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Abstract: Oil palm (Elaeis guineensis Jacq.) is the number one source of consumed vegetable oil
nowadays. It is cultivated in areas of tropical rainforest, where it meets its natural condition of high
rainfall throughout the year. The palm oil industry faces criticism due to a series of practices that
was considered not environmentally sustainable, and it finds itself under pressure to adopt new and
innovative procedures to reverse this negative public perception. Cultivating this oilseed crop outside
the rainforest zone is only possible using artificial irrigation. Close to 30% of the world’s irrigated
agricultural lands also face problems due to salinity stress. Consequently, the research community
must consider drought and salinity together when studying to empower breeding programs in
order to develop superior genotypes adapted to those potential new areas for oil palm cultivation.
Multi-Omics Integration (MOI) offers a new window of opportunity for the non-trivial challenge of
unraveling the mechanisms behind multigenic traits, such as drought and salinity tolerance. The
current study carried out a comprehensive, large-scale, single-omics analysis (SOA), and MOI study
on the leaves of young oil palm plants submitted to very high salinity stress. Taken together, a total of
1239 proteins were positively regulated, and 1660 were negatively regulated in transcriptomics and
proteomics analyses. Meanwhile, the metabolomics analysis revealed 37 metabolites that were upreg-
ulated and 92 that were downregulated. After performing SOA, 436 differentially expressed (DE)
full-length transcripts, 74 DE proteins, and 19 DE metabolites underwent MOI analysis, revealing sev-
eral pathways affected by this stress, with at least one DE molecule in all three omics platforms used.
The Cysteine and methionine metabolism (map00270) and Glycolysis/Gluconeogenesis (map00010)
pathways were the most affected ones, each one with 20 DE molecules.

Keywords: transcriptomics; proteomics; metabolomics; integratomics; abiotic stress; African oil palm

1. Introduction

Oil palm (Elaeis guineensis Jacq.) has the highest productivity among the main oilseed
crops, reaching 3–8 times more oil per area than any other crop [1]. In 2021/2022, approxi-
mately 82 million metric tons of palm oil and palm kernel oil was consumed worldwide,
making oil palm the number one source of consumed vegetable oil in the world [2]. It is
the raw source of a wide range of products used by many industries, such as the food and
steel industries, the manufacture of cleaning products, the pharmaceutical and cosmetics
industries, and the biofuels industry [3].

Several countries placed, in the equatorial belt, expanded oil palm plantations in
tropical forests where this crop meets its natural condition of high rainfall throughout the
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year [4]. Despite the significant economic gains, this movement imposes environmental
stresses, such as biodiversity loss, greenhouse gas emissions, land degradation, and air and
water pollution [1]. In Brazil, over 95% of the oil palm plantations are in the Amazon rain-
forest, where only 2.14% of the total area destined for commercial plantations is currently
in use [5]. This under-utilization status is due to many constraints, such as environmental
legal restrictions imposed by the Brazilian Government and logistical difficulties, which
together hinder the production flow to the main industrial areas in the country and also
the occurrence of pests and diseases [6,7].

Outside the Amazon rainforest, there is an extensive area in Brazil with favorable
conditions for cultivating oil palm [8]. There are many logistic advantages to producing oil
palm outside the Amazon region, offering a window of opportunity to increase the area
with oil palm plantations and, consequently, the total national palm oil yield. However,
these areas experience long periods of drought throughout the year when oil palm does not
meet the physiological water requirement to maintain productivity [8–10]. Consequently,
the oil palm grower needs to irrigate the crop and must do so with proper management to
avoid soil salinization.

Approximately 30% of the world’s irrigated agricultural lands are damaged by salin-
ity, negatively affecting the productivity of traditional crops [11]. Most crop plants have
evolved under very low soil salinity, and, under high salt, their development is highly
inhibited, even leading to death at a concentration ranging between 100 and 200 mM
NaCl [12]. Salinity stress affects plants by decreasing the osmotic potential of the soil
solution, making it harder for the root to absorb water from the soil and consequently expe-
riencing drought stress, and by accumulating sodium and chloride ions in the cytoplasm,
leading to the inhibition of many enzyme reactions due to ion toxicity [13]. Salt stress
tolerance in plants involves many morphophysiological and biochemical changes, such as
stomatal closing, osmolyte accumulation, and increased Na+/Cl− antiporter, governed by
multigenic traits [14].

Considering those circumstances, it is clear that any initiative to promote oil palm
cultivation outside the Amazon Forest in Brazil needs to take drought and salinity to-
gether when researching for knowledge and technology to empower breeding programs
to develop superior genotypes for those regions. The first challenge is understanding
the morphophysiological, biochemical, and molecular responses of oil palm to these two
abiotic stresses. In doing so, our group has studied the response of young oil palm plants
from different angles, applying different omics platforms, alone or in combination [6,15,16].
Vieira and colleagues showed that young oil palm submitted to a high concentration of
NaCl reduces the rates of CO2 assimilation, stomatal conductance to water vapor, and
transpiration [6]. Then, Ref. [15] confirmed a preponderant role of transcription factors in
the early response of oil palm plants to salinity stress, and [16] identified the pathways and
the metabolites most affected by drought stress.

The current study is a new step on our research activities characterizing the biochem-
ical and molecular responses of E. guineensis to salinity stress, where we carried out a
comprehensive, large-scale, single-omics analysis (SOA), and Multi-Omics Integration
(MOI) analysis of the metabolome, transcriptome, and proteome profiles on the leaves of
young oil palm plants submitted by Vieira and colleagues [6] with repsect to very high
salinity stress.

2. Results
2.1. Oil Palm Transcriptome under Salinity Stress

When comparing salt-stressed against control plants, the pairwise differential expres-
sion analysis revealed 2728 differentially expressed (DE) proteins in the oil palm genome
at False Discovery Rate (FDR) ≤ 0.05 in which 1138 were upregulated (Log2(FC) > 0) and
1590 were downregulated (Log2(FC) < 0) (Table 1, Supplementary Table S1).
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Table 1. Differentially expressed (DE) peaks and features in the leaves of young oil palm plants
submitted to salinity stress selected by means of three distinct omics platforms (transcriptomics,
metabolomics, and proteomics).

