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Abstract: The utilization of low-quality water or slightly saline water in sodic-saline soil is a major
global conundrum that severely impacts agricultural productivity and sustainability, particularly
in arid and semiarid regions with limited freshwater resources. Herein, we proposed an integrated
amendment strategy for sodic-saline soil using biochar and/or plant growth-promoting rhizobacteria
(PGPR; Azotobacter chroococcum SARS 10 and Pseudomonas koreensis MG209738) to alleviate the adverse
impacts of saline water on the growth, physiology, and productivity of maize (Zea mays L.), as well
as the soil properties and nutrient uptake during two successive seasons (2018 and 2019). Our
field experiments revealed that the combined application of PGPR and biochar (PGPR + biochar)
significantly improved the soil ecosystem and physicochemical properties and K+, Ca2

+, and Mg2
+

contents but reduced the soil exchangeable sodium percentage and Na+ content. Likewise, it
significantly increased the activity of soil urease (158.14 ± 2.37 and 165.51 ± 3.05 mg NH4

+ g−1

dry soil d−1) and dehydrogenase (117.89 ± 1.86 and 121.44 ± 1.00 mg TPF g−1 dry soil d−1) in
2018 and 2019, respectively, upon irrigation with saline water compared with non-treated control.
PGPR + biochar supplementation mitigated the hazardous impacts of saline water on maize plants
grown in sodic-saline soil better than biochar or PGPR individually (PGPR + biochar > biochar >
PGPR). The highest values of leaf area index, total chlorophyll, carotenoids, total soluble sugar (TSS),
relative water content, K+ and K+/Na+ of maize plants corresponded to PGPR + biochar treatment.
These findings could be guidelines for cultivating not only maize but other cereal crops particularly
in salt-affected soil and sodic-saline soil.
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1. Introduction

Field crops are constantly exposed to several abiotic stresses, including water scarcity,
soil salinity, and irrigation with poor-quality water; all of which can restrict crop pro-
ductivity by more than 50% and, eventually, threaten universal food security [1]. More
than 800 Mha of the world’s lands are saline soil, either by salinity (397 Mha) or sodicity
(434 Mha) [2]. The influences of salinity on yield constitute a further menace in arid and
semiarid zones owing to insufficient rainfall, high temperature, low water quality, and
poor soil management practices [3,4].

The situation is worse in sodic-saline soil where plants suffer from the limited avail-
ability of nutrients, water uptake shortage caused by high osmotic pressure, and ion toxicity
due to elevated Na+ and Cl− ions [5,6]. Another threat to plant performance in sodic-saline
soil is soil dispersion and the swelling of clay platelets and aggregates caused by high Na+

content [7]. Plant roots suffer from a severe shortage in soil aeration because the dispersed
clay particles plug soil pores causing poor ventilation [8,9].

Soil salinity/sodicity and water scarcity are major global conundrums that severely
impacts agricultural productivity and sustainability, particularly in arid and semiarid
regions [10] with limited freshwater resources. The utilization of low-quality water or
slightly saline water in these soils is a challenge to obtain adequate yield. Unfortunately,
recent statistics of global soil salinity are poorly and inadequately reported. For instance,
based on different data sources, salinity and sodicity have been reported to affect more
than 10% of the total arable land [11].

However, we believe that this percentage is not sufficiently accurate and is an out-
dated estimate [12] since the same report suggested that one billion hectares are covered
with saline and/or sodic soils and that between 25% and 30% of irrigated lands are salt-
affected [11]. About 25 years ago, saline soils were reported to occupied more than 20%
of the total irrigated area worldwide [13]. Thenceforth, the extent of saline soils has dra-
matically increased to potentially affect more than half of the irrigated lands in some
countries [14]. In Egypt, more than one-third of the total cultivated area in the Nile Delta
region, which represents approximately 64% of the total agricultural lands, is classified as
salt-affected soil [9].

It has been suggested that biochar application is a promising soil amendment ap-
proach to mitigate soil contamination via immobilizing heavy metals [15], improving the
overall soil quality [16,17], enhancing water-fertilizer productivity [16], and decreasing soil
salinity [18] in arid and semi-arid regions. Biochar can be produced from different sources
(well-reviewed by Guo et al. [15]). Common biochar feedstocks extend to forest debris,
crop residues, food processing waste, and manures [15,19].

Recent reports have demonstrated the potentiality of biochar to augment soil health
and plant productivity through improving soil water retention and the phytoavailability of
nutrients [20]. Biochar is a carbon-rich product formed by pyrolysis of cellulose-containing
biomass [21]. The cation exchange capacity of biochar depends on the pyrolysis treat-
ment [22]. Biochar is characterized by a high ash content, pH, and specific surface area [1].

Likewise, plant growth-promoting rhizobacteria (PGPR) can alleviate the hazardous
impacts of almost all biotic and abiotic stresses, particularly soil problems, such as salinity,
and strengthen the resistance of plants through several mechanisms, including enhancing
the solubilization of many minerals, biosynthesis of phytohormones, take-up of nutrients
and water, and scavenging of oxidants [23]. PGPR-produced phytohormones play a key
role in promoting the plant growth and the suppression of biotic and abiotic stress [24].
Most of the PGPR are reported to produce one or more compounds of auxins, particularly
indole acetic acid (IAA) [25,26], cytokinins [27], gibberellins [28,29], abscisic acid (ABA) [30],
and ethylene [31].

PGPR-derived phytohormones within the vicinity of root promote elongation of
primary roots, as well as proliferation of lateral and adventitious roots [24]. Moreover,
this increases the root surface area, which enhances the uptake capacity of roots from a
large volume of soil and improve the absorbance of water, minerals, and nutrition [24].
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Furthermore, PGPR-derived phytohormones enhance the plant survival via strengthening
its anchorage capacity [24]. Finally, PGPR-produced phytohormones might enhance the
tolerance of plants to adverse abiotic stress. For example, the application of ABA-producing
PGPR induced endogenous ABA levels that reduced the harmful effects of drought, salinity,
and temperature on treated plants [32].

Maize (Zea mays L.) is one of the most important cereals worldwide. It is known as a
moderately sensitive crop to salinity up to 1.7 dS m−1 of electrical conductivity (ECe) of
soil saturated paste. Its yield is reduced by 12% for each increase of 1 dS−1 m−1 of ECe [33].
Maize is an imperative plant in the temperate climatic zone along with the semi-arid zone
owing to the massive need for food and livestock feed. In Mediterranean zones, maize
production relies greatly on irrigation. In such areas, where freshwater resources are
limited, irrigation with low-quality water, such as saline water, is common. Therefore, it
could be very imperative to improve irrigation management [34].

