severity. Chen et al.
also investigated the effect of the built environment on pedestrian crashes [44]. The authors noted that
they are inversely related with (i) high densities of sidewalks, (ii) high proportions of steep gradients,
(iii) high proportions of industrial land use and employment, (iv) areas with lower average speed
limits, and (v) lower number of bus stops. Thisstudy further demonstrated that local characteristics



ISPRS Int. J. Geo-Inf. 2020, 9, 540 4 of 22

such as land use and urban population densities do have noticeable effects on traffic crashes. A better
understanding of the relationship between vehicle crashes and land use is fundamental in improving
crash prediction and providing sound policy recommendations that could reduce the number of crash
occurrences as well as their severities.

1.5. Previous Studies for HSID Using GIS

Recently, geographic information systems technologies (GIST) have drawn widespread attention
for the identification of crash hotspots. The GIS-based HSID process uses several methods and
techniques, such as the traditional kernel density estimations, nearest neighbor analysis, and K-functions.
A recent study examined the performance of four clustering methods in a GIS platform to observe
crash patterns in the complex urban networks of Mashhad city, Iran [45]. The results revealed that
crashes in the study area were more clustered in certain parts of the city. Additionally, in Iran, Shariat
et al. adopted a GIS-based network kernel density estimation (NKDE) approach for detecting high-risk
crash locations in the Markazi province [46]. They used Moran’s I spatial autocorrelation coefficient
to determine whether crashes were clustered together or not. Similarly, Ulak et al. compared the
performance of Local Moran’s I, Getis-Ord Gi*, KLINCS, and KLINCS-IC to gain better insights in the
identification of hotspots in the eastern US state of Florida [47]. Alternative spatial weights (such as
distance, free-flow travel time, and congested travel time) based sensitivity analysis were undertaken
to examine the influence of bandwidths on the identified hotspots. Local Moran’s I considering the
weight distance, achieved the highest prediction accuracy followed by KLINCS-IC with free-flow
weight travel time. Bíl et al. used KDE based clustering methods for spatiotemporal analysis of crash
hotspots using nine years (2010–2018) crash data from Czech Republic [48]. The authors classified the
hotspots based on three attributes, i.e., hotspot emergence, their stability, and disappearance. It was
noted that only 100 hotspots were stable over the entire period.

Dereli and Erdogan also used GIS-aided spatial statistical methods (Poisson regression, empirical
Bayesian, negative binomial regression) for determining crash hotspots [49]. Nine years of crash data
(2005–2013) for 2408 state roads in Turkey were collected. Out of the 32,107 sub-segments, 126 were
classified as hotspots. In another study, Yalcin and Duzgun employed GIS for the identification of
hotspots for two-wheeled vehicles [50]. Three methods of spatial crash pattern analysis (nearest
neighbor distance, kernel density, and the K-function) on road networks were used to find crashes
clustered along the main transportation routes in the study area. Yuan et al. proposed a novel Firefly
Clustering Algorithm coupled with GIS for accurate identification of crash hotspots in the urban areas
of Licheng district, situated in the east of Jian, China [51]. Results showed that Euclidean distance-based
search method could easily overestimate the number of hotspots, especially near the urban road
intersections, while the proposed method is more robust under different scenarios. Butt et al. also
utilized GIS-based geo-statistical surveillance for the identification of crash hotspots in the district
of Rawalpindi, Pakistan [52]. They found that high-risk sites were located in both commercial and
residential areas near hospitals schools, public transit services, and airports. Le and Lin investigated the
significance of GIS-based statistical analytic techniques for spatio-temporal variation of crash severity
index (SI) in Hanoi, Vietnam [53]. During the first phase of the study, the KDE method was utilized to
analyze hotspots according to different time intervals (daytime, night-time, peak/off-peak periods) and
seasons. The results were then presented using co-map technique. Results showed that both methods
provided relatively similar hotpot locations, but due to the integration of SI, a ranking of some hotspots
was different from others. The authors included SI in crash hotspot analysis for precise determination
and ranking of hotspots locations.