Transcriptomics Number of Features Up Down Non-DE

WGS–Proteins 43,551 1138 1590 40,823

Metabolomics Number of Peaks Up Down Non-DE

Positive Polar 2843 18 34 2791

Negative Polar 1855 19 58 1778

Proteomics * Number of Features Up Down Non-DE

LC/MS 813 101 70 642
* Up = Proteins found exclusively in stressed samples + Proteins that attended to statistical criteria of PatternLab
V software; Down = Proteins found exclusively in control samples + Proteins that attended to statistical criteria of
PatternLab V software [17].

A total of 1165 proteins with 792 distinct K numbers were present among the 2728 DE
ones, including 693 enzymes, from which 436 belonged to known pathways (Supplementary
Table S1).

The set of 693 enzymes underwent gene ontology analyses, and only the ten most
populated groups per GO term are shown in Figure 1. The biological process subgroups
with the largest number of representatives were carbohydrate metabolic process, followed
by protein phosphorylation and fatty acid biosynthesis process. For molecular function,
the most populated subgroups were ATP binding, metal ion binding, and heme binding.
Finally, for cellular component the integral component of membrane came in first, followed
by cytoplasm and cytosol components.Plants 2022, 11, 1755 4 of 20 

 

 

 
Figure 1. Gene Ontology (GO) annotation classification statistics graph from full-length transcrip-
tome and proteome in the leaves of young oil palm plants under salinity stress; classified accord-
ingly to biological process, cellular component, and molecular function. Only the ten most popu-
lated groups per GO term are shown. Numbers represent the amount of positive hits. 

Figure 1. Gene Ontology (GO) annotation classification statistics graph from full-length transcriptome
and proteome in the leaves of young oil palm plants under salinity stress; classified accordingly to
biological process, cellular component, and molecular function. Only the ten most populated groups
per GO term are shown. Numbers represent the amount of positive hits.
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Furthermore, the DE enzymes were also classified according to the Enzyme Commis-
sion (EC) number, a numerical classification scheme for enzymes based on the chemical
reaction. At a first level of classification that involves a general type of enzyme-catalyzed
reaction that ranges from one to six, enzymes were dominated by oxidoreductases (EC 1),
transferases (EC 2) and hydrolases (EC 3) classes (Figure 2a). In the subclasses of oxidore-
ductases class (EC 1), DE enzymes were represented mainly by those acting on paired
donors, with the incorporation of or reduction in molecular oxygen (EC 1.14), followed by
enzymes acting on the CH-OH group of donors (EC 1.1) and acting on the aldehyde or
oxo group of donors (EC 1.1). The most representative subclass of transferases class (EC 2)
included those with a function of transferring phosphorus-containing groups (EC 2.7),
acyltransferases (EC 2.3) and glycosyltransferases (EC 2.4). Finally, the hydrolases (EC 3)
had subclasses with compounds involved and acting on ester bonds (EC 3.1), glycosy-
lases (EC 3.2), and acting on peptide bonds (peptidases) (EC 3.4) subclasses that were
standing out.Plants 2022, 11, 1755 5 of 20 

 

 

 
Figure 2. Gene Ontology (GO) annotation classification statistics graph from full-length transcrip-
tome and proteome in the leaves of young oil palm plants under salinity stress; classified accord-
ingly to chemical reactions by which proteins are classified according to E.C. Only the three preva-
lent classes are shown: oxireductases (EC 1), transferases (EC 2), and hydrolases (EC 3). (a)—Tran-
scriptomics Single Analysis, and (b)—Proteomics Single Analysis. 

2.2. Oil Palm Proteome under Salinity Stress 

Figure 2. Gene Ontology (GO) annotation classification statistics graph from full-length transcriptome
and proteome in the leaves of young oil palm plants under salinity stress; classified accordingly to
chemical reactions by which proteins are classified according to E.C. Only the three prevalent classes
are shown: oxireductases (EC 1), transferases (EC 2), and hydrolases (EC 3). (a)—Transcriptomics
Single Analysis, and (b)—Proteomics Single Analysis.
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2.2. Oil Palm Proteome under Salinity Stress

A global proteomics analysis led to the identification of 3234 and 2872 peptides with
high confidence (FDR ≤ 0.01) in control and stressed samples, respectively, which infers up
to 1809 protein entries from E. guineensis proteome (Uniprot) in both conditions—control
and stressed (Table 2).

Table 2. Absolute numbers of all peptides and proteins identified via proteomics analysis in the
leaves of young oil palm plants submitted to salinity stress.

Control Stressed Total

Peptide Spectrum Match (PSM) 5419 5391 10,808

Total number of peptides 3234 2872 4254

Number of unique peptides 1805 1606 2426

Total number of proteins entries 1497 1436 1809

Total number of proteins using the
maximum parsimony criterion 826 831 1019

Approximately 38% of proteins (688) were inferred from more than four peptides, and
about 34% (622) had at least one proteotypic peptide observation. A list of all peptides
and proteins confidently identified, as well as a simplified list of 1019 proteins according
to the maximum parsimony criterion, is presented in Supplementary Tables S2–S4. Con-
trol and stressed conditions shared 662 protein identifications; 62 and 89 proteins were
uniquely detected in control and stressed samples, respectively (Figure 3a, Supplementary
Tables S5–S7).
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This group of 171 DE protein sequences—including those found exclusively in con-
trol (62) and stressed (89) in at least two replicates and those 20 proteins that attended to 
the statistical criteria of PatternLab V software—was submitted to functional annotation 
and MOI analyses. The KEGG mapper reconstruction results revealed 131 proteins with 
84 distinct K numbers, including 99 enzymes. Seventy-three enzymes belonged to known 
pathways and were used in the MOI analysis. 

This set of 171 selected proteins was then submitted to gene ontology analyses, and 
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logical process subgroups with the largest number of proteins were translation, followed 

Figure 3. Summary of the proteomics analysis performed on the leaves of young oil palm plants
under salinity stress using the PatternLab for Proteomics V software. (a) Control and stressed
conditions shared 662 protein identifications; 62 and 89 proteins were uniquely detected in control
and stressed samples, respectively; (b) volcano plot of the differentially abundant proteins reported
by Pattern Lab’s T Fold module, where 20 proteins showed statistically significant differences in their
abundance—proteins in blue were significantly up-regulated while the ones in red were significantly
down-regulated between stressed and control samples.
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Twenty proteins showed statistically significant differences in their abundance be-
tween stressed and control samples (Table 3). As shown in Figure 3b, 12 proteins (in blue)
were significantly up-regulated while eight (in red) were significantly down-regulated
between stressed and control samples. A group of 642 proteins did not meet the statistical
criteria and was not considered for further analysis (Table 1). Our differential abundance
analysis considered proteins identified at least in two replicates in each condition. This
filtering process decreased the list of 316 and 380 proteins uniquely identified in stressed
and control to 89 and 62, respectively.

