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Abstract: Water stress decreases seed-germination characteristics and also hinders subsequent
seedling establishment. Seed priming with bioactive compounds has been proven as an effective way
to improve seed germination under normal and stressful conditions. However, effect and mechanism
of seed priming with chitosan (CTS) on improving seed germination and seedling establishment
were not well-understood under water-deficit conditions. White clover (Trifolium repens) seeds were
pretreated with or without 5 mg/L CTS before being subjected to water stress induced by 18% (w/v)
polyethylene glycol 6000 for 7 days of germination in a controlled growth chamber. Results showed
that water stress significantly decreased germination percentage, germination vigor, germination
index, seed vigor index, and seedling dry weight and also increased mean germination time and
accumulation of reactive oxygen species, leading to membrane lipid peroxidation during seed ger-
mination. These symptoms could be significantly alleviated by the CTS priming through activating
superoxide dismutase, catalase, and peroxidase activities. In addition, seeds pretreated with CTS ex-
hibited significantly higher expression levels of genes encoding dehydration-responsive transcription
factors (DREB2, DREB4, and DREB5) and dehydrins (Y2K, Y2SK, and SK2) than those seeds without
the CTS priming. Current findings indicated that the CTS-induced tolerance to water stress could be
associated with the enhancement in dehydration-responsive pathway during seed germination.

Keywords: antioxidant enzyme; dehydrins; DREB transcription factor; oxidative damage; seed vigor;
reactive oxygen species

1. Introduction

With the development of global warming, drought stress has become one of the
destructive environmental factors affecting seed germination and plant growth world-
wide [1]. Seed germination and seedling establishment are key stages of plant growth
and development but are also very vulnerable to drought stress [2]. Drought reduced
seed-germination rate and subsequent seedlings establishment, leading to yield loss and
quality deterioration [3]. Cell dehydration is one of main adverse effects induced by
drought. Alteration of dehydration-responsive pathway is a universal response to water
deficit in the plant kingdom [4]. For example, dehydration-responsive element-binding
proteins (DREBs) recognize and bind to the dehydration-responsive element (DRE) of many
downstream stress-responsive genes such as dehydrins (DHNs), which is an important
adaptive strategy when plants survive under drought stress [5]. It has been widely reported
that the overexpression of DREBs up-regulated transcriptional levels of different types of
DHNs, thereby enhancing drought tolerance in many plants such as Arabidopsis thaliana,
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rice (Oryza sativa L.), tobacco (Nicotiana tabacum L.), and wheat (Triticum aestivum L.) [6,7].
Wheat seed pretreated with microbe Bacillus sp. or Klebsiella sp. effectively mitigated
drought-induced declines in seedling biomass and root growth associated with significant
up-regulation of DHN and DREB [8].

Oxidative damage induced by overaccumulation of reactive oxygen species (ROS) such
as superoxide anion (O2

−) and hydrogen peroxide (H2O2) is another serious consequence
when seeds germinate and seedlings establish under drought condition [9]. Rapid detoxifi-
cation of O2

− and H2O2 by regulating antioxidant defense has been recognized as one of
pivotal adaptive mechanisms of drought tolerance in plants. As key components of antioxi-
dant defense, superoxide dismutase (SOD) catalyzes dismutation of O2

− into H2O2 and
O2, and catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) reduce H2O2 to
nontoxic H2O [10]. It has been found that drought-tolerant alfalfa (Medicago sativa L.) culti-
var Xinmu No.1 accumulated lower H2O2 and malondialdehyde (MDA) contents through
activating SOD, CAT, POD, and APX activities during seed germination under drought
stress [11]. In response to drought, better antioxidant capacity and less ROS accumulation in
soybean (Glycine max L.) seedlings were positively correlated with higher seed-germination
rate [12]. Exogenous silicon could improve tomato (Lycopersicon esculentum L.) seed ger-
mination in relation to enhanced antioxidant enzymes activities and reduced oxidative
stress [13]. These findings indicated the importance of effective antioxidant defense during
seed germination and seedling establishment under water deficit condition.