Recently, few studies have used geographically weighted regression (GWR) for analysis of
traffic crashes. Zheng et al. examined the spatial variation of factors contributing to crash harm
using GWR in southeastern Virginia [54]. The map of coefficients with GWR showed detailed
insights where certain factors are associated with higher crash harm. In another study, Soroori et al.
utilized geographically weighted Poisson and negative binomial regression (GWPR and GWNBR)
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to model the relationship between crash injury frequency and transportation macro-level variables
such as transport infrastructures, traffic characteristics, driver socio-economic factors, and land use
attributes [55]. Results showed that proposed methods are more robust than GWR by capturing
the variable’s spatial heterogeneity more accurately. Zhibin, in their study, also showed that GWPR
was useful in capturing the spatially non-stationary relationships between predictor variables at the
county level [56]. Similarly, Li et al. compared the performance of the GWR calibrated statistical
models with other models calibrated using the ordinary least squares (OLS) technique for predicting
crashes on 245 intersections in Chicago [57]. The authors used crash data collected from 2008 to 2010
and performed analysis of variance tests that revealed that models calibrated with GWR achieved
improved crash predictability. Another study conducted in Flanders, Belgium, also demonstrated that
GWPR outperforms their corresponding generalized linear models (GLMs) in capturing the spatial
heterogeneity of fatal and injury crashes [58]. Li et al. employed GIS-based Bayesian approach for
analyzing spatio-temporal patterns of motor vehicle crashes in Texas and found that the proposed
method is promising in identifying the relative crash risks [59]. Huang et al. also examined the
relationship of built-environment and land use with urban traffic crashes through the application of
GWR analysis [60]. Their study showed that variables such as intersection density, percentage of local
road mileage, and percentage of commercial land use have a stable relationship with traffic crashes.
Ye et al. also reported that urban population density and the presence of subway stations are directly
related to the occurrence of traffic crashes [61].

1.6. Contributions of the Current Study

A critical review of the existing literature indicates that various methods were proposed for HSID
in various parts of the world, with each having its own suitability and characteristics. Existing studies
have mostly focused on statistical modeling-based approaches to uncover associations between crash
outcome and predictor variables. However, these methods fail to capture the spatial heterogeneity and
non-stationarity of traffic crashes. The relationship between land use and traffic crashes is obvious since
different land uses generates/attracts different types of trips, yet only a few studies have explored this
topic. Furthermore, previous studies have mostly focused on aggregated frequencies-based clustering
of traffic crashes, which has limited applications to the implementation of effective countermeasures.
Thus, it is essential to explore the crash patterns based on individual disaggregated crash attributes to
mitigate the burden of specific severity class, crash causes, and crash types.

Only few studies have examined a detailed spatial analysis of crashes in KSA. This study is aimed to
utilize the geographically weighted regression (GWR) method for unraveling the relationship between
traffic crashes with population density and urban land use for the city of Dammam, Saudi Arabia.
Crash hotspots and GWR based maps for three prevailing crash types (vehicle collisions, hit fixed
object, and hit pedestrians), seven predominant crash causes (distractions, speeding, sudden lane
deviations, not giving way, poor roadway, fatigue driving, and traffic violations), and two severity
groups (fatal and injury (FI) and property damage only (PDO)) were developed at the zonal level in the
study area. The findings of this study could provide essential guidance for road safety agencies and
policymakers to identify the high-risk and crash-prone locations and to adopt appropriate measures
for improving zonal-level safety.

The remainder of this paper is organized as follows. Section 2 provides a brief description of
the study area. Section 3 presents the data and methods. The results are presented and discussed
in Section 4. Finally, Section 5 highlights the study conclusions, implications of the current study,
and prospects for future studies.

2. Study Area

The city of Dammam is the capital of the Eastern Province of Saudi Arabia, and it was chosen as
the area of interest for this study (Figure 1). While the city has a total area of 653 km2, only 450 km2 was
chosen for this study since the remaining 203 km2 are vacant lands that are yet to be developed [62].
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Dammam currently has a total population of over 1.1 million [63]. After the oil boom during the
1970s, the city’s population grew exponentially over the past few decades. With the rapid population
growth, the number of registered vehicles in the city has surged from 0.4 million in 2001 to 1.3 million
in 2018 [64]. Dammam currently does not have any public transportation system. The rapid rate
of motorization and increased auto-ownership have severe consequences as far as road safety is
concerned. The number of traffic crashes have increased exponentially over the past ten years resulting
in hundreds of deaths, injuries, and costing billions of dollars in losses to the economy.
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The population distribution and the land use map of the Dammam Metropolitan area are shown
in Figure 2. A total of 82 occupied residential neighborhoods were considered in the analysis.
Distribution of the population is diverse among the different neighborhoods (ranging between 5000 and
30,000 residents). Nearly 40% of the city’s population are expatriates coming from surrounding Arab,
South Asian, and Southeast Asian countries. Due to their diverse backgrounds and cultures with various
driving styles and training, it is difficult for them to follow the Saudi driving rules and regulations.
The city is a major hub to oil industries, public and private businesses, public services, academic
institutions, and various commercial activities contributing to the traffic generations. As shown in
Figure 2, the entire city can be primarily divided into five different land use zones (i.e., residential,
commercial, mixed commercial-residential, industrial/employment, and public facilities and services).
Almost 65% of the area is pure residential areas with high-density neighborhoods surrounding the
downtown. Low-to-medium population densities are located mostly within the mixed commercial
and residential zones along the coastal areas in the north-eastern parts of the city.
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3. Data and Methods