Table 3. List of the differentially expressed proteins detected in both biological conditions (Stressed
and Control) with statistical significance (FDR ≤ 0.05).

Entry Class Fold
Change p-Value Signal in

Control
Signal in
Stressed

Gene ID at
NCBI Description

A0A6I9RY35 UP 3.50631 0.00860 0.00027 0.00094 LOC105054572 probable inactive purple acid
phosphatase 29

A0A6I9QVF6 UP 3.25426 0.02982 0.00104 0.00340 LOC105040203 GTP-binding nuclear protein

A0A6I9R375 UP 3.25426 0.02982 0.00085 0.00275 LOC105043116 GTP-binding nuclear protein

A0A6I9RFH3 UP 3.25426 0.02982 0.00104 0.00340 LOC105047773 GTP-binding nuclear protein

A0A6I9QCS1 UP 2.87620 0.00511 0.00059 0.00169 LOC105033701 Proteasome subunit alpha type

A0A6I9QQJ4 UP 2.43453 0.01697 0.00103 0.00251 LOC105039272 60S ribosomal protein L35a-1

B3TLX9 UP 2.43453 0.01697 0.00103 0.00251 LOC105037063 60S ribosomal protein L35a-1

A0A6I9QWA8 UP 2.33349 0.01927 0.00071 0.00165 LOC105039716 Succinate-semialdehyde
dehydrogenase

A0A6I9RG83 UP 2.14817 0.02330 0.00062 0.00133 LOC105045986 uncharacterized protein
LOC105045986

B3TLY5 UP 1.83395 0.00630 0.00105 0.00193 CAT2 Catalase

A0A6I9QQQ6 UP 1.76320 0.00012 0.00068 0.00119 LOC105039332 V-ATPase 69 kDa subunit

A0A6I9R4U7 UP 1.63284 0.00286 0.00276 0.00450 LOC105044322 Malate dehydrogenase

A0A6I9S1Z5 DOWN −1.63290 0.00151 0.00166 0.00101 LOC105055575 ruBisCO large subunit-binding
protein subunit alpha

A0A6I9QJN4 DOWN −1.84374 0.00267 0.00177 0.00096 LOC105036569 CBBY-like protein

A0A6I9RPV6 DOWN −1.84374 0.00267 0.00177 0.00096 LOC105051320 CBBY-like protein

A0A6J0PH47 DOWN −1.88477 0.00179 0.00395 0.00210 LOC105044080 Ferredoxin—NADP reductase,
chloroplastic

A0A6I9S9I9 DOWN −2.00037 0.01375 0.00091 0.00045 LOC105058225 uncharacterized protein
LOC105058225

A0A6I9RWU5 DOWN −2.19127 0.02157 0.00284 0.00129 LOC105054048 actin-101

A0A6I9RC26 DOWN −2.21145 0.01945 0.00172 0.00078 LOC105047077 sorbitol dehydrogenase
isoform X2

A0A6I9RDE7 DOWN −2.21145 0.01945 0.00172 0.00078 LOC105047077 sorbitol dehydrogenase
isoform X1

This group of 171 DE protein sequences—including those found exclusively in control
(62) and stressed (89) in at least two replicates and those 20 proteins that attended to
the statistical criteria of PatternLab V software—was submitted to functional annotation
and MOI analyses. The KEGG mapper reconstruction results revealed 131 proteins with
84 distinct K numbers, including 99 enzymes. Seventy-three enzymes belonged to known
pathways and were used in the MOI analysis.
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This set of 171 selected proteins was then submitted to gene ontology analyses, and
again only the ten most populated groups per GO term are shown in Figure 1. The
biological process subgroups with the largest number of proteins were translation, followed
by carbohydrate metabolic process, fatty acid biosynthetic process, proteolysis, pentose-
phosphate shunt, oxidative branch, and glucose metabolic process. For molecular function,
the proteins were mainly distributed in the subgroups of ATP binding, structural constituent
of ribosome, and metal ion binding. Finally, the cellular component of the cytoplasm came
in first, followed by the nucleus and cytosol.

The prevalent chemical reactions by which proteins were classified according to EC
were Oxireductases (EC 1), transferases (EC 2), and hydrolases (EC 3) classes (Figure 2b).
In the subclasses of oxidoreductases, the main groups were acting on the CH-CH group
of donors (EC 1.3), acting on Ch or CH(2) groups of donors (EC 1.17), and acting on
the aldehyde or oxo group of donors (EC 1.2). The most representative subclasses of
transferases class included those with a transferring phosphorus-containing groups (EC 2.7)
and transferring nitrogenous groups (EC 2.6). For hydrolases, those acting on carbon–
nitrogen bonds (EC 3.5) and acting on acid anhydrides (EC 3.6) came first.

2.3. Oil Palm Metabolome under Salinity Stress

Statistical analysis on Metaboanalyst returned 2843 and 1855 peaks, respectively, in
the polar-positive and polar-negative fractions (Table 1). Fifty-two peaks were differentially
expressed, and eighteen were up-regulated and thirty-four were down-regulated in the
polar-positive while seventy-seven were differentially expressed in the polar-negative, in
which nineteen were up-regulated and fifty-eight were down-regulated.

All 129 peaks differentially expressed were then submitted to functional interpretation
via analysis in the MS Peaks to Pathway module, and the combined mummichog and
GSEA pathway meta-analysis resulted in a list of 19 differentially expressed metabolites
(DEMs), which was then submitted to the pathway topology analysis module (Table 4).
The monobactam biosynthesis (map00261); arginine biosynthesis (map00220); beta-alanine
metabolism (map00410); pentose phosphate pathway (map00030); carbon fixation in photo-
synthetic organisms (map00710); alanine, aspartate and glutamate metabolism (map00250);
galactose metabolism (map00052); and glutathione metabolism (map00480) pathways came
out as the one with a raw p ≤ 0.05 (Figure 4).

Table 4. List of metabolites identified in the leaves of young oil palm plants submitted to salinity stress
via metabolomics analysis, after submitting the differentially expressed (DE) peaks to the pathway
topology analysis module in MetaboAnalyst 5.0. FDR: False Discovery Rate; and FC: Fold Change.