Chitosan (CTS) is a bioactive compound from plants and marine crustaceans, such as
crab shells and waste shrimp. In recent years, the CTS has been widely used in agricultural
and horticultural fields for the improvement in crop quality and stress adaptation due to
its non-toxic and biodegradable property [14]. It has been reported that the CTS could
trigger many defensive responses to drought in plants. For example, exogenous application
of CTS helped to maintain functional and structural integrity of biological membranes
associated with increases in CAT and APX activities and the accumulation of secondary
metabolite in periwinkle (Catharanthus roseus L.) [15]. Seed soaking with CTS could increase
the accumulation of indoleacetic acid and free amino acids in favor of subsequent lupine
(Lupinus termis L.) growth and yield under drought stress [16]. Foliar application of CTS
also could effectively alleviate drought-induced growth inhibition of lettuce (Lactuca sativa L.)
plants [17]. In addition, the exogenous CTS significantly increased photosynthetic rate, water
use efficiency, and CAT, POD, and SOD activities in pot marigold (Calendula officinalis L.)
plants, thereby mitigating deleterious effect of drought stress on growth [18].

Seed priming with bioactive compounds or elements such as zinc, γ-aminobutyric acid
(GABA), putrescine (Put), diethyl aminoethyl hexanoate (DA-6), or spermidine (Spd) has
been proven as an effective way to improve seed germination under normal and stressful
conditions [19–23]. Previous studies have found that chitosan-black soybean seed-coat
extract exhibited strong antioxidant property, and CTS coating could effectively improve
seed germination, seedling growth, and resistance to pests under normal condition [24–26].
However, research has still not fully elucidated the effect of seed priming with CTS on
alleviating drought-induced damage to seed germination and seedling establishment. White
clover (Trifolium repens L.) is an important forage for feeding livestock and also used as
an ornamental plant in horticulture. Objects of this study were to investigate the effect of
CTS priming on seed-germination characteristics and to further elucidate the underlying
mechanism involved in antioxidant defense and the dehydration-responsive pathway during
white clover seed germination under water stress. Current findings will be beneficial to better
understand the CTS-regulated adaptability to water stress during seed germination.

2. Materials and Methods
2.1. Plant Materials and Treatments

Seeds (white clover cv. Haifa) were surface-sterilized in 0.1% HgCl2 solution for 5 min
and then rinsed four times in distilled water (ddH2O). These seeds were divided into
two groups: one group was soaked in ddH2O for 3 h (seeds without the CTS priming),
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and another group was firstly soaked in ddH2O for 1 h and then transferred into 5 mg/L
CTS (Sigma-Aldrich, 900344, St. Louis, MO, USA) solution for 2 h (seeds priming with
the CTS). Seeds primed with or without the CTS were then germinated in Petri dishes.
Three sheets of filter papers were laid in each Petri dish and moistened with 15 mL of
ddH2O (normal germination condition) or 18% (w/v) polyethylene glycol 6000 (PEG
6000) solution (germination under water stress). Each treatment included six biological
replications, and each Petri dish included 50 seeds. All Petri dishes were placed randomly
in a growth chamber (average day/night temperature of 23/19 ◦C, 75% relative humidity,
and 700 µmol·m−2·s−1 photosynthetically active radiation (PAR) at 12 h photoperiod) for
7 days. Seedlings were sampled on the 7th day of germination for determination of growth,
physiological parameters, and gene expression levels.

2.2. Measurements of Seed-Germination and Growth Parameters

Germination vigor (GV) or germination percentage (GP) was calculated as a percentage
of those seeds that had germinated on the 3rd or 7th day after the start of H2O or CTS
pretreatment, respectively. The germination index (GI) was calculated based on the formula:

∑(Gt/Dt) (1)

Gt indicates the number of germinated seeds, and Dt indicates the corresponding time
to Gt in days.

Mean germination time (MGT) was calculated based on the formula:

MGT=∑(D × n)/∑n (2)

D indicates the number of days, and N indicates the number of germinations in the
corresponding days.

For root length (RL), shoot length (SL), fresh weight (FW), and dry weight (DW),
10 seedlings were randomly selected from each treatment after 7 days of germination. Seed
vigor index (SVI) was the product of FW and GI [22].

