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Abstract: Long-term site-specific studies describing changes in the phenotypic variability of Phytoph-
thora infestans populations allow quantitative predictions of pathogen spread and possible outbreaks
of epidemics, and provide key input for regional resistance breeding programs. Late blight samples
were collected from potato (Solanum tuberosum) breeding fields in Estonia during a twelve-year
study period between 2001 and 2014. In total, 207 isolates were assessed for mating type and
235 isolates for metalaxyl resistance and 251 isolates for virulence factors. The frequency of mating
types strongly fluctuated across the years, whereas the later period of 2010–2014 was dominated by
the A2 mating. Despite fluctuations, both mating types were recorded in the same fields in most years,
indicating sustained sexual reproduction of P. infestans with oospore production. Metalaxyl-resistant
and intermediately resistant strains dominated in the first years of study, but with the progression
of the study, metalaxyl-sensitive isolates became dominant, reaching up to 88%. Racial diversity,
characterized by normalized Shannon diversity index decreased in time, varying from 1.00 in 2003
to 0.43 in 2013. The frequency of several virulence factors changed in a time-dependent manner,
with R2 increasing and R6, R8, and R9 decreasing in time. Potato cultivar resistance background
did not influence the frequency of P. infestans mating type, response to metalaxyl, and racial diver-
sity. However, the diversity index decreased in time among isolates collected from resistant and
susceptible cultivars, and remained at a high level in moderately resistant cultivars. These data
demonstrate major time-dependent changes in racial diversity, fungicide resistance, and virulence
factors in P. infestans, consistent with alterations in the control strategies and popularity of potato
cultivars with different resistance.

Keywords: mating type; metalaxyl; virulence; population changes; Phytophthora infestans; potato cultivars

1. Introduction

Potato (Solanum tuberosum) late blight caused by the oomycete pathogen Phytoph-
thora infestans is a serious problem for potato growers worldwide, and its first emergence
in European potato fields was in the 1840s. Late blight is a re-emerging and persistent
disease [1,2], causing substantial economic losses [3]. It is extraordinarily virulent and
adaptable, reflecting continuous evolution of new lines [4–7]. In the last two decades,
late blight pathogen populations underwent fast and sudden genetic changes due to
within-population changes in genotype frequencies as well as crossings among popula-
tions, causing frequent genotype shifts throughout potato cultivation areas in Europe,
North America, Asia, and Africa [4,8–18].

Due to increased adaptability, late blight is able to destroy potato foliage even under
unfavorable conditions for the pathogen before the end of the growing season [19,20].
Hence the use of fungicides plays a key role in late blight integrated control strategies. In
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Europe, an average of 7–15 fungicide treatments per growing season are applied, depend-
ing on weather conditions, disease pressure, and cultivar [21–24]. In several European
countries, intensive late blight control management with a weekly schedule of fungicide
spraying are implemented [25]. Late blight infections start nowadays earlier in the growing
season [6], and under favorable conditions for the pathogen, farmers are forced to spray
potato foliage with fungicides even every three to five days to control the disease [19,24].
Thus, in very severe blight years, fungicides are applied up to 20–25 times during the
growing season [21,22,26].

A major concern is the increasing fungicide resistance of late blight [24], and there is
a need to use several active ingredients due to the insensitivity of novel strains to common
fungicides [23]. Metalaxyl-resistant isolates of P. infestans were reported already in the
early 1980s in Europe [27,28], but the loss of efficacy of metalaxyl under practical field
conditions was not always scientifically proven, especially in Northern Europe, e.g., in
Finland [29]. Similarly, the broad-spectrum fungicide product Ridomil Gold MZ 68 WG
(Syngenta; metalaxyl and mancozeb as active ingredients) is widely used as an effective
fungicide by potato growers in Estonia [30]; however, the approval for its EU use expired
in January 2022. Some tolerance of P. infestans to another common fungicide propamocarb
HCl was found, but no signs of resistance in P. infestans or failures in late blight control were
reported [21,29,31,32]. New genotypes of P. infestans caused reduced efficacy of fluazinam
(product name Shirlan 500 SC), which was a widely used tool for tuber blight control [23]. In
particular, fluazinam is not effective for the EU_37_A2 strain, a new widespread P. infestans
genotype in European potato fields [33].

Use of cultivar resistance in potato late blight control became more important due to
the increased severity of late blight infections, increased pathogen diversity, and resultant
adaptability and fungicide resistance development. In light of the European Green Deal,
it is further necessary to use more sustainable control practices and reduce the agrochem-
ical input, and to overall redesign the production systems [34]. However, this does not
reflect the real situation in potato fields, as a large portion of cultivars grown in Europe
do not comprise any resistance genes and are susceptible or even very susceptible to late
blight [19,21,35]. Thus, it is highly challenging to find late blight-resistant cultivars with
persistent field resistance, adapted to local field conditions, and with the traits that corre-
spond to producer’s demands [21]. Traditional breeding methods, such as parental and
progeny selection, are relatively slow, and relying only on these methods would imply that
late blight resistance would inevitably lag behind the spread of new late blight lineages.
Application of new methods can improve the speed and efficiency of future breeding
efforts that aim to simultaneously increase crop disease resistance and yield and improve
taste; these new approaches include effective combinations of resistance genes [36], use of
diagnostic DNA markers for yield optimization [37], and improvement of taste to increase
potato consumption [38].

Until the early 1970s, in Estonia, the main yield-limiting factor for potato growth
was drought in some exceptionally dry summers