Query
Mass

Matched
Compound Matched Form Mass

Difference Compound Name FDR Log2(FC)

145.01452 C00026 M-H[–] 2.69 × 10−4 Oxoglutaric acid 0.0106 –0.4146

616.17640 C00032 M[1+] 8.96 × 10−4 Heme 0.0039 2.8661

106.04953 C00049 M-CO+H[1+] 2.53 × 10−4 L-Aspartic acid 0.0292 0.9617

306.07651 C00051 M-H[–] 2.27 × 10−5 Glutathione 0.0204 1.5265

289.03241 C00117 M+CH3COO[–] 3.46 × 10−5 D-Ribose 5-phosphate 0.0475 –0.9714

427.01748 C00224 M(C13)-H[–] 1.46 × 10−3 Adenosine phosphosulfate 0.0172 –0.6544

172.98600 C00262 M+K-2H[–] 7.55 × 10−4 Hypoxanthine 0.0004 –1.5351

203.22237 C00750 M+H[1+] 6.58 × 10−4 Spermine 0.0036 2.4559

163.04033 C00811 M-H[–] 2.65 × 10−4 4-Hydroxycinnamic acid 0.0065 –0.3818

162.02134 C01419 M-NH3+H[1+] 6.49 × 10−4 Cysteinylglycine 0.0263 1.2145
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Table 4. Cont.

Query
Mass

Matched
Compound Matched Form Mass

Difference Compound Name FDR Log2(FC)

260.02535 C05345 M(C13)-H[–] 4.92 × 10−4 Beta-D-Fructose 6-phosphate 0.0489 –1.0337

359.11946 C05399 M-H+O[–] 3.09 × 10−5 Melibiitol 0.0103 –1.6922

254.09610 C05401 M(C13)-H[–] 1.95 × 10−4 Galactosylglycerol 0.0410 –0.7515

326.09623 C05839 M(C13)-H[–] 6.61 × 10−5 cis-beta-D-Glucosyl-2-
hydroxycinnamate 0.0472 –1.4286

277.06946 C05911 M-CO+H[1+] 1.11 × 10−3 Pentahydroxyflavanone 0.0143 –1.0759

337.05555 C10107 M+H2O+H[1+] 1.09 × 10−4 Myricetin 0.0313 –2.4012

337.00976 C11453 M+CH3COO[–] 8.02 × 10−4 2-C-Methyl-D-erythritol
2,4-cyclodiphosphate 0.0272 0.8232

259.02223 C17214 M+Cl37[–] 1.45 × 10−4 2-(3′-Methylthio)propylmalic
acid 0.0222 –0.9440

447.91027 G00005 M(C13)+2H [2+] 1.30 × 10−3 (GlcNAc)2 (Man)3 (PP-Dol)1 0.0263 0.4044
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Figure 4. Summary of the pathway analysis in the leaves of young oil palm plants under salin-
ity stress using the Pathway Topology Analysis modules of MetaboAnalyst 5.0. The metabolome
view resulted from the analysis in the Pathway Topology Analysis module using the Hypergeo-
metric test, the relative betweenness centrality node importance measure, and the latest KEGG
version of the Oryza sativa pathway library. Pathway impact takes into account both node central-
ity parameters—betweenness centrality and degree centrality—and represents the importance of
annotated compounds in a specific pathway.
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2.4. Integrating Oil Palm Transcriptome, Proteome and Metabolome

A total of 510 enzymes (436 from transcriptomics analysis and 74 from proteomics anal-
ysis) (Supplementary Table S8) and 19 metabolites from metabolomics analysis (Table 3), all
selected as differentially expressed in the leaves of young oil palm plants (stressed/control),
were submitted to MOI analysis.

By applying the Omics Fusion platform to perform the MOI analysis, results revealed
a group of eleven pathways affected by salinity stress, and with at least one molecule
differentially expressed in each one of the three omics platforms used (Table 5). The
Cysteine and methionine metabolism (map00270) and the Glycolysis/Gluconeogenesis
(map00010) pathways came tied first in this list, each one with 20 unique molecules from
the transcriptome/proteome/metabolome integrative analysis (Supplementary Table S9).

Table 5. List of top eleven pathways affected by salinity stress obtained via Multi-Omics Integration
(MOI). Transcriptomics, proteomics, and metabolomics data from leaves of young oil palm plants
after being under 0.0 (control) and 2.0 (stressed) g of NaCl/100 g of substrate for 12 days.

Pathway Pathway ID Occurrence of
Transcripts

Occurrence of
Proteins

Occurrence of
Metabolites

Occurrence of
Unique Molecule

Cysteine and methionine metabolism 270 15 5 2 20

Glycolysis/Gluconeogenesis 10 17 3 1 20

Glyoxylate and dicarboxylate metabolism 630 14 4 1 16

Carbon fixation in photosynthetic organisms 710 12 2 2 15

Glycine, serine and threonine metabolism 260 11 2 1 14

Pentose phosphate pathway 30 10 4 2 14

Glutathione metabolism 480 9 3 3 13

Amino sugar and nucleotide sugar metabolism 520 10 2 1 12

Carbon fixation pathways in prokaryotes 720 7 6 1 11

Citrate cycle (TCA cycle) 20 5 4 1 8

Butanoate metabolism 650 4 2 1 7

3. Discussion

Soil salinization reduces plant growth and productivity of most terrestrial crops with
economic importance, including oil palm [13]. In the case of oil palm, Refs. [6,18,19]
reported the development of salinization protocols, which are necessary to study the
response of E. guineensis to this abiotic stress in the search for some intraspecific trait
variability. Such protocols are also needed to select tolerant oil palm genotypes developed
via genetic engineering or genome editing strategies. These two studies generated not only
morphophysiological, biochemical, and molecular insights into the response of this species
to this abiotic stress but also reported on the ionic imbalance in the substrate, roots, and
leaves of young oil palm plants under salinity stress.

Salinity tolerance is a multigenic trait that governs physiological, biochemical, and
molecular mechanisms to facilitate water retention and/or acquisition, protect chloro-
plast functions, and maintain ion homeostasis [13]. Datasets in genomics, transcriptomics,
proteomics, metabolomics, epigenomics, ionomics, and phenomics are accumulating ev-
erywhere, intending to gain insights into the mechanisms behind plant interaction with
abiotic stresses; however, due to the molecular complexity of such interaction, single-omics
analyses (SOA) will have limited power in delivering a more systemic and accurate pic-
ture of those responses. Multi-Omics Integration (MOI) strategies [20] are a new window
of opportunity facilitating hypothesis generation, leading to the non-trivial challenge of
unraveling the mechanisms behind this multigenic trait.