To our knowledge, there are few studies that have been conducted on the integrated
effect of biochar and PGPR on the growth and physiology of maize under saline water
irrigation in sodic-saline soil. In light of these considerations, a field experiment was
performed with the following objectives: (a) to determine the integrated effect of biochar
and PGPR in mitigating salinity resulting from saline water irrigation and sodic-saline soil
to improve the growth, crop physiological processes, and yield of maize and (b) to assess
the improvement in soil physicochemical properties due to the application of biochar and
PGPR added singly or in combination.

2. Results
2.1. Biochar and PGBP Application Improved the Soil Ecosystem
2.1.1. Soil Physicochemical Properties

Although the utilization of saline water to irrigate maize plants in sodic-saline soil sig-
nificantly increased the soil pH compared to freshwater (pWater < 0.0001) in both seasons 2018
(Figure S1A) and 2019 (Figure 1A), the application of PGPR, biochar, or their combination
significantly enhanced the soil acidity through declining the soil pH (pTreatment < 0.0001). The
PGPR + biochar treatment had the lowest pH in both growth seasons 2018
(pWater × Treatment = 0.0357) and 2019 (pWater × Treatment = 0.0353) (Figures S1A and 1A, re-
spectively) when maize plants were irrigated with freshwater or saline water.

Likewise, irrigating maize plants with saline water considerably increased the EC
compared to freshwater (pWater < 0.0001) in 2018 (Figure S1B) and 2019 (Figure 1B). Nev-
ertheless, the utilization of PGPR and biochar singularly or in combination significantly
reduced the EC regardless of the type of irrigation water (pTreatment < 0.0001). PGPR +
biochar-treated soil had the lowest EC under both types of irrigation water in both seasons
2018 and 2019 (pWater × Treatment < 0.0001 in both seasons). Interestingly, EC values after
treating soils that received saline water with PGPR + biochar were comparable and even
significantly lower than those of control plants irrigated with freshwater during 2018 and
2019 (Figure S1B and Figure 1B, respectively).

Like pH and EC, both soil ESP (Figure S1C and Figure 1C in 2018 and 2019, respec-
tively) and SAR (Figure S1D and Figure 1D in 2018 and 2019, respectively) exhibited a simi-
lar response. Although the utilization of saline water to irrigate maize plants significantly
increased the soil ESP and SAR compared to freshwater (pWater < 0.0001), PGPR and/or
biochar application significantly reduced both ESP and SAR when fresh or saline water
was used. Saline soil that received PGPR + biochar and irrigated with freshwater had the
lowest ESP (pWater × Treatment < 0.0001 in both seasons) and SAR (pWater × Treatment = 0.0137
and 0.0129 in 2018 and 2019, respectively) compared with all other treatments. It is worth
mentioning that there are no significant differences between the singular treatment of
PGPR and biochar in terms of EPS in 2019 (Figure 1C) and SAR in 2018 (Figure S1D).
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Figure 1. The soil chemical properties at harvest time of maize plants growing in sodic-saline soil and irrigated with fresh
and saline water after the application of biochar and PGPR during the 2019 season. Data presented are the means± standard
deviation (mean ± SD) of three biological replicates. Presented pairwise differences connecting letters (significance letters)
were generated based on the p-value of the interaction between water type (as the main plots) and treatments (as subplots)
that were mentioned as (pWater × Treatment). Means followed by different letters indicate statistically significant differences
among treatments according to Tukey’s honestly significant difference (HSD) test (p ≤ 0.05), whereas means followed by
the same letters indicate no statistically significant differences among them. EC: Electrical conductivity; SAR: Sodium
adsorption ratio. mEq L−1: milliequivalents per liter.
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Similar results were noticed in the concentrations of soil Na+ content. Irrigation with
saline water significantly increased the soil Na+ compared with freshwater (pWater < 0.0001).
However, the application of PGPR and/ or biochar significantly reduced the soil Na+

content (pTreatment < 0.0001) with a greater effect of PGPR + biochar treatment in both
2018 (Figure S1E) and 2019 seasons (Figure 1E). On the other hand, an opposite effect
was noticed for the concentrations of other soil cations, included K+ (Figures S1F and 1F),
Ca2+ (Figures S1G and 1G), and Mg2+ (Figures S1H and 1H) in 2018 and 2019, respectively.
Although saline water usage significantly decreased soil content of K+, Ca2+, and Mg2+

(pWater < 0.0001 for all cations in both seasons), the levels of these cations markedly increased
upon the treatment with PGPR and/or biochar regardless of the type of irrigation water.

2.1.2. Activity of Soil Enzymes

The activity of soil urease (mg NH4
+ g−1 dry soil d−1) and dehydrogenase (mg TPF g−1

dry soil d−1) enzymes was significantly reduced after using saline water to irrigate maize
plants growing in sodic-saline soil during 2018 (Table S1) and 2019 (Table 1). Nevertheless,
the application of PGBP and/or biochar considerably alleviated the negative effect of
saline water on the activity of soil enzymes. For instance, in freshwater-irrigated soil,
the application of PGPR + biochar together significantly increased the activity of urease
(220.15 ± 2.41 and 229.32 ± 3.51 mg NH4

+ g−1 dry soil d−1 in 2018 and 2019, respectively)
and dehydrogenase (146.78 ± 4.07 and 156.14 ± 3.34 mg TPF g−1 dry soil d−1 in 2018 and
2019, respectively) compared with non-treated controls.

Table 1. The activity of soil dehydrogenase and urease enzymes and count of some microbial groups at 80 days after seed
sowing of maize plants irrigated with fresh and saline water in sodic-saline soil after the application of biochar and PGPB
during the 2019 season §.

Treatment
Urease

(mg NH4
+ g−1

Dry Soil d−1)

Dehydrogenase
(mg TPF g−1

Dry Soil d−1)

Bacteria
(Log cfu g−1

Soil)

Azotobacter
(Log cfu g−1

Soil)

Bacillus spp.
(Log cfu g−1

Soil)

Fresh water

Control 128.86 ± 3.60 d 64.01 ± 1.52 e 3.44 ± 0.05 e 0.93 ± 0.01 g 1.74 ± 0.02 e
PGPB † 165.26 ± 2.65 c 95.85 ± 1.60 c 4.23 ± 0.06 d 1.11 ± 0.01 f 2.14 ± 0.10 d

Biochar ‡ 187.38 ± 2.16 b 115.97 ± 1.79 b 5.82 ± 0.07 b 1.63 ± 0.01 c 3.13 ± 0.03 b
PGPR + biochar

¥ 229.32 ± 3.51 a 156.14 ± 3.34 b 6.02 ± 0.07 a 2.13 ± 0.01 a 3.75 ± 0.04 a

Saline water

Control 99.29 ± 2.10 e 49.92 ± 2.41 f 2.35 ± 0.04 f 0.63 ± 0.02 h 1.07 ± 0.02 f
PGPB 121.39 ± 3.57 d 80.65 ± 2.65 d 3.45 ± 0.05 e 1.23 ± 0.02 e 1.75 ± 0.02 e