2.3. Measurements of Reactive Oxygen Species and Antioxidant Enzyme Activities

Superoxide anion (O2
−) or hydrogen peroxide (H2O2) content was determined ac-

cording to the method of Elstner and Heupel [27] or Velikova et al. [28], respectively. For
malondialdehyde (MDA) content and antioxidant enzyme activity, 0.2 g of fresh seedlings
were homogenized with 3 mL of 50 mM cold phosphate buffer (pH 7.8) and then centrifuged
at 10,000× g for 15 min at 4 ◦C. The supernatant was collected for MDA determination
and also as enzyme extract. The MDA content was determined by using 0.5 mL of the
supernatant and 1 mL of the reaction solution (20% w/v trichloroacetic acid and 0.5%
w/v thiobarbituric acid). After being heated in a boiling water for 15 min, the reaction
mixture was cooled down to room temperature, and the absorbance of reaction solution
was measured at 532 and 600 nm by using a spectrophotometer (Spectronic Instruments,
Rochester, NY, USA) [29].

For SOD activity, 0.05 mL of supernatant was mixed with 1.45 mL of 50 mM phosphate
solution (pH 7.8) containing 1.125 µM NBT, 60 µM riboflavin, 195 mM methionine, and
3 µM EDTA. After being placed under 600 µmol m−2·s−1 PAR for 10 min, the absorbance
of reaction solution were detected at 560 nm [30]. POD and CAT activities were detected
based on the method of Chance and Maehly [31]. Briefly, 0.05 mL of supernatant was
mixed with 1 mL of 50 mM phosphate buffer (pH 7.0) containing 45 mM H2O2 solution,
and then, the absorbance of reaction solution was detected at 240 nm for the CAT activity.
The 0.025 mL of supernatant was mixed with 0.05 mL of H2O2 solution, 0.5 mL guaiacol
solution, and 0.925 mL phosphate buffer (pH 7.0). The absorbance of reaction solution
was detected at 470 nm for the POD activity. For APX activity, 0.05 mL of supernatant
was mixed with 100 mM of sodium acetate buffer (pH 5.8), 10 mM ascorbic acid, 5 mM



Plants 2022, 11, 2015 4 of 13

H2O2, and 0.003 mM ethylenediaminetetraacetic acid, and then, the absorbance of reaction
solution was detected at 290 nm [32].

2.4. Measurements of Genes Expression Levels

Fresh seedlings (0.15 g) were sampled for total RNA extraction using a total RNA
extraction kit (Tiangen, China), and then, the RNA were reverse-transcripted into cDNA
(PrimeScript™ RT reagent Kit with gDNA Eraser, TaKaRa, Japan). Primers of β-Actin
(internal reference gene) and genes encoding different types of dehydrins and dehydration-
responsive element-binding proteins (Table 1) were used for real-time quantitative fluores-
cence PCR (qRT-PCR). The PCR procedure for all genes was: 94 ◦C for 5 min, denaturation at
95 ◦C for 30 s (40 repeats), annealing at 58 or 60 ◦C (Table 1) for 30 s, and extension at 72 ◦C
for 30 s. Genes’ relative expression levels were calculated by using the formula 2−∆∆Ct [33].

Table 1. Primer sequences and GeneBank accession numbers of genes.

Target Gene Accession No. Forward Primer (5′-3′) Reverse Primer (5′-3′) Tm (◦C)

SK2 GU443960.1 TGGAACAGGAGTAACAACAGGTGGA TGCCAGTTGAGAAAGTTGAGGTTGT 58
Y2K JF748410.1 AGCCACGCAACAAGGTTCTAA TTGAGGATACGGGATGGGTG 60

Y2SK GU443965.1 GTGCGATGGAGATGCTGTTTG CCTAATCCAACTTCAGGTTCAGC 60
DREB2 EU846194.1 CAAGAACAAGATGATGATGGTGAAC AAGAAGAAGAATTGGAGGAGTCATG 58
DREB3 EU846196.1 GCTCAATAGGACTCAACCAACTCAC TGACGTTGTCTAACTCCACGGTAA 58
DREB4 EU846198.1 CTTGGTTGTGGAGATAATGGAGC AAGTTGCAATCTGAATTCTGAGGAC 58
DREB5 EU846200.1 GCGATAGGTTCAAAGAAAGGGTG AGAGCAGCATCTTGAGCAGTAGG 58
β-Actin JF968419 TTACAATGAATTGCGTGTTG AGAGGACAGCCTGAATGG 58

2.5. Statistical Analysis

Variations among four treatments were analyzed by the general linear model pro-
cedure of Statistical Product and Service Solutions 24 (SPSS Institute, IBM, Armonk, NY,
USA, 2018). Differences among treatments were determined by using the least significant
difference (LSD) at p ≤ 0.05.