There were several sets of data that were collected and processed for this study. First, a database
containing the detailed vehicular crash dataset containing their latitude and longitudinal coordinates
between the years 2009 and 2016 was collected from the Dammam Traffic Department. The data
cover all types of motor vehicle crashes during the study period. The local traffic police department
is mainly responsible for recording detailed information about the crash event. Details on different
crash characteristics are collected by emergency response crew on standard crash reporting proformas.
The nearby police patrolling unit is required to reach the crash scene within 7 min of the event
happening. The crew consists of a medical staff unit and trained observers for noting crash information.
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This information includes the drivers, sociodemographic attributes (age, gender, education, profession
etc.), vehicle characteristics, weather characteristics, lighting conditions, and road inventory from crash
locations. The final crash database on the excel spreadsheet is then complied by extracting the details
from individual crash report files remotely in office. In addition to crash data, information about the
boundaries of the residential neighborhoods with their population size (2010) and detailed land use
was collected from the Dammam Municipality’s office. Data on land use and population zoning were
also collected from Dammam municipality.

To examine the pattern of distribution for the crashes, the nearest neighbor index (NNI) for the
three crash attribute categories (crash severity groups, crash causes, and crash types) were calculated in
ArcGIS v.10.6 to examine their pattern of distribution and knowing if the crashes are clustered together
in few specific locations, are dispersed, or occurred randomly throughout the study area. The NNI is
one of the common indexes used to examine point patterns, and it is calculated using Equation (1) [65].
In the equation Dnnd is the average distance between each crash location and the nearest crash and
Dran is the distance that would be expected if the crashes were randomly distributed [65]:

NNI =
Dnnd

Dran
. (1)

where:

Dnnd =

∑n
i=1 di

n
and Dran = 0.5×

√
A
n

(2)

In the equations, n is the total number of crashes within the study area; di is the distance between
each crash location, and its nearest closest crashes location, and A is the total area for the study
(450 km2). The NNI value near 0 would indicate clustering, while a value close to 1 would suggest the
crashes are randomly distributed. An NNI value greater than 1 suggests that the crashes are spatially
dispersed. In this study, crash points that had NNI values less than 0.6 were considered to be clustered,
and the optimized hotspot analysis algorithm in ArcGIS was used to find the locations of the hotspots
for each of the concerned crash attribute categories. In this algorithm, a fishnet polygon formed by
cells of 250 m side length is created based on the number of crashes within each polygon. All the
hotspot areas were mapped with more than a 90% confidence level.

In the final step of the analysis, a geographically weighted regression (GWR) method was used
to examine the spatial relationships between the number of crashes (by per neighborhood and the
population within that neighborhood). The mathematical equation for GWR is given in Equation
(3) [50].

yi =
m∑

j−0

β j(ui, vi)xi j + εi (3)

where xij is the jth predictor variable (only population), βj(ui,vi) is the jth coefficient, (ui,vi) is the vector
form of x and y coordinates, and yi is the rate of the crash within each neighborhood. Finally, the εi is
the error term determined from the observed standardized score and the predicted score [66]. A fixed
kernel was used to conduct the GWR analysis, using the AICc (corrected Akaike Information Criterion)
to determine the optimal bandwidth parameter.