In the present study, SOA showed that carbohydrate metabolism and translation were
the most affected biological process subcategories for differentially expressed genes and
proteins, respectively. In addition to being a substrate for energy production, carbohydrates
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play a role in plant stress perception and signal transduction and can also mediate osmotic
regulation and carbohydrate distribution [21].

From the translation point of view, the protein synthesis machinery is quite sensitive
to salt since the production of new proteins is crucial for salinity tolerance [22]. Salinity-
tolerant species have a more efficient system for regulating transcription, synthesis, and
protein processing when compared to sensitive species [23]. Genes encoding the plastid
translation machinery in Arabidopsis thaliana are salt responsive, indicating a possible role
in supporting chloroplast functionality [23]. Reaumuria soongarica (Pall.) Maxim., a salt-
tolerant species, showed a complex pattern of protein expression, mainly those involved in
translation, ribosomal structure, and biogenesis [24].

The dominant molecular function for DE enzymes identified in this study was ATP-
binding proteins. These enzymes use the energy of ATP hydrolysis to catalyze a series
of chemical reactions [25]. Most ATP-binding proteins are intracellular and extracellular
transmembrane proteins, participating in the movement of various molecules and, under
stress conditions, in intracellular osmotic balance maintenance [26]. ABC transporters that
constitute one of the most populated families of proteins driven by ATP hydrolysis revealed
a complex expression pattern in E. guineensis under drought stress, pointing to their role in
controlling the influx and efflux of chemical molecules while in water scarcity [27].

Integral membrane components, the most affected subcategory of cellular components,
include, in this category, proteins incorporated into cell membranes. Salt stress causes
damage to the cell membrane, altering its permeability, lipid composition, and enzyme
activity [28]. Several factors cause changes in the structure of cell membrane compo-
nents during salt stress; among them, the excessive production of reactive oxygen species
(ROS) is highlighted, which causes conformational changes in membrane proteins and
lipid peroxidation, reducing the efficiency of transport systems and increasing membrane
permeability [29].

In salinity-tolerant cultivars, an increase in the antioxidant defense system occurs,
reducing lipid peroxidation and maintaining adequate levels of membrane permeability.
On the other hand, there is an increase in the leakage of electrolytes from the membranes,
which indicates a loss of membrane integrity in the sensitive plants [29]. The increase in
electrolyte leakage has already been evident in oil palm leaves, indicating possible damage
caused by salinity, with direct consequences in photosynthetic capacity reduction and
biomass accumulation [18].

In the present study, an attempt to integrate three distinct omics platforms—
transcriptomics, proteomics, and metabolomics—was reported for the first time to gain
further insights into the mechanisms behind the response of young oil palm plants to
salinity stress. The MOI strategy used in the present study is a pathway-based approach
for integrating omics datasets. Such integration was only possible due to the selection
and characterization of salt-responsive genes coding for enzymes in the oil palm reference
genome. Enzymes catalyzing reactions in a metabolic pathway are the bridges to connect
transcriptomics, proteomics, and metabolomics datasets in such an integratomics study.

The present MOI study revealed eleven pathways affected by the salinity stress in
the leaves of the young oil palm plant, with at least one molecule differentially expressed
in all three platforms used. The Cysteine and methionine metabolism (map00270) and
Glycolysis/Gluconeogenesis (map00010) pathways were the most affected ones. Even
though this study identified other pathways, further discussion will concentrate only on
these two.

Reactions that promote cysteine (Cys) biosynthesis are involved in the pathway of
cysteine and methionine metabolism [30]. Cys acts as a sulfur donor for the biosynthesis of
many essential bio-molecules, such as methionine, vitamins, co-factors, and Fe-S groups,
and for the production of glutathione (GSH), considered the principal determinant of
cellular redox homeostasis [30]. The enzymes serine O-acetyltransferase (EC 2.3.1.30)
and cysteine synthase (EC 2.5.1.47) usually carry out the Cysteine biosynthesis in two
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steps. These enzymes are highly conserved in plants and are responsible for maintaining
homeostasis between cysteine consumption and sulfate reduction [31].

Among the enzymes integrated into the cysteine and methionine metabolism pathway,
seven and twelve were up- and down-regulated in the leaves of young oil palm plants
under salinity stress, respectively. Serine O-acetyltransferase experienced an approximately
11-fold increase in expression, while L-lactate dehydrogenase experienced a decrease of
about 90% in its original expression level. As cysteine is the first organic compound in
the primary metabolism of sulfate, the elevated transcription of serine O-acetyltransferase
may indicate that sulfate entry into the pathway plays a role in the saline stress response in
oil palm. In tobacco, plants over-expressing bacterial serine O-acetyltransferase conferred
resistance to high levels of oxidative stress with a four-fold higher cysteine expression [32].
Recently, Ref. [33] demonstrated that the exogenous application of nitric oxide (NO), a
compound that regulates the response to different stresses in plants, increased the content
of enzymes synthesizing Cys, helping maintain the cellular homeostasis in plants under
the osmotic tension.

Amino acid methionine has nutritional value for plants, participating in the initiation
of translation, in addition to being a precursor of S-Adenosyl methionine (SAM), the
donor of the methyl group that regulates different essential cellular processes, such as
cell division, synthesis cell wall, chlorophyll synthesis, and membrane synthesis [34].
SAM is synthesized from adenosine triphosphate (ATP) and methionine by the enzyme
S-adenosylmethionine synthetase—SAMS (EC 2.5.1.6). The present study showed that
this enzyme had a 2.6 fold increase in expression under salinity stress. Overexpression
of the SsSAMS2 gene from the halophyte plant of Suaeda salsa L. in transgenic tobacco
plants enhanced salt tolerance, as indicated by maintaining a higher photosynthetic rate
and accumulation of more biomass [35].

GSH is a low molecular weight thiol crucial for maintaining the regulation of cel-
lular redox homeostasis [30]. Two ATP-dependent enzymes, glutamate-cysteine ligase
(EC:6.3.2.2) and GSH synthetase (EC:6.3.2.3), catalyze GSH synthesis from cysteine, glu-
tamate, and glycine [36]. In the present study, the metabolite glutathione (C00051) up-
regulated 2.9 fold while the enzyme glutathione synthase downregulated to 70% of its
original levels in the leaves of young oil palm plants under salinity stress. Meanwhile, all
versions of glutamate–cysteine ligase found in the reference genome of oil palm [37,38]
were non-DE. The exogenous application of GSH reversed the effects of salt stress on
seedlings of tomatoes, as well as the expression and activities of enzymes related to the
synthesis and metabolism of GSH, including gamma-glutamylcysteine synthetase (γ-ECS)
and glutathione synthetase (GS), among others [39].