3. Results
3.1. Seeds Priming with CTS Affected Germination Characteristics under Water Stress

GP, GV, GI, and MGT were not significantly affected by the CTS priming under normal
conditions (Figure 1A–D). PEG-induced water stress resulted in significant declines in
GP, GV, GI, and MGT of seeds primed with or without CTS. Seeds primed with CTS
exhibited a 16%, 54%, or 26% greater increase in GP, GV, or GI than those seeds without
the CTS priming under water stress, respectively (Figure 1A–C). Seeds primed with CTS
showed significantly lower MGT than seeds without the CTS priming under water stress
(Figure 1D). As compared to normal condition, water stress also significantly decreased
SVI, FW, DW, RL, and SL (Figures 2A–C and 3A,B). However, seeds primed with CTS had
significantly higher SVI, DW, RL, and SL than those seeds without the CTS priming after
7 days of germination under water stress (Figures 2A,C and 3A,B).
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Figure 1. Seeds priming with chitosan affected (A) germination percentage, (B) germination vigor,
(C) germination index, and (D) mean germination time under water stress. Vertical bars above
columns indicate ± SE of mean, and different letters above columns indicate significant difference
(p < 0.05). C, control (seeds pretreated with H2O germinated under normal condition); C+CTS,
control + CTS (seeds pretreated with CTS germinated under normal condition); WS, water stress
(seeds pretreated with H2O germinated under water stress condition); WS+CTS, water stress + CTS
(seeds pretreated with CTS germinated under water stress condition).
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Figure 2. Seed priming with chitosan affected (A) seed vigor index, (B) seedling fresh weight, and
(C) seedling dry weight after 7 days of germination under water stress. Vertical bars above columns
indicate ± SE of mean, and different letters above columns indicate significant difference (p < 0.05).
C, control (seeds pretreated with H2O germinated under normal condition); C+CTS, control + CTS
(seeds pretreated with CTS germinated under normal condition); WS, water stress (seeds pretreated
with H2O germinated under water stress condition); WS+CTS, water stress + CTS (seeds pretreated
with CTS germinated under water stress condition).
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Figure 3. Seed priming with chitosan affected (A) seedling root length and (B) seedling shoot
length after 7 days of germination under water stress. Vertical bars above columns indicate ± SE
of mean, and different letters above columns indicate significant difference (p < 0.05). C, control
(seeds pretreated with H2O germinated under normal condition); C+CTS, control + CTS (seeds
pretreated with CTS germinated under normal condition); WS, water stress (seeds pretreated with
H2O germinated under water stress condition); WS+CTS, water stress + CTS (seeds pretreated with
CTS germinated under water stress condition).

3.2. Seed Priming with CTS Affected Oxidative Damage and Antioxidant Defense under
Water Stress

ROS (O2
− and H2O2) and MDA significantly accumulated in seedlings after 7 days of

germination under water stress (Figure 4A–D). A 30%, 32%, or 16% lower O2
.–, H2O2, or

MDA content was detected in the WS+CTS treatment as compared to the WS treatment
under water stress, respectively (Figure 4A–C). As compared to normal condition, SOD
activity did not significantly change in the WS treatment but significantly increased in the
WS+CTS treatment (Figure 5A). Water stress inhibited the POD activity but improved the
CAT activity in both of WS and WS+CTS treatments (Figure 5B,C). Seedlings germinated
from seeds priming with the CTS showed significantly higher POD and CAT activities than
seedlings without CTS priming (Figure 5B,C). APX activity significantly decreased under
water stress, and no significant difference in APX activity was observed between the WS
and WS+CTS (Figure 5D).
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Figure 4. Seeds priming with chitosan affected (A) superoxide anion (O2
−) content, (B) hydrogen