4. Results and Discussion

4.1. Temporal Distribution of Crashes

The temporal variations of the traffic crashes within the study area are shown in Figure 3.
Figure 3a shows the yearly fluctuations in the total number of crashes, injuries, and fatalities. A total
of 11,539 crashes were recorded, resulting in 806 deaths and over 6000 injuries. Close evaluation
of Figure 3a indicates that year 2012 witnessed the highest number of crashes, injuries, and traffic
casualties. This sharp increase in crash record stirred an immediate response from road safety



ISPRS Int. J. Geo-Inf. 2020, 9, 540 9 of 22

officials and concerned authorities. Various preventive measures such as revising the speed limits,
strictly enforcing traffic rules and regulations, and increasing traffic violation fines were implemented.
The steady decrease in the observed number of crashes in the following years may be attributed partly
due to the regression-to-mean (RTM) phenomenon and partly due to implemented interventions.
However, the proportion of injuries and deaths is well above the desired road safety targets in
the country.

In Figure 3b, the variation in mean monthly crashes for the entire study period is presented. It can
be observed that the summer months, including June, July, and August, carried the highest number
of crashes followed by November and December. The large proportion of accidents during summer
months may be attributed to a greater number of intracity trips during summer vacations as well as due
to tire failures due to extreme heat in months of summer in KSA [5,67,68]. The frequency distribution
of mean crashes among a different day of the weeks are plotted in Figure 3c. In KSA, Fridays and
Saturdays are considered the weekends. Since the residents usually stay at home to attend the Friday
noon prayers and spend the afternoon at home with friends and family, Friday has the lowest rate
of total crashes. However, the residents travel to supermarkets, restaurants, and medical facilities
during Saturdays. Therefore, Saturday has the highest rate of traffic crashes. During the weekdays,
the number of crashes is fairly consistent. Finally, Figure 3d shows the hourly fluctuations in average
daily traffic crashes. The distribution of hourly crash patterns is intuitive based on traffic exposure and
travel during the day.
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Figure 3. Temporal distribution of crashes in the study area (2009–2016): (a) crashes, injuries, and
fatalities versus time, (b) mean monthly crashes versus time, (c) mean weekday/weekend crashes
versus time, (d) mean hourly crashes versus time.

4.2. Crash Hotspot Analysis

The first objective of this study is to examine the presence of hotspots by crash severity, causes,
and types. It was done by assessing the NNI values for the crash incidences (Table 1). Since all the
crash attributes had NNI values less than 0.6, the hotspot analysis was performed for all the crash
severity, causes, and types.

4.2.1. Hotspot Analysis by Crash Severity

In Figure 4, the crash hotspot locations based on severity indices (i.e., property damage only (PDO)
or those involving fatal and injury (FI)) are shown. It is established that “not all crashes are equal”,
the extent of damage associated with the specific crash is dependent on several factors including urban
land use, features of the built environment, crash type, driver alertness, and response to the event,
road designs, vehicle characteristics, number of vehicles involved, the speed at the time of impact,
and many others. PDO crashes were prevalent in medium to high density residential and public
facility zones where permissible speed limits (<50 kmph) are relatively low, and traffic volumes are
significantly high. Since the drivers are usually more alert during such circumstances, the chances of
any significant injuries and casualties are low. On the other hand, the FI crashes were clustered on
routes having flexible driving speed limits in urban areas having low-to-medium population densities.
Apart from over-speeding, other factors such as driver distractions, fatigue driving, sudden lane
deviations, and crashes involving pedestrians were significant contributors to FI crashes.
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Table 1. Nearest neighbor index (NNI) values and the number of incidences within each hotspot zones.

Variables No. of
Incidences

Observed
Mean

Distance (m)