Biochar 127.66 ± 2.66 d 94.22 ± 1.64 c 3.54 ± 0.05 e 1.39 ± 0.01 d 1.85 ± 0.03 e
PGPR + biochar 165.51 ± 3.05 c 121.44 ± 1.00 a 5.25 ± 0.04 c 1.89 ± 0.01 b 2.95 ± 0.03 c

F-test
pWater <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

pTreatment <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
pWater × Treatment <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

§ Data presented are the means ± standard deviation (mean ± SD) of three biological replicates. Presented pairwise differences connecting
letters (significance letters) were generated based on the p-value of the interaction between water type (as the main plots) and treatments (as
subplots) that were mentioned as (pWater × Treatment). Means followed by different letters indicate statistically significant differences among
treatments according to Tukey’s honestly significant difference (HSD) test (p ≤ 0.05), whereas means followed by the same letters indicate
no statistically significant differences among them. † PGPB (Azotobacter chroococcum SARS 10 and Pseudomonas koreensis MG209738) added
at a 1:1 ratio ‡ Biochar is added at the rate of 1.0 kg m−2 (10 ton ha−1). ¥ PGPB at a 1:1 ratio + Biochar at the rate of 1.0 kg m−2 (10 ton ha−1).

Likewise, the activities of urease (158.14± 2.37 and 165.51± 3.05 mg NH4
+ g−1 dry soil

d−1 in 2018 and 2019, respectively) and dehydrogenase (117.89± 1.86 and 121.44 ± 1.00 mg
TPF g−1 dry soil d−1 in 2018 and 2019, respectively) were significantly induced by dual
application of PGPR + biochar to saline water-irrigated soils compared with non-treated
control (Tables S1 and 1). The singular application of biochar showed a higher positive
impact on the enzymatic activity of both urease and dehydrogenase enzymes compared
with singular PGPR application (Tables S1 and 1).
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2.1.3. Bacteriological Characteristics

Soil microbiota structure significantly reduced under saline water irrigation (Tables S1 and 1)
compared to freshwater irrigation during the two growing seasons. There was a significant
interaction between the type of irrigation water and soil amendments in the 2018 and 2019
seasons (pWater × Treatment < 0.0001 in both seasons) in terms of the total counts of bacteria,
Azotobacter sp., and Bacillus spp. Briefly, the soil microbial population was significantly
reduced at 80 days post-seed sowing differed significantly with regard to soil amendments
and irrigation water during 2018 and 2019.

The utilization of saline water to irrigate maize plants significantly affected the total
counts of bacteria (1.54 ± 0.05 and 2.35 ± 0.04 Log cfu g−1), Azotobacter sp. (0.62 ± 0.03
and 0.63 ± 0.02 Log cfu g−1), and Bacillus spp. (1.02 ± 0.01 and 1.07 ± 0.02 Log cfu g−1)
compared with non-treated freshwater irrigated soil during 2018 (Table S1) and 2019
(Table 1), respectively. However, the dual application of PGPR and biochar to freshwater-
irrigated significantly enhanced the total counts of bacteria (5.87± 0.10 and 6.02± 0.07 Log
cfu g−1), Azotobacter sp. (2.12 ± 0.02 and 2.13 ± 0.01 Log cfu g−1), and Bacillus spp.
(3.71 ± 0.04 and 3.75 ± 0.04 Log cfu g−1) during 2018 and 2019, respectively, compared
with non-treated soil.

Likewise, in saline water-irrigated soil, the combined application of PGPR and biochar
significantly increased the total counts of bacteria (3.27 ± 0.08 and 5.25 ± 0.04 Log cfu g−1),
Azotobacter sp. (1.85 ± 0.03 and 1.89 ± 0.01 Log cfu g−1), and Bacillus spp. (2.85 ± 0.04 and
2.95 ± 0.03 Log cfu g−1) during 2018 and 2019, respectively, compared with non-treated
soil. Generally, the combined application of PGPR and biochar significantly increased the
total counts of common soil microbial groups followed by singular application of biochar
in both seasons regardless of the type of irrigation water (Tables S1 and 1).

2.2. Soil Amendment Using Biochar and PGPR Enhanced Maize Performance and Resilience to
Water Salinity
2.2.1. Leaf Area Index and Photosynthetic Pigments

Generally, the Leaf area index (LAI) of maize leaves significantly decreased
(pWater < 0.0001) when plants were irrigated with saline water during 2018 (Figure S2A)
and 2019 (Figure 2A). These subsequent negative effects were significantly diminished
upon treating maize plants with PGPR and/or biochar. Plants irrigated with saline
water and treated with PGPR + biochar had slightly higher LAI than control plants ir-
rigated with freshwater during 2018 (pWater × Treatment = 0.0075; Figure S2A) and 2019
(pWater × Treatment = 0.0412; Figure 2A). Interestingly, although the singular application
of PGPR and biochar differed significantly during 2018, no significant differences were
observed between them in 2019.

Similar to LAI, the endogenous content of photosynthetic pigments (total chloro-
phyll and carotenoids) significantly reduced under irrigation with saline water compared
to irrigation with freshwater in sodic-saline soil during 2018 (Figures S2B and 2B) and
2019 (Figures S2C and 2C). For example, the lowest chlorophyll and carotenoids content
were obtained from control plants irrigated with saline water in both growing seasons.
However, the negative effects of irrigation with saline water on photosynthetic pigments
were significantly lessened when maize plants were treated with the PGPR, biochar, or
their combination.

Under both types of irrigation water, PGPR + biochar application increased the total
chlorophyll and carotenoids content compared to non-treated control plants
(pWater × Treatment < 0.0001 for both variables in both seasons). Yet, no significant differences
were observed nither in the total chlorophyll content between biochar and PGPR + biochar
in 2018 (Figure S2B) nor total carotenoid content between PGPR and biochar treatments in
2019 (Figure 2C).
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Figure 2. Leaf area index, photosynthetic pigments, and biochemical traits and of maize plants growing in sodic-saline
soil and irrigated with fresh and saline water after the application of biochar and PGPR during the 2019 season. Data
presented are the means ± standard deviation (mean ± SD) of three biological replicates. Presented pairwise differences
connecting letters (significance letters) were generated based on the p-value of the interaction between water type (as the
main plots) and treatments (as subplots) that were mentioned as (pWater × Treatment). Means followed by different letters
indicate statistically significant differences among treatments according to Tukey’s honestly significant difference (HSD) test
(p ≤ 0.05), whereas means followed by the same letters indicate no statistically significant differences among them. TSS:
Total soluble sugar.