The glycolysis pathway directly supplies energy to plant cells from reactions that
oxidize hexoses to produce ATP and pyruvate, the latter acting as a substrate for entry into
the citric acid cycle (TCA). Conversely, the gluconeogenesis pathway synthesizes hexoses
using low molecular weight compounds to meet energy needs under the conditions of
reduced glucose supply [40]. The ATP-dependent 6-phosphofructokinase 2 (PKF) and
pyruvate kinase (PK) enzymes from the glycolytic pathway did downregulate in the leaves
of young oil palm plants under saline stress. Those two enzymes, together with hexokinase,
are regulators of glycolysis, as they participate in irreversible reactions [40]. The energy
production via glycolysis plays a role in the saline stress response in plants as it provides
ATP to support the stress condition [41].

That was evident in the study by [41], where salt stress inhibited the growth of Cucumis
sativus L. with a significant reduction in ATP production rates [41] and applied exogenous
putrescine (Put), reversing the saline stress with positive modulation in the PFK and PK
levels. In halophyte species Bruguiera sexangular, both PFK and PK enzymes increased
expression in response to long-term salinity [42]. This suggests that increased PFK and PK
activity increases the activity of the glycolytic pathway to maintain normal physiological
metabolism under saline stress conditions in halophyte species. Salinity stress possibly
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promoted a reduction in ATP production as it negatively affected enzymes in the flow of
glycolysis and TCA in oil palm.

Fructose-1,6-bisphosphatase (FBPase) and phosphate dikinase (PPDK), enzymes of the
gluconeogenesis pathway, were negatively regulated in oil palm under salt stress. Under
saline stress conditions, the active synthesis of sugars by this route contributes to mitigating
the osmotic stress effect resulting from the submission of plants to a saline environment. In
maize (Zea mays L.), the photosynthesis rate was similar between control plants and plants
under neutral salt stress, suggesting that gluconeogenesis acted on the active synthesis of
sugars and the maintenance of osmotic balance [43].

The overexpression of TaFBA-10 in A. thaliana (L.) Heynh increased FAB activity with
positive effects on scavenging ROS under cold stress, whereas chlorophyll content was
severely affected [44]. The PPDK enzyme, in turn, is an enzyme involved in the regulation of
the C4 pathway in plants. PPDK enzyme activity increases in salinity tolerant accessions of
Miscanthus sinensis Andersson [45]. In this manner, the activity of this enzyme compensates
for the suppression of the Calvin Cycle by saline stress.

Another enzyme that participates in energy production is L-lactate dehydrogenase
type B (LDH). This enzyme did downregulate in young oil palm plants under salinity
stress. Lactate dehydrogenase (LDH) converts pyruvate to lactate that regenerates NAD +
to maintain cellular respiration under anaerobic conditions. Under flood stress conditions,
the initiation of fermentation responds to keeping energy supply in hypoxia conditions [46].
The downregulation of the LDH enzyme in palm oil at 12 DAT indicates a deficiency in
response to salinity stress and may indicate a possible anaerobic condition caused by it.

Vieira and colleagues showed that young oil palm plants are sensitive to high concen-
trations of NaCl [6]. The present MOI study, which used datasets generated from leaf tissue
collected by Vieira and colleagues, showed that enzymes competing for energy production
in the glycolysis and gluconeogenesis pathways were negatively affected by salinity stress
in the leaves of young oil palm plants. Concomitantly, gluconeogenesis, which involves the
synthesis of glucose from non-carbohydrate substances, apparently does not represent an
immediate response to reduced glucose supply in this oilseed crop under such stress.

The samples for transcriptome, metabolome, and proteome analyses were collected at
once, exactly 12 days after the onset of the stress, using a split sample study design. In terms
of data integration, accordingly to [47], the ideal situation is to have samples originating
from the same biological source material and obtained at the same time—a piece of tissue
may be cut into several sections and one used for a specific omics platform analysis, whilst
the other is used to another one. In such design, the samples are more similar in that they
all are assumed to produce data without batch effects between the different omics data
sets [47].

It is clear that the small number of DE metabolites was the main limitation of the
pathway-based MOI approach used in this study. The biggest number of DE metabolites
in the eleven most affected pathways identified in the MOI analysis was three, while
there were up to six proteins and 17 transcripts. The possible main reason to the fact
that only 19 metabolites were differentially expressed in the leaves of young oil palm
plants submitted to salinity stress was the mmetabolomics approach used. The untargeted
metabolomics is an exciting technology for searching for novel metabolic perturbations in
various biological systems, allowing the profile of many hundreds or thousands peaks with
varying chemical properties at once; however, there are still various obstacles, such as the
limited capability to identify novel compounds of interest and the need for advanced and
more robust databases [48]. In the present study, we used the latest KEGG version of the O.
sativa pathway library.

4. Materials and Methods
4.1. Plant Material, Experimental Design and Saline Stress

The oil palm plants used in this study were clones regenerated out of embryogenic
calluses obtained from the leaves of an adult plant—genotype AM33, a Deli × Ghana from
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ASD Costa Rica, as previously reported by [6]. Before starting the experiments, plants
were standardized accordingly to the developmental stage, size, and number of leaves.
They were in the growth stage known as bifid saplings, and the experiment was performed
in March 2018 in a greenhouse at Embrapa Agroenergy in Brasília, DF, Brazil (S-15.732◦,
W-47.900◦). The main environmental variables (temperature, humidity, and radiation)
fluctuated according to the weather conditions and underwent monitoring throughout
the entire experimental period using the data collected at a nearby meteorological station
(S-15.789◦, W-47.925◦).

The experiment consisted of five salinity levels (0.0, 0.5, 1.0, 1.5, and 2.0 g of NaCl per
100 g of substrate (a mixture of vermiculite, soil, and the Bioplant commercial substrate
(Bioplant Agrícola Ltda, Nova Ponte, MG, Brazil), in a 1:1:1 ratio, on a dry basis), with four
replicates in a completely randomized design (for additional details, see [6]). The substrate
mixture was fertilized using 2.5 g L−1 of the N-P2O5-K2O formula (20-20-20). For the omics
(transcriptomics, metabolomics, and proteomics) analysis described in the present study,
we collected the apical leaves from control and stressed plants (0.0 and 2.0 g of NaCl per
100 g of substrate) 12 days after imposition of the treatments (DAT).