peroxide (H2O2) content, and (C) malondialdehyde (MDA) content in seedlings after 7 days of
germination under water stress. Vertical bars above columns indicate ± SE of mean, and different
letters above columns indicate significant difference (p < 0.05). C, control (seeds pretreated with H2O
germinated under normal condition); C+CTS, control + CTS (seeds pretreated with CTS germinated
under normal condition); WS, water stress (seeds pretreated with H2O germinated under water
stress condition); WS+CTS, water stress + CTS (seeds pretreated with CTS germinated under water
stress condition).
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Figure 5. Seeds priming with chitosan affected (A) superoxide dismutase (SOD) activity, (B) per-
oxidase (POD) activity, (C) catalase (CAT) activity, and (D) ascorbate peroxidase (APX) activity in
seedlings after 7 days of germination under water stress. Vertical bars above columns indicate ± SE
of mean, and different letters above columns indicate significant difference (p < 0.05). C, control
(seeds pretreated with H2O germinated under normal condition); C+CTS, control + CTS (seeds
pretreated with CTS germinated under normal condition); WS, water stress (seeds pretreated with
H2O germinated under water stress condition); WS+CTS, water stress + CTS (seeds pretreated with
CTS germinated under water stress condition).

3.3. Seeds Priming with CTS Affected Genes Expression Levels Involved in
Dehydration-Responsive Pathway under Water Stress

Relative expression levels of genes encoding dehydration-responsive element-binding
proteins, including DREB2, DREB3, DREB4, and DREB5, are shown in Figure 6A–D. DERB2
expression level was not affected significantly by water stress in the WS treatment, whereas
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it was significantly increased in the WS+CTS treatment (Figure 6A). DERB3 expression
level was inhibited significantly by water stress in both of the WS and WS+CTS, and
there was no significant difference in the DERB3 expression level between the WS and
WS+CTS (Figure 6B). Water stress induced more pronounced increases in the DREB4 and
DREB5 expression in the WS+CTS than that in the WS (Figure 6C,D). As compared to
normal condition, water stress inhibited Y2K and Y2SK expression levels in the WS but
up-regulated the Y2K and Y2SK expression levels in the WS+CTS (Figure 7A,B). The CTS
priming significantly up-regulated the SK2 expression level in seedling under normal
condition and water stress (Figure 7C).
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Figure 7. Seeds priming with chitosan affected genes expression levels of (A) Y2K, (B) Y2SK, and
(C) SK2 encoding different types of dehydrins in seedlings after 7 days of germination under water
stress. Vertical bars above columns indicate ± SE of mean, and different letters above columns
indicate significant difference (p < 0.05). C, control (seeds pretreated with H2O germinated under
normal condition); C+CTS, control + CTS (seeds pretreated with CTS germinated under normal
condition); WS, water stress (seeds pretreated with H2O germinated under water stress condition);
WS+CTS, water stress + CTS (seeds pretreated with CTS germinated under water stress condition).

4. Discussion

Water stress decreases turf quality and also increases maintenance cost, especially in
arid and semi-arid regions worldwide [34]. White clover is a leguminous ground cover
plant that is widely used for urban landscaping and conservation of water and soil [35].
As compared to other leguminous species such as alfalfa, white clover is more susceptible
to water deficit at the germination stage. Seed priming with bioactive compound has
become an important agronomic strategy for improving seed vigor and germination under
normal and stress conditions [36]. It has been proven that white clover seed priming
with a low concentration of NaCl solution could significantly mitigate adverse effects
induced by water stress, including declines in GP, GV, SVI, and radicle length [37]. Recent
research also showed that white clover seeds soaking in an appropriate dose of diethyl
aminoethyl hexanoate solution before being geminated under water stress effectively
improved germination rate, root length, and shoot length of seedlings [23]. In addition,
seed coating with CTS has been reported to significantly promote GP and seedling growth
of hybrid rice under salt stress [38]. Our study demonstrated that seed priming with the CTS
showed better GP, GV, GI, dry weight, root length, and shoot length of seedlings than those
seeds primed with H2O under water stress. Current findings indicated that the CTS could
be used as a beneficial elicitor to improve seed germination under stressful conditions.

Drought-induced high amounts of ROS in cells caused lipid peroxidation, protein
degradation, and membrane leakage, resulting in retarded growth, premature senescence,
and even death [39]. The overaccumulation of ROS (O2

− and H2O2) and the aggravation
of membrane lipid peroxidation were observed in our current study when white clover
seeds germinated under water-limited conditions. Previous study has found that zinc
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priming ameliorated adverse effects of drought stress associated with enhancement in
total antioxidant capacity and reduction in membrane lipid peroxidation during seed
germination [19]. In addition, the regulatory role of CTS in activating the antioxidant
defense system to scavenge free radicals has also been reported in response to water
stress. For example, the CTS coating could mitigate drought-induced oxidative damage
by activating SOD, CAT, and POD activities in wheat seedlings [40]. A combination of
seed priming and foliar application of CTS improved shoot and root growth as well as
antioxidant enzyme activities, including POD and APX in rice seedling under drought
stress [41]. Seeds pretreated by exogenous CTS increased drought tolerance in alfalfa
through enhancing the antioxidant defense system [42]. White clover seed priming with
CTS significantly alleviated oxidative damage induced by water stress through improving
ROS-scavenging enzyme activities, including SOD, POD, and CAT, which indicated the
beneficial function of CTS in maintaining ROS homeostasis for better adaptation to a
water-deficit environment during early seedling establishment.