Mean/Expected
Random

Distance (m)
NNI Z-Value

# of Incidences
Within Hotspot

Zones

% of Incidences
Within the

Hotspot Zones

Crash Severity

FI 2706 102.9 203.95 0.50 −50.32 841 31.1

PDO 8833 48.52 112.85 0.43 −102.48 4700 53.2

Crash Types

Collisions 7902 48.72 119.31 0.41 −100.60 4210 53.3

Fixed object 1479 141.65 275.77 0.51 −35.78 254 17.2

Hit pedestrians 900 206.29 353.71 0.58 −23.91 174 19.3

Crash Causes

Driver
distraction 966 182.20 345.54 0.53 −27.76 293 30.3

Sudden lane
change 3211 82.52 187.22 0.44 −60.60 1410 43.9

Not giving way 2529 99.39 212.83 0.47 −58.84 962 38.0

Speeding 1920 118.13 243.63 0.49 −42.90 890 46.4

Sleeping 657 217.40 415.98 0.52 −23.29 131 19.9

Poor roadway 1430 141.78 282.64 0.50 −35.77 531 37.1

Traffic violations 786 212.58 375.90 0.56 −23.45 224 28.5

4.2.2. Hotspot Analysis by Crash Causes

In Figure 5, the distribution of hotspots by prevailing crash causes (i.e., driver distractions,
not giving way, over-speeding, poor roadway, driver fatigued or falling asleep behind the steering
wheel, and sudden lane deviations) is shown. Such crashes are mainly distributed along major and
minor urban residential streets. However, a high concentration of crashes occurred at congested major
intersections havinghigh population density in the surrounding areas. It is evident from the figure
that although the extent and spread of hotspot zones by crash causes are different, they have one main
common epicenter. This observation is intuitive because the epicenter for all crash categories is located
in the downtown or central business districts of the Dammam Metropolitan Area. Speeding has the
highest percentage (46.4%), followed by sudden lane change (43.9%). The distribution of crashes caused
by driver sleep/exhaustion has the lowest percentage (19.9%) of the hotspots (Table 1). Crashes caused
by traffic violations were another prevailing crash category that was mapped. These include violations
of traffic control devices (TCD) like traffic signals, stop signs, road markings, non-compliance with the
pedestrian crossings, and distractions caused by the use of mobile phones while driving. About 29% of
the total crashes in this class fall within the hotspot zones.

4.2.3. Hotspot Analysis by Crash Types

The distribution of hotspots by crash types are shown in Figure 6. It was found that crashes
between two or more modes of motorized transportations are the most predominant crash types
accounting for over 68% of the total crashes. A significant proportion of collisions were rear-end
crashes in the dilemma zones near the signalization intersections, which primarily resulted in non-fatal
crashes. Approximately 53% of the total collisions belonged to hotspots. The next prevailing type of
crash hotspot in this category was “hit fixed objects crashes” that included a collision with a pole,
tree, and parked vehicles, etc. Only 17% of fixed object crashes were marked as hotspots. Although
pedestrian crash hotspots constitute a low percentage (19.3%) of total crashes in this category, it resulted
in a high number of injuries and fatalities. Elderly pedestrians, in particular, were more prone to severe
crashes. In general, the patterns of crash hotspots by prevailing crash types (mapped in Figure 6) were
also concentrated in the metropolitan downtown area.
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4.3. GWR Analysis for Land Use Neighborhood Population and Crash Counts Severity, Causes, and Types

The second objective of this study was to examine the relationships between the total population
of each neighborhood (Figure 2) against the number of vehicle crashes based on their characteristics
(severity, causes, and types) occurring in that neighborhood during the study period. As discussed in
the methods section, such relationships were examined using the GWR analyses. The results of the
GWR analyses are shown in Figures 7–9. Each figure shows the standard deviations of the residuals
(SDR), indicating the neighborhoods where the model over- and under-predicted the value of the
dependent variable (crash characteristics). Neighborhoods with SDR values below −1.5 have crash
characteristics very low when compared to the population in those neighborhoods. On the other
hand, neighborhoods having the SDR value above 1.5 have value for crash characteristics that are
significantly very high when compared to the population in those neighborhoods. Neighborhoods
with SDR values between −0.5 and +0.5 have relatively proportional crash characteristics compared to
the neighborhood populations.
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4.3.1. GWR Analysis for Neighborhood Crash Severity

In Figure 7, the SDR values for the relationships between the population and the crash severities
(FI and PDO crashes) are presented. It can be seen that fatal and injury (FI) crashes are mainly located
in the neighborhoods with residential and mixed residential-commercial land uses where there are
relatively high population densities. These neighborhoods are subjected to frequent driving, and the
residents are exposed to high traffic while commuting for daily activities. A small proportion of FI
crashes also occurred in industrial/employment neighborhoods and zones. Commercial zones have
the lowest proportion of these crashes. Property damage only (PDO) crashes are mainly concentrated
in residential and industrial/employment land use zones with low population densities and with light
and/or slow-moving vehicles. The commercial zones and neighborhoods with public facilities zones
have a low share of PDO crashes.