2.2.2. Total Soluble Sugars (TSS), Proline, and Relative Water Content (RWC)

Even though non-treated control plants severely suffered from saline water irrigation
recording the lowest soluble sugars (TSS) content in both seasons (Figures S2D and 2D), the
application of PGPR and/or biochar dramatically increased TSS in maize plants irrigated
with both types of irrigation water (pTreatment < 0.0001 in both seasons). Moreover, saline
water-irrigated plants that received PGPR + biochar had significantly higher TSS content
than plants irrigated with freshwater without biochar and PGPR application during the
2018 and 2019 seasons (pWater × Treatment < 0.0001 in both seasons). The singular application
of biochar displayed the second inductive effect on TSS under either fresh or saline water
supply followed by PGPR by itself.
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On the other hand, the endogenous proline content was significantly increased in
non-treated plants as a response to saline water irrigation (pWater < 0.0001) during 2018
(Figure S2E) and 2019 (Figure 2E). The results revealed that the plants irrigated with saline
water and treated with PGPR + biochar possessed lower proline content than in the case
of the individual application of PGPR or biochar during 2018 and 2019. Furthermore,
the plants irrigated with freshwater in the presence of PGPR + biochar showed a further
reduction in proline content compared with irrigation with saline water during 2018 and
2019 (pWater × Treatment < 0.0001 in both seasons).

The RWC of maize leaves significantly declined upon irrigation with saline water
compared to freshwater (pWater < 0.0001 in both seasons) during the two growing seasons
2018 and 2019 (Figure S2F and Figure 2F, respectively). However, the negative effects of irri-
gation with saline water were significantly alleviated when maize plants were treated with
PGPR, biochar, or their combination (pTreatment < 0.0001 in both seasons). It is worth men-
tioning that, under freshwater irrigation conditions, all treatment (PGPR, biochar, and their
combinations) significantly enhanced the RWC without significant differences between
them. However, more significant differences were observed between the three treatments
and control when maize plants were irrigated with saline water (pWater × Treatment < 0.0001
and 0.0002 in 2018 and 2019, respectively).

2.2.3. The Leaf Content of Na+, K+, and K+/Na+

The leaf Na+ content was notably increased when plants were irrigated with saline
water in the absence of PGPR and/or biochar (Figures S3A and 3A during 2018 and 2019,
respectively). On the contrary, the K+ content (Figures S3B and 3B during 2018 and 2019,
respectively) and K+/Na+ ratio (Figures S3C and 3C during 2018 and 2019, respectively)
in maize leaves significantly declined upon irrigation with saline water. Interestingly, the
application of PGPR and/or biochar significantly influenced the Na+, K+, and K+/Na+

in the leaves (pTreatment < 0.0001 for the three variables in both seasons). Soil amendment
using biochar and/or PGPR significantly reduced the Na+ content and increased K+ which
resulted in a higher K+/Na+.

Under both types of irrigation water, the dual application of PGPR + biochar was the
best followed by the singular application of biochar and lastly PGPR. For instance, the
lowest Na+ content (pWater × Treatment < 0.0001 and 0.0022 in 2018 and 2019, respectively)
and the highest K+ content (pWater × Treatment < 0.0001 in both seasons) and K+/Na+ ratio
(pWater × Treatment < 0.0001 in both seasons) were detected in plants treated with biochar +
PGPR upon their irrigation with either fresh or saline water compared to the sole applica-
tion or control.

2.2.4. The NPK Content of Maize Grains

Irrigation maize plants with saline water in sodic-saline soil significantly declined
the N (Figures S3D and 3D), P (Figures S3E and 3E), and K content in maize grains
(Figures S3F and 3F) in 2018 and 2019, respectively. However, the negative effects of saline
water were significantly alleviated when maize plants were treated with biochar, PGPR,
or their combination. PGPR and biochar application significantly induced the NPK in
maize grains regardless of the type of irrigation water. Additionally, the highest N, P, and
K contents were attained from plants treated with PGPR + biochar when irrigated with
either fresh or saline water in sodic-saline soil during 2018 and 2019.
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Figure 3. The leaf content of Na+ and K+, K+/Na+ ratio, and the NPK content of grains of maize plants growing in sodic-
saline soil and irrigated with fresh and saline water after the application of biochar and PGPR during the 2019 season. Data
presented are the means ± standard deviation (mean ± SD) of three biological replicates. Presented pairwise differences
connecting letters (significance letters) were generated based on the p-value of the interaction between water type (as the
main plots) and treatments (as subplots) that were mentioned as (pWater × Treatment). Means followed by different letters
indicate statistically significant differences among treatments according to Tukey’s honestly significant difference (HSD) test
(p ≤ 0.05), whereas means followed by the same letters indicate no statistically significant differences among them.

2.2.5. Yield and Yield Components of Maize

In the absence of PGPR and/or biochar treatments, the maize yield and its components,
including the number of grains per ear, 100-grain weight (g), grain yield (ton/ha), stover
yield (ton/ha), and harvest index (%), was significantly decreased upon irrigation with
saline water compared to freshwater during 2018 (Table S2) and 2019 (Table 2) seasons.
However, these negative effects of saline water were significantly attenuated when maize
plants were treated with biochar, PGPR, or their combination.
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Table 2. The yield and yield components of maize plants irrigated with fresh and saline water in sodic-saline soil in the
presence of biochar and PGPB during the 2019 season §.

Treatment Number of
Grains Ear−1

100-Grain
Weight (g)

Grain Yield
(ton/ha)

Stover Yield
(ton/ha)

Harvest Index
(%)

Fresh water

Control 425.27 ± 1.6 d 30.45 ± 0.49 c 4.55 ± 0.04 e 8.86 ± 0.06 e 33.95 ± 0.15 d
PGPB † 436.69 ± 0.9 b 32.30 ± 0.32 b 5.22 ± 0.03 c 9.76 ± 0.07 c 34.87 ± 0.26 cd

Biochar ‡ 437.94 ± 0.9 b 33.55 ± 0.47 b 5.43 ± 0.03 b 9.92 ± 0.04 b 35.36 ± 0.66 bc
PGPR + biochar

¥ 446.63 ± 0.9 a 35.77 ± 0.96 a 5.95 ± 0.02 a 10.29 ± 0.04 a 36.66 ± 0.14 a

Saline water

Control 408.83 ± 0.62 f 23.38 ± 0.67 e 4.3 ± 0.05 f 8.43 ± 0.07 f 33.79 ± 0.29 d
PGPB 421.45 ± 1.25 e 27.13 ± 0.78 d 4.63 ± 0.06 e 8.87 ± 0.04 e 34.32 ± 0.37 cd

Biochar 424.84 ± 0.82 d 28.32 ± 0.67 d 4.76 ± 0.04 d 8.95 ± 0.03 e 34.70 ± 0.21 cd
PGPR + biochar 429.65 ± 0.71 c 32.72 ± 0.31 b 5.26 ± 0.02 c 9.36 ± 0.08 d 35.97 ± 0.63 ab