4.2. Transcriptomics Data Analysis

Leaves harvested from control and stressed plants were immediately immersed in liq-
uid nitrogen and stored at −80 ◦C until RNA extraction; three plants for treatments. Details
regarding total RNA extraction and quality analysis, library preparation, and sequenc-
ing are in [15,19]. RNA-Seq raw sequence data are in the Sequence Read Archive (SRA)
database of the National Center for Biotechnology Information (NCBI) under BioProject
number PRJNA573093.

All the transcriptomics analysis was performed with OmicsBox platform—version
2.0.36 [49], as previously described by [15,17]. The oil palm genome [19,20]—downloaded
from NCBI (BioProject PRJNA268357; BioSample SAMN02981535) in September 2021—was
the reference genome for RNA-Seq data alignment. The pairwise differential expression
analysis between experimental conditions (Stressed Plants—12 DAT X Control—12 DAT)
was performed through edgeR software version 3.28.0 [50], applying a simple design and
an exact statistical test without the use of a filter for low counts genes.

4.3. Proteomics Data Analysis

Leaves samples for proteomics analysis were harvested, immediately immersed in
liquid nitrogen, and then stored at −80 ◦C until protein extraction; three plants for control
and three from stressed plants. Approximately 5.0 g of ground tissue—with 0.02 g/g of PVP
(polyvinylpolypyrrolidone) added to it—was weighed and mixed with 3.0 mL of buffer
(50 mM Tris HCl + 14 mM β-mercaptoethanol, pH 7.5) and 30 µL of protease inhibitor.
After gently stirring the suspension on ice for 10 min, it was centrifuged at 10.000 G at
4.0 ◦C for 15 min. Then, 1.0 mL of the supernatant was transferred to 2.0 mL microtubes,
mixed with 1.0 mL of 10% TCA (trichloroacetic acid) solution in acetone, kept at −20 ◦C
for 2 h for protein precipitation, and then centrifuged at 10,000 G at 4.0 ◦C for 15 min. The
protein pellet underwent wash with ice-cold 80% acetone, followed by centrifugation under
the same conditions as above. After washing twice, we stored it at −80 ◦C until protein
quantification [51] and visualization in an SDS-PAGE Gel.

After protein quantification, all samples went to the GenOne company (Rio de Janeiro,
RJ, Brazil) fort protein preparation and LC-MS/MS analysis. After undergoing treatment
with 10 mM DTT at 56 ◦C for 30 min, followed by 40 mM iodoacetamide (IDA) at room
temperature in the dark and also for 30 min. Then, samples were incubated for 20 h at
37 ◦C with trypsin (1:50) in a thermomixer at 800 rpm. At last, after adding 50 µL of 95%
acetonitrile and 5% TFA, samples were stirred three times at 1000 rpm for 15 min for tryptic
peptides extraction, vacuum dried, and dissolved in 20 µL of 0.1% formic acid in water.

For a global proteomics analysis, we adopted a label-free quantitation approach using
spectral counting by LC-MS/MS passing the samples through a nano-high performance
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liquid chromatography (EASY 1000; Thermo Fisher, Waltham, MA, USA) coupled to
Orbitrap Q Exactive Plus (Thermo Scientific, Waltham, MA, USA) mass spectrometer. An
MS scan spectra ranging from 375 to 2000 m/z were acquired using a resolution of 70,000
in the Orbitrap. We used the Xcalibur software (version 2.0.7) (Thermo Scientific, Waltham,
MA, USA) to obtain the data in biological triplicates.

The PatternLab for Proteomics V software [23] was used to process the raw files. We
used the Comet algorithm [52], the E. guineensis Uniprot reference database (30,667 entries),
and 123 common contaminant proteins (Proteome ID: UP000504607) to perform peptide
sequence matching (PSM) and employed a target-reverse strategy to increase confidence in
protein identifications [53]. The search considered semi-specific candidates and allowed a
maximum of two missed cleavages. Fixed cysteine carbamidomethylation and variable me-
thionine oxidation were applied; the Comet search engine used a precursor mass tolerance
of 40 ppm and a fragment compartment tolerance of 0.02.

We employed the SEPro—Search Engine Processor—module of PatternLab [54] to
validate the peptide spectrum matches and, subsequently, grouped identifications by
enzymatic specificity (semi-specific), resulting in two distinct subgroups. Then, we applied
XCorr, DeltaCN, Spectral Counting Score, and Peaks Matched values to generate a Bayesian
discriminator. SEPro automatically establishes a cutoff score to accept a 1% false discovery
rate (FDR) based on the number of decoys performed independently on each subset of data,
resulting in a false positive rate independent of the triptych status. We chose a minimum
sequence length of six amino acid residues and discarded similar proteins that represent an
identical sequence and consist of a fragment of another one. At last, a final list of mapped
proteins was composed only of PSMs with less than five ppm.

4.4. Metabolomics Data Analysis

Leaves harvested from control and stressed plants were immediately immersed in
liquid nitrogen and stored at −80 ◦C until metabolite extraction: four plants for treatments.
Before solvent extraction, all samples underwent grounding in liquid nitrogen. The solvents
used were methanol grade UHPLC, acetonitrile grade LC-MS, formic acid grade LC-MS,
sodium hydroxide ACS grade LC-MS, all from Sigma-Aldrich, and water treated in a Milli-
Q system from Millipore. We employed a well-established protocol [16,55,56] to extract
the metabolites in three phases (polar, non-polar, and protein pellet). Aliquots of 50 mg
of ground sample were transferred to 2 mL microtubes, and then 1 mL of a mixture of 1:3
(v:v) methanol/methyl tert-butyl ether (MTBE) at −20 ◦C was added. Homogenization on
an orbital shaker at 4.0 ◦C and ultrasound treatment in an ice bath were each performed
for 10 min. As the next step, we added 500 µL of a mixture of 1:3 (v:v) methanol/water to
each microtube. After centrifugation (15,300× g at 4.0 ◦C for 5 min), an upper non-polar
(green) and a lower polar (brown) phase and a protein pellet remained in each microtube.
After transferring both fractions separately to 1.5 mL microtubes, they were submitted to
a Speed vac system (Centrivap, Labconco) to be vacuum dried. Finally, the dry-fraction,
resuspended in 500 µL of 1:3 (v:v) methanol and water mixture and transferred to vials,
were now ready for analysis.