4.3.2. GWR Analysis for Neighborhood Crash Causes

In Figure 8, the GWR analysis for population and predominant crash causes in the study area
are shown. It is evident from the figure that distractions, speeding, sleep/fatigue crashes have similar
patterns of association with densely populated neighborhoods in the residential areas. Crashes due to
sudden lane changes are also more prominent in residential and mixed commercial-residential areas.
A small percentage of crashes in residential and industrial/employment zones occurred due to poor
roadway and surface conditions.
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4.3.3. GWR Analysis for Neighborhood Crash Types

Figure 9 portrays the relationship between the population and the distribution of crashes by
prevailing crash types. The results show that collisions and hitting fixed objects are predominant
in residential neighborhoods with high population densities in the northwestern parts of the
study area. The streets are narrow in these areas. The relationship is weak with commercial,
mixed commercial-residential, and public facilities. Fixed object crashes have a high positive correlation
with sparsely built residential and industrial/employment zones. Mixed commercial-residential and
commercial areas in the southeast of the city also have a slight positive affinity with fixed object crashes.
Hit pedestrian crashes have a positive association with medium to highly dense residential land use
and mixed commercial-residential areas.
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5. Conclusions

This study aimed to examine the relationship between traffic crashes with urban population
density and land use in the context of the Dammam Metropolitan Area on the eastern coast of the
KSA. The GWR analysis was utilized to investigate spatial heterogeneity and non-stationarity of traffic
crashes. Crash hotspots and GWR based hazard maps for prevailing crash types, crash causes, and two
severity groups (FI and PDO) were developed at the zonal level in the study area. Three crash types
and seven predominant crash causes were found significant (>90%) for hotspots mapping. It was
found that hotspots for FI crashes were located in residential neighborhoods and near public facility
areas with low to medium population densities and along highways with relatively high travel speeds.
On the contrary, hotspots for PDO crashes were concentrated in residential and industrial/commercial
zones having medium to high-density populations. These areas had significantly high traffic volume
with low traveling speed limits. This distribution of hotspots based on crash severity is expected
since high population densities in these areas are accompanied by large traffic volumes and low travel
speeds, which reduces the chances of severe injuries and fatalities. This observation is consistent with
previous studies [27,39–41,69]. Lee and Khattak showed that severe crashes are more likely to occur on
the outskirts of the city, while low severity crashes are clustered together within the city [69].

Distribution of hotspots and GWR analysis for crash causes revealed that epicenters for crashes
considered in this category were located in the CBD of the study area. Crashes due to sudden lane
deviation constitute the highest proportion of observed crashes and are mostly located in the residential
and mixed commercial-residential areas. Fatigue driving mainly concentrated in medium-density
residential and commercial zones accounted for the lowest proportion of crashes in this category.
Industrial/employment zones had very few collisions (by all crash causes) when compared to their
population densities. Similar observations were also reported by previous studies [42,43]. Similarly,
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hotspots and GWR analysis by crash types resulted in similar patterns of crash distribution, with CBD
being the epicenter for all crash types. Vehicle collisions representing a significant proportion of total
crashes were found to be more predominant in high-density residential neighborhoods along with
narrow and congested links. However, commercial and public facility zones having low population
densities had fewer collisions. Fixed objects and hit pedestrian crashes were prevailing in commercial
and mixed commercial and residential areas with medium population densities. A study conducted by
Dai et al. reported that pedestrian crashes are clustered together on segments with a greater number of
public transit stops, and those located near dense households [70].

Knowledge gained from this study provides useful insights for a better understanding of
the complex interrelationship between traffic safety and land use. It can help officials and road
safety agencies to pinpoint the high-risk crash locations at the disaggregated level by specific crash
characteristics, i.e., crash cause, crash type, and/or crash severity. Such a detailed analysis could also
provide essential guidance to policymakers for better planning and management strategies, and efficient
use of appropriate resources to enhance the zonal-level safety. One of the drawbacks of the current
study is that it did not explicitly include land use in the GWR model. Unfortunately, the percentages
of land use within the individual neighborhood were not available, which may be considered in
future studies. Future studies could consider the detailed features of the built environment, such as
access management tools, pedestrian-oriented tools, and population sociodemographic for assessing
spatio-temporal variations of crashes. It would also be interesting to explore the effect of other policy,
social, and engineering factors such as police enforcement, traffic arrangements/volumes, infrastructure
design, etc., in forthcoming studies. Studies could also compare the performance of GWR with other
models such as Bayesian spatial models and ransom parameter model that also account for spatial
heterogeneity in identifying crash-prone locations. Finally, studies could focus on a detailed analysis
of hotspots for individual vulnerable road users (VRUs) groups such as pedestrians, motorcyclists, etc.,
in connection with features of the built environment.
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