F-test
pWater <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

pTreatment <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
pWater × Treatment =0.0196 =0.0004 <0.0001 <0.0001 =0.0310

§ Data presented are the means ± standard deviation (mean ± SD) of three biological replicates. Presented pairwise differences connecting
letters (significance letters) were generated based on the p-value of the interaction between water type (as the main plots) and treatments (as
subplots) that were mentioned as (pWater × Treatment). Means followed by different letters indicate statistically significant differences among
treatments according to Tukey’s honestly significant difference (HSD) test (p ≤ 0.05), whereas means followed by the same letters indicate
no statistically significant differences among them. † PGPB (Azotobacter chroococcum SARS 10 and Pseudomonas koreensis MG209738) added
at a 1:1 ratio ‡ Biochar is added at the rate of 1.0 kg m−2 (10 ton ha−1). ¥ PGPB at a 1:1 ratio + Biochar at the rate of 1.0 kg m−2 (10 ton ha−1).

During the 2018 season, the highest grains per ear, 100-grain weight, grain yield, and
stover yield corresponded to plants treated with the PGPR + biochar and irrigated with
freshwater during 2018 (Table S2) and 2019 (Table 2) seasons. Interestingly, during the
2018 season, the highest harvest index was recorded by saline water-irrigated plants when
treated with PGPR + biochar (36.22 ± 0.27%) followed by freshwater-irrigated plants when
treated with biochar only (36.14 ± 0.47%), with no significant differences between them.

However, during the 2019 season, PGPR + biochar-treated plants had the highest har-
vest index when irrigated with freshwater (36.66 ± 0.14%) or saline water (35.97 ± 0.63%).
In other words, no significant differences in HI between plants irrigated with either fresh
or salty water when PGPR + biochar treatment was applied in both seasons. These results
revealed that the application of PGPR and/or biochar could substantially mitigate the
adverse impacts of irrigating maize plants using saline water in sodic-saline soil.

3. Discussion

The increase in the world’s population and high demand for better nutritional and
commercial quality foods are driving us towards optimizing the use of our natural resources
to ensure food safety and security. In the current study, we aimed to underline the potential
application of PGPR and/or biochar as a sustainable eco-friendly strategy to improve
the resilience of maize plants grown in a sodic-saline soil and irrigated with saline water.
It was reported previously that the reduction in plant growth occurs when salts exist
at a sufficiently high content in the root zone; that directly and indirectly, injure plant
tissues [35].

The osmotic effect of salinity impairs plant growth due to the shortage in water uptake.
Furthermore, upon salinity exposure plants experience ion toxicity of the increased uptake
and accumulation of Na+ and Cl- in plant tissues [10,36,37]. Moreover, elevated Na+ and Cl-

concentrations in soil solution antagonistically inhibit the uptake of essential nutrients, such
as K+, Ca2+, Mg2+, and NO3

-, disrupting cell ion homeostasis and inhibiting photosynthesis,
enzyme activity, and protein synthesis, destroying chloroplasts, and causing nutritional
disorders [10,36,37].

In higher plants, salinity stress usually slows the photosynthesis rate due to the lack
of CO2 availability, degradation of photosynthetic pigments, and reduced leaf area [10,38].
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As a response, stressed plants reduce their water loss via decreasing their stomatal con-
ductance, which consequently limits CO2 diffusion [39]. Moreover, Marcelis and Van
Hooijdonk attributed an 80% reduction in radish growth to the decrease in leaf area that
diminishes light interception, while the other 20% was ascribed to a decline in stomatal
conductance [40].

Nevertheless, the application of PGPR and/or biochar significantly induced plant
performance in sodic-saline soil. Despite the fact that the singular application of PGPR or
biochar substantially improved plant growth under both fresh and saline water irrigation,
the combined application of PGPR + biochar resulted in the highest improvement in soil
properties and, consequently, the growth and productivity of maize. The positive effect of
PGPR application on soil physicochemical properties may be attributed to the enhancement
in soil structure and soil particulates due to the excreted polysaccharides from microbial
cells [41].

Consequently, an improvement in the soil water holding capacity, porosity, aeration,
and infiltration occurs. This would facilitate easy penetration of plant roots to deeper soil
profiles to reach the subsurface layer that could be less saline. The synergistic effect of PGPR
and biochar on soil biota and their activities is due to a further biostimulation effect [41]
that increases the activity of soil microbes in the rhizosphere. This eventually results in the
better growth of maize. The higher activities of soil enzymes, owing to biochar application
as well as PGPR, could be explained by the contribution of biochar to enhance soil nutrient
availability, physicochemical traits, and the interaction with extracellular soil enzymes.

The relationship between soil pH and ESP has been proven previously. Briefly, high
Na+ concentration inhibits the uptake of other elements, such as Ca2+, K+, and other
cations, directly via antagonism or indirectly. The direct inhibition of cations by high Na+

levels might be due to the antagonistic relationship between them. On the other hand,
high Na+ levels indirectly inhibit cations uptake via increasing soil pH that reduces the
phytoavailability of most nutrients.

However, the generation of stable soil aggregates by either binding ions, such as Ca2+

and Mg2+ or the excreted polysaccharides from soil microbes would be the first step in
reclaiming this soil and supporting plant growth. In the present study, the application of
PGPR + biochar significantly lowered the ESP and Na+ and, on the other hand, increased
the concentrations of K+, Ca2+, and Mg2+ in soil solution [4,42].

As a result of its richness in many nutrients, i.e., K+, Ca2+, and Mg2+ in addition to
N and P, biochar has the potential to alter the composition of soil solution; consequently,
it affects the soil structure. The high content of Ca2+ and Mg2+ in the soil solution allows
the substitution of Na+ on the surface of soil aggregates leading to a higher rate of Na+

leaching and, therefore, soil salinity decreases [43]. Therefore, an improvement in soil
physical properties occurred resulting in better development of maize plants in sodic-saline
soil irrigated with saline water.

The PGPR + biochar treatment increased the content of total chlorophyll, carotenoids,
and TSS and decreased the proline content; moreover, it enhanced the RWC and LAI. The
positive effect of PGPR + biochar is attributed to maintaining water uptake and alleviating
the imbalanced nutrients. The addition of biochar improves the nutrient balance in soil
solution through discharging the mineral nutrients, especially K+, Ca2+, and Mg2+. On
the other hand, it decreases Na+ uptake, augmenting the K+/Na+ ratio [44]. Likewise,
PGPR possibly diminished the absorption of Na+ by plant roots through the excretion of
indol-3-acetic acid (IAA) and bacterial exopolysaccharides, which can bind to Na+ and
lessen its uptake and accumulation in plant tissues [45].