Analytical method UHPLC–MS/MS (ultra-high performance liquid chromatography
and tandem mass spectrometry) was used in this study. The UHPLC system (Nexera X2,
Shimadzu Corporation, Kyoto, Japan) was equipped with a reverse-phase column from
Waters Technologies (Acquity UPLC HSS T3, 1.8 µm, 2.1 by 150 mm at 35 ◦C). Solvent A
was 0.1% (v:v) formic acid in water and solvent B was 0.1% (v:v) formic acid in acetoni-
trile/methanol (70:30, v:v). The gradient elution used, with a flow rate of 0.4 mL min−1,
was as follows: 0–1 min isocratic, 0% B; 1–3 min, 5% B; 3–10 min, 50% B; 10–13 min, 100% B;
13–15 min isocratic, 100% B; then, 5 min rebalancing was conducted to the initial conditions.
The rate of acquisition spectra was 3.00 Hz, mass range m/z 70–1200 for the polar fraction
analysis and m/z 300–1600 for the lipidic fraction.

High-resolution mass spectrometry was used for detection (MaXis 4G Q-TOF MS,
Bruker Daltonics) equipped with an electrospray source in positive (ESI-(+)-MS) and
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negative (ESI-(−)-MS) modes. The settings of the mass spectrometer were as follows:
capillary voltage, 3800 V; dry gas flow, 9 L min−1; dry temperature, 200 ◦C; nebulizer
pressure, 4 bar; final plate offset, 500 V. For the external calibration of the equipment, we
used a sodium formate solution (10 mM HCOONa solution in 50:50 v:v isopropanol and
water containing 0.2% formic acid) injected through a six-way valve at the beginning of each
chromatographic run. Ampicillin ([M+H] + m/z 350.1186729 and [M-H]- m/z 348.1028826)
was the internal standard for later peak normalization on data analysis.

DataAnalysis 4.2 software (Bruker Daltonics, Bremen, Germany) was the first used
to analyze the raw data from UHPLC-MS, as mzMXL files. Pre-processing of data was
performed using XCMS Online [57,58], including peak detection, retention time correction,
and alignment of the metabolites. CentWave was used for peak detection (∆m/z = 10 ppm;
minimum peak width, 5 s; maximum peak width, 20 s). For the alignment of retention
times, the parameters were as follows: mzwid = 0.015; minfrac = 0.5; bw = 5. The unpaired
parametric t-test (Welch t-test) was used for the statistical analysis at the pre-processing
stage. Then, a data set was created from control (0.0 g) and stressed plants subjected to
NaCl/100 g of the fresh substrate at 12 DAT. All with four biological repeats.

The pre-processed data (csv file) underwent analysis in the Statistical Analysis module
of the MetaboAnalyst 5.0 [59,60]. The scaling used was the Pareto method [61]. Afterward,
the differentially expressed peaks (DEPs) selected were those passing the criteria of false
rate discovery (FDR) ≤ 0.05 and Log2 (fold change (FC)) 6= 1. When using the MS Peaks to
Pathway module to analyze the selected DEPs, we employed the following parameters:
molecular weight tolerance of 5 ppm; mixed ion mode; joint analysis using both the
mummichog [62] and Gene Set Enrichment Analysis—GSEA [63] algorithms; the latest
KEGG version of the O. sativa pathway library. The p-value cutoff from the mummichog
algorithm was at 1.0 × 10−5.

When two or more matched forms were observed as DEP (in the case of isotopes), the
mass error was the criteria for the feature selection for the comparison with metabolite
databases, keeping the smallest [56]. The mass error was also the criteria in the case
of a single matched compound relative to two or more DEPs. The mass spectra of all
DEPs underwent analysis for more information about the adduct forms obtained from
the database comparison. Subsequently, we performed the putative annotation of the
metabolites of interest by applying the filtered exact mass data to the molecular formula
from KEGG.

Finally, the KEGG IDs of the matched compounds were submitted to the pathway
analysis module for visualization through integrating enrichment and pathway topology
analysis [64]. Parameter sets were as follows: the hypergeometric test and the latest KEGG
version of the O. sativa pathway library.

4.5. Functional Annotation and Itegratomics Analysis

The results obtained using OmicsBox and PatternLab V underwent a functional classi-
fication. Distinct multiFASTA files generated were submitted to the functional classification
in the BlastKOALA platform [64].

The approach used to integrate the three omics was pathway mapping, and the
analysis was performed using the Omics Fusion platform [65]. Previously to the integration
of multi-omics data, the NCBI accession of transcripts related to enzymes was converted to
UniProt ID. Thus, the input data used were the IDs of each omics, which include UniProt
Accession for transcriptomics and proteomics, and KEGG ID for metabolomics. Firstly,
the data were enriched through several databases (EMBL, KEGG, NCBI, and UniProt),
and then the module “KEGG feature distribution” was used to map these omics data in
known pathways.

5. Conclusions

Previously, in addition to showing that young oil palm submitted to a high concentra-
tion of NaCl reduces the rates of CO2 assimilation, stomatal conductance to water vapor,
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and transpiration, our group also confirmed a preponderant role of transcription factors
in the early response of oil palm plants to salinity stress [6,15]. Data from ionomics, phe-
nomics, and transcriptomics (mRNA and miRNA) were employed to show that. Currently,
two new omics platforms joined this list—metabolomics and proteomics—and a first MOI
study was performed. For phenomics–morphophysiological characterization, data came
from two salinity stress experiments carried out in November 2017 and March 2018, and
all the transcriptome, metabolome, and proteome data came from one of the experiments
at once, 12 days after the onset of the stress, using a split-sample study design. Extensive
leaf necrosis was already visible when the samples from the stressed treatment (electrical
conductivity of ~40 dS m−1) were collected, and one must consider that when analyzing
these omics data sets.

The SOA and MOI studies here reported generated new insights on the response the
early response of oil palm plants to salinity stress, pointing out genes, proteins, metabolites,
and pathways directly affected by this stress. The eleven pathways identified by MOI
analysis definitely appear at the top of the list as priorities for further studies. However, it
is clear that two factors limited the accomplishments of the MOI study—the small number
of differentially expressed metabolites identified via an untargeted metabolomics approach
and the lack of data regarding the Log2(FC) from the proteins found exclusively in the
control and stressed treatments when using the global proteomics analysis. No Log2(FC)
from most of the DE proteins was identified, and only 19 DE metabolites limited the use of
correlation studies.
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