The DREBs family is considered one of the most critical classes of TFs in relation to
drought tolerance in plants [43]. DREBs regulate stress-defensive genes expression by
binding to the DRE/C-repeat core component of these downstream genes under different
abiotic stresses [44]. It has been found that transgenic tobacco overexpressing an RcDREB
5-A showed better growth and higher biomass than non-transgenic lines in response to
drought stress [45]. Similarly, up-regulation of PcDREB2A could significantly improve
drought tolerance of Arabidopsis [46]. On the contrary, RNAi-tomato plants exhibited a sig-
nificantly lower expression level of SlDREB2 and higher lipid membrane peroxidation than
the wild-type under drought stress [47]. During seed germination, significant increases in
expression levels of different types of DREBs are also propitious to achieve stress tolerance.
For instance, drought tolerance of transgenic Arabidopsis overexpressing an AmDREB2 was
improved significantly at the seed-germination stage [48]. A SgDREB2 overexpression in
Arabidopsis increased the seed-germination rate, seedlings survival rate, and antioxidant
enzyme activities, including SOD and APX, under drought stress, suggesting that SgDREB2
regulated drought tolerance involved in antioxidant defense [49]. Exogenous CTS prim-
ing significantly up-regulated expression levels of DREB2, DREB4, and DREB5 during
white clover seed germination, which indicated that the potential role of CTS in regulating
adaptability to water stress could be associated with the DREB-responsive pathway.

DHNs are diverse classes of stress-responsive proteins that are regulated by the
DREBs [50]. DHNs quickly accumulate during seed germination or when plants suffer
dehydration due to their positive functions as chaperones, ROS scavengers, and osmo-
protectants in cells [51]. Previous study has proven that white clover seed priming with
DA-6 significantly mitigated adverse effects of water stress on seed germination and
seedling establishment in relation to significant accumulation of DHN and upregulation
of Y2K, Y2SK, and SK2 genes encoding different types of DHNs [23]. Enhanced AnDHN
or CaDHN3 expression in Arabidopsis increased seed germination and initial root length
under drought stress and also promoted antioxidant capacity to alleviate drought-induced
ROS accumulation in seedlings [52,53]. However, silencing of the CaDHN3 in pepper
(Capsicum annuum L.) plants significantly decreased drought tolerance, as demonstrated
by more accumulation of ROS and MDA contents than the wild-type [53]. A recent study
of Decena et al. found that DHNs expression among 32 Brachypodium grass ecotypes was
highly correlated with drought-responsive traits, such as plant biomass and water-use
efficiency, and drought-tolerant ecotypes often had higher expression levels of DHNs in
response to drought stress [54]. Water stress could also induce more or higher DHNs
expression in drought-tolerant Kentucky bluegrass (Poa pratensis) germplasms [55]. Our
findings indicated that seed priming with CTS activated the expression of Y2K-, Y2SK-,
and SK2-encoding DHNs, which could be a key factor affecting water-stress tolerance in
white clover.
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5. Conclusions

Water stress significantly decreased seed germination characteristics and hindered
seedling establishment. Seed priming with CTS could be used as a simple, effective,
economical, and environmentally friendly technique to improve germination and seedling
establishment under water-deficit conditions. Stress-induced overaccumulation of ROS
damaged cell membrane, leading to membrane lipid peroxidation, but this symptom could
be significantly alleviated by the CTS priming through activating SOD, POD, and CAT
activities. In addition, seeds pretreated with CTS exhibited significantly higher expression
levels of DREB2, DREB4, DREB5, Y2K, Y2SK, and SK2 than those seeds without the
CTS priming. Current findings indicated that the CTS-induced tolerance to water stress
could be associated with the enhancement in dehydration-responsive pathway during
seed germination.
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