The total chlorophyll, carotenoids, and TSS are considered suitable indicators for plant
health under irrigation with saline water and salt-affected soil [46]. The reduction in the
content of total chlorophyll, carotenoids, and TSS under salinity stress is mostly triggered
by chloroplast impairments, which cause physiological changes leading to a reduction in
plant development and productivity [46]. However, the application of PGPR + biochar
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increased the total chlorophyll, carotenoids, and TSS. This depends on the adequate supply
of nutrients under such abiotic stress, especially N.

The proper N content in plant leaves is essential for better plant development; it also
expands the leaf area for higher light interception leading to higher rates of photosynthe-
sis [47]. The RWC is a vital tool that is directly connected to soil water status and potential
productivity [48]. Salinity stress decreases water productivity by reducing the RWC as a
result of soil osmotic pressure that impairs water uptake [10]. In the present study, the
reduction in RWC was accompanied by an increase in proline content and a decrease in
photosynthesis, nutritional balance, and grain yield [48].

The stimulatory effects of PGPR can be improved more by the addition of biochar [49].
This perhaps is a result of the high water holding capacity of biochar [50]. For instance,
Ahmad et al. reported that the combined application of biochar and PGPR enhanced soil
moisture content; this could cause a dilution impact on the soil solution decreasing its
osmotic pressure [51]. Thus, decreasing osmotic stress helps plants to avoid losing turgor
under saline water irrigation in sodic-saline soil resulting in an increase of RWC [52,53]. It
has been affirmed that proline content is adversely linked with RWC under saline water
irrigation and soil salinity [52].

In the present study, treatment with PGPR + biochar under freshwater irrigation
resulted in the highest N, P, and K uptake by maize plants. Regarding the type of irrigation
water, saline water was on par with freshwater under sodic-saline soil conditions. Briefly,
the performance of saline water-irrigated maize plants that received PGPR + biochar
application was comparable to the performance of those non-treated freshwater-irrigated
ones in both seasons. Similar results were reported by Hafez et al. [54]. The results
obtained from the present experiment showed that the synergistic use of biochar and
PGPR increased N, P, and K uptake substantially more than the singular application of
any of them. Akhtar et al. [47] reported that biochar and PGPR had a crucial impact
on the formation and stabilization of soil aggregates under saline water irrigation and
salt-affected soil.

The highest grain yield (5.8 ± 0.01 ton/ha) and stover yield (10.47 ± 0.11 ton/ha),
in the present study, corresponded to plants irrigated with freshwater in presence of
PGPR + biochar. The productivity of maize depends mainly on yield components like the
number of grain ear−1 and 100-grain weight. Freshwater promoted LAI and plant growth;
conversely, saline water declined yield-related traits, thus, limiting crop productivity [55,56].
The reduced crop yield upon irrigation due to saline water may be ascribed to the decline
in LAI, TSS, RWC, and total chlorophyll, which may eventually result in a decrease of the
photosynthesis rate and reduced grain yield and harvest index [51,57].

The synergistic application of PGPR and biochar had a highly positive effect on
physiological traits, plant growth, and yield-related traits in comparison to sole application
and control treatment. The improvement in plant development might be attributed to the
biosynthesis of phytohormones, like IAA, which could essentially be linked to the yield and
its components [58], increasing nutrients [48,59,60], the activity of 1-aminocyclopropane-
1-carboxylate (ACC) deaminase, and osmolyte production [41,61]. Our findings showed
that singular application of biochar significantly enhanced the growth, physiology, and
productivity of maize compared with PGPR and non-treated control.

In conclusion, PGPR + biochar significantly improved the soil physical, chemical, and
biological properties. PGPR can improve soil physical properties, such as the soil structure,
porosity, aeration, and infiltrations, as a result of the enhancement of soil aggregates due
to the excreted polysaccharides. They enhanced K+ uptake while reduced Na+ leading
to a higher K+/Na+ ratio. Under salinity stress plants suffer from osmotic pressure and
imbalanced nutrients that have adverse impacts on plant performance, such as photosyn-
thesis, protein synthesis, enzyme activity, and water productivity. Thus, the application of
biochar, which has a high water-holding capacity, can dilute the soil solution resulting in
lower osmotic stress and consequently enhance the nutrient and water uptake.
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4. Materials and Methods
4.1. Source of PGPR and Growth Conditions

In the present study, two presumptive strains of Azotobacter chroococcum SARS 10 and
Pseudomonas koreensis MG209738 were used. They were previously selected based on their
potential as PGPR in a laboratory experiment to produce indole-3-acetic acid (IAA) and
for phosphate solubilization as well as ameliorating the seed germination and growth of
rice (Oryza sativa) under elevated salinity stresses [54]. These strains were provided by the
Department of Agricultural Microbiology, Soils, Water and Environment Research Institute
(SWERI), Agricultural Research Centre (ARC), Egypt. Jensen’s Medium was used for
growing A. chroococcum [62], and King’s B broth medium was used to grow P. koreensis [63].
PGPR strains were prepared by adding 15 mL of 108 CFU mL−1 from fresh cultures of A.
chroococcum SARS 10 and P. koreensis MG209738 to 30 g of sterilized peat moss:vermiculite
(1:1) carrier and kept in the fridge for further use.

4.2. Biochar Characterization

Biochar was prepared from rice husks and corn stalks at ratio 1:1 by slow pyroly-
sis in absence of oxygen at 350 ◦C for 3 h (International Biochar Initiative, 2014). The
physicochemical properties of produced biochar were previously reported [54]. Before
its application, prepared biochar was powdered in a stainless steel grinder and passed
through ~2 mm mesh to remove large particles. One week before transplanting and during
the tillage process, biochar was broadcasted to each plot and mixed thoroughly with the
surface layer of soil (0–20 cm depth) at a rate of 1.0 kg biochar m−2, which is equiva-
lent to 10 ton ha−1. Neither the control treatment nor the individual PGPR treatment
received biochar.

4.3. Field Experiments and Growth Conditions
4.3.1. Location and Treatments

Two field experiments were set up at the Sakha Agricultural Research Station (SARS)
Farm, Kafr El-Sheikh, Egypt (Latitude: 31◦6′ N and Longitude: 30◦56′ E) during two
consecutive summer growing seasons of 2018 and 2019 to study the impact of inocula-
tion with PGPR (i.e., A. chroococcum SARS 10 and P. koreensis MG209738) and/or biochar
application under two types of irrigation water (i.e., freshwater and saline water) on the
growth, physicochemical properties, soil enzymes, physiological traits, and yield of maize
(Zea mays L., cv. Hybrid 10) in sodic-saline soil.

Each experimental unit (3 × 4 m) consisted of five ridges 4 m in length and 60 cm
apart; the grains were planted at a rate of two to three grains per hole with 20 cm spacing
in between, and the space between replications was 1 m. Grains of maize were provided
by the Maize Research Department, Sakha, Kafr El-Sheikh, Egypt. The seeding rate was
30 kg ha−1, and seeds were planted on 1 June in 2018 and 30 May in 2019. Before seed
sowing, grains were inoculated by a mixture (1:1) of the two PGPR strains (prepared as
described above) at a rate of 950 g ha−1. One week after seed germination, thinning was
done to retain one seedling per hole.

4.3.2. Soil Sampling

Soil samples collected from 0–30 cm were air-dried, crushed, and passed through
a 2 mm sieve for physicochemical properties analysis (Table S3). The characteristics of
irrigation water (Table S4) have been provided by Soil Improvement and Conservation
Department, Agricultural Research Center, Giza, Egypt.

4.3.3. Agronomic Practices

Maize plants received the following amounts of irrigation water (fresh or saline
water) during the following different growth stages: sowing (1350), tillering (2150), elon-
gation (1070), anthesis (1350), and filling (780) in m3 per hectare as recommended by
Gharib et al. [64]. Same amounts were given during both growing seasons. All other
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agronomic practices were done as recommended by the Ministry of Agriculture and Land
Reclamation, Egypt as follows: phosphorus in the form of calcium superphosphate (15.5%
P2O5), and potassium in the form of potassium sulfate (48% K2O) were broadcasted and
incorporated during soil tillage at the rates of 360 kg ha−1 and 120 kg ha−1, respectively.
Nitrogen fertilizer was added in the form of ammonium nitrate (33.5% N) at 288 kg ha−1

in two equal doses before the first and the second irrigations from seed sowing.

4.4. Plant Biometrics
4.4.1. Preparation of Plant Samples

Plant samples were washed thoroughly by 0.1 M HCl, rinsed in deionized water to
remove the adhered soil particles and/or other substances, and then left to dry under
laboratory conditions. Air-dried plant tissues were placed in a forced-air oven (Binder
Model ED115, Tuttlingen, Germany) at 60 ◦C for two days to obtain the dry mass of plant
samples. Afterward, dried samples were powdered using stainless steel mill, passed
through a 60 mesh screen, and kept in polyethylene pages for further analysis.

4.4.2. Photosynthetic Pigments

Photosynthetic pigments (chlorophyll and carotenoids) are responsible for capturing
the energy of sunlight for photosynthesis, and they are sensitive to different environmental
stresses. Eighty days after seed sowing, the total chlorophyll (Chl) and carotenoids were
determined in tissues collected from the second fully-expanded leaf from the plant tip.

The content of the photosynthetic pigments was determined according to Mousa et al. [65].
Briefly, 0.1 g of fresh leaf tissue was ground with 5 mL acetone 80% then centrifuged at
13,000 rpm for 10 min. The absorbance of the supernatant was read at 645, 663, and 470 nm
using a spectrophotometer (model UV-160 A, Shimadzu, Japan). The content of chlorophyll
and carotenoid (mg g−1 FW) in the extract was calculated using Equations (1) and (2),
respectively, as below:

Total Chl = 20.21 (A645) + 8.02 (A663) (1)

Carotenoids = (1000 (A470) − 2.27 (Chl a) − 81.4 (Chl b))/227 (2)

4.4.3. Proline Content

The amino acid, proline, is well known to be associated with the plant response to
abiotic stress, such as salinity. Thus, the endogenous proline content in the second fully-
expanded leaf from the plant tip was determined as described by Bates et al. [66] after
80 days from seed sowing. Briefly, 0.1 g of fresh plant tissues was thoroughly mixed with
4 mL sulfosalicylic acid (3.0%) in a mortar and left overnight at 5 ◦C. The suspension was
centrifuged at 3000 rpm for 5 min at room temperature.

Four milliliters of acidic ninhydrin reagent were mixed with the supernatant. Tubes
were mechanically shaken then heated in a boiling water bath for 1 h. Afterward, the tubes
were cooled, and the mixture was extracted with 4 mL of toluene in a separating funnel.
The absorbance of the toluene layer was recorded at 520 nm by spectrophotometry. The
concentration of the unknown sample was calculated with reference to the standard curve.
The final value is an average of nine samples per treatment.

4.4.4. Total Soluble Sugar (TSS)

TSS is a key determinant of photosynthesis quality, and it is affected directly by
different abiotic stresses, particularly salinity and low quality water. TSS content was
measured using anthrone reagent as described by Ibragimova et al. [67]. For this purpose,
0.1 mL of alcoholic leaf extract was added to 3 mL freshly prepared anthrone reagent,
mixed well, and then boiled in a water bath for 10 min. The absorbance was measured at
620 nm. A calibration curve prepared from glucose was used to quantify TSS content in
80-day-aged leaf samples. The second fully expanded leaf from the plant tip was collected
for this measurement at a rate of nine leaves per treatment.
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4.4.5. Relative Water Content (RWC)

RWC is one of the most proper determinant of water status in stressed-plants and it
is a good indicator for the physiological consequence of cellular water deficiency. RWC
in maize leaves was measured using leaf discs (6 mm diameter) from 80-day-aged plants.
The fresh weight of discs was recorded using a digital electrical balance, then dipped in
distilled water at 25 ◦C for 24 h to measure the turgid weight (TW). The dry weight (DW) of
the discs was measured after placing them in a forced-air oven at 80 ◦C for 24 h. The RWC
content was calculated according to Equation (3) as suggested by Barrs and Weatherly [68]
as follows:

RWC =
FW − DW
TW − DW

× 100 (3)

4.4.6. Determination of Na+ and K+ in Maize Leaves

Eighty days from seed sowing, nine leaves (the second fully-expanded leaf) from
each treatment were sampled and dried in an oven at 70 ◦C for 48 h. Dried 0.5 g of leaves
were grounded into a fine powder then placed into Kjeldahl digestion tubes, and 5 mL of
sulfuric acid (H2SO4, 95–97%, 1.84 kg L−1, Merck) was added. Then, the tubes were placed
on the heater and the temperature was increased gradually by 5 ◦C min−1 to reach 270 ◦C,
then digestion continued at this temperature for 2 h.

One mL of perchloric acid (HClO4, 80%, 1.67 kg L−1, Merck) was added to the samples
after cooling for 30 min and then temperature increased again to 150 ◦C for an additional 1 h
until the digestion solution turned clear. Using ultra-pure water, the volume of the sample
was brought to 50 mL in a volumetric flask. According to Temmingho and Houba [69], the
Na+ and K+ contents were determined using an Atomic Absorption Spectrophotometer
(AAS, (Perkin Elmer 3300, LOD = 100 ppb).

4.4.7. Leaf Area Index

The leaf area index at 80 days after planting was measured as described by the
association of official analytical chemists (AOAC) [70] using the second fully-expanded
leaf from the shoot tip. It was measured according to Equation (4) as follows:

Lea f area index =
Leaf area/plant
land area/plant

(4)

4.5. Maize Productivity
4.5.1. Yield and Yield Components

At harvest, the number of grains ear−1 was recorded by counting the number of
grains in five ears randomly selected in each subplot, and the 100-grain weight was also
calculated using the same five ears. The biological air-dried yield (kg ha−1) was measured
by harvesting the four central rows in each subplot. The ears of two inner ridges were
harvested in each subplot and shelled, and then the grains were weighted and adjusted to
15.5% moisture content to estimate the grain yield (kg ha−1). The harvest index (%) was
calculated as the ratio of grain yield to biological yield and multiplied by hundred.

4.5.2. NPK Content in Maize Grains

Air-dried grain samples were placed into a forced-air oven for 48 h at 70 ◦C. The dried
samples were powdered using a grinder and kept in plastic bags for further analysis. For
N, P, and K determination, powdered grain samples were digested with HNO3: HClO4
solution (2:1). The N content was determined after AOAC [70], while P content was
calorimetrically measured according to Sparks et al. [71]. The K content was determined
using AAS (LOD = 100 ppb) [71].
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4.6. Soil Measurements
4.6.1. Soil Dehydrogenase and Urease Activity

Eighty days from seed sowing, soil samples were collected at 0–20 cm depth to
measure the activity of dehydrogenase and urease enzymes. The collected soil samples
were passed through a 5 mm mesh to remove the plant remains and big particles, such
as stones then kept in polyethylene pages at −20 ◦C for further analysis. Measurement
of urease activity was done based on the quantitative determination of ammonia by the
spectrophotometric measurement at 660 nm by Kemper’s method [72]. The dehydrogenase
activity was measured as described by Mersi, [73] by mixing the soil samples with INT-
solution, incubating them for 2 h at 40 ◦C. The reduced iodonitro-tetrazolium formazan
(INTF) was extracted with dimethyl-formamide and ethanol and measured photometrically
at 464 nm.

4.6.2. Microbial Estimations

The total count of bacteria was estimated by soil extract agar medium according to
Abdel-Malek and Ishac [74], while the total count of Pseudomonas was measured by King’s
B agar medium according to King et al. [63]. The most probable number of A. chroococcum
was estimated using modified Ashb’s media according to the Cochrane method [75] and
calculated using tables of Casida et al. [76]. All microbial estimation was counted at 80 days
from seed sowing.

4.6.3. Soil Physicochemical Properties

For the analysis of soil chemical properties, the soil was sampled at 0–30 cm depth
at maize harvest using an auger. After air-drying, soil samples were passed through a
2 mm sieve. The ECe (dS m−1) was assessed in soil paste extract using EC-meter (Gen-
way, UK), whereas pH was determined in a 1:2.5 soil: distilled water suspension using
pH-meter (Genway, UK, relative error; ±0.05). The levels of Na+, K+, Ca2+, and Mg2+ ions
(meq L−1) were evaluated in soil paste extract using AAS (LOD = 100 ppb)[71]. The ex-
changeable sodium percentage (ESP) was calculated according to Equation (5) as suggested
by Seilsepour et al. [77]:

ESP = 1.95 + 1.03 × SAR (R2 = 0.92) (5)

where SAR (Sodium adsorption ratio) was calculated using Equation (6) as described by
Richards [78]:

SAR =
[
Na+

]
/

√√√√([
Ca2+

]
+
[
Mg2+

])
2

(6)

where Na+, Ca2+,, and Mg2+ were expressed in milliequivalents per liter (mEq L−1).

4.7. Statistical Analysis

A full factorial split-plot design arranged in randomized complete blocks was used
as an experimental layout throughout the study. Our experimental design consists of
two factors: (1) two types of irrigation water (freshwater vs. saline water) as the main
plot and (2) four treatments (control, PGPR, biochar, and PGPR+biochar) as subplots. All
experiments were repeated twice in two different seasons (2018 and 2019) with at least
three biological replicates for each treatment. However, all data of the 2018 season are
presented as supplementary materials for this study.

The normality and homoscedasticity of the data were tested, and data transformation
was done as necessary. The analysis of variance (ANOVA) was used to test the significant
differences among irrigation waters (pWater), treatments (pTreatment), and their interaction
(pWater × Treatment). Tukey’s honestly significant difference (HSD) test was used for post-hoc
analysis (p < 0.05). The presented pairwise differences connecting letters (significance
letters) were generated based on the p-value of the interaction between water type (as
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the main plots) and treatments (as subplots) that were mentioned as (pWater × Treatment).
ANOVA and Tukey’s test were carried out using JMP Data analysis software Version
15 [79].

5. Conclusions

Our results suggest that the dual application of PGPR and biochar can be an effective
and useful tool to enable the utilization of low-quality water and soil, especially in arid
and semiarid regions as it considerably ameliorates the hazardous impacts of saline water
in sodic-saline soil. The application of PGPR + biochar reduced the soil salinity, which led
to inducing photosynthetic pigments and, therefore, the photosynthesis process and finally
maize productivity.

Nevertheless, the potentiality of PGPR and biochar varies with the source and species
of PGPR used and material types, the pyrolysis of biochar as well as the soil system. The
mechanism by which PGPR and biochar mitigate the detrimental impacts of salinity on
both plant and soil ecosystems is complex. The economic benefit of preparation PGPR
and biochar and the application rate should be intensively studied. Thus, long-term
experiments are crucially needed to assess the impact of PGPR and biochar on plants
grown in sodic-saline soils.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10091960/s1, Table S1: Activity of soil dehydrogenase and urease enzymes and count of
some microbial groups at 80 days after seed sowing of maize plants irrigated with fresh and saline
water in sodic-saline soil after the application of biochar and PGPR during the 2018 season.; Table S2:
Yield and yield components of maize plants irrigated with fresh and saline water in sodic-saline soil
in presence of biochar and PGPR during the 2018 season.; Table S3: Physicochemical characteristics
of the experimental soil in the two growing seasons 2018 and 2019.; Table S4: Characterization of
irrigation water during the 2018 and 2019 growing seasons.; Figure S1: Soil chemical properties at
the harvest time of maize plants growing in sodic-saline soil and irrigated with fresh and saline
water after the application of biochar and PGPR during 2018 season.; Figure S2: Leaf area index,
photosynthetic pigments, and biochemical traits and of maize plants growing in sodic-saline soil
and irrigated with fresh and saline water after the application of biochar and PGPR during the
2018 season.; Figure S3: The leaf content of Na+, K+, and K+/Na+ ratio, and the NPK content of
grains of maize plants growing in sodic-saline soil and irrigated with fresh and saline water after the
application of biochar and PGPR during the 2018 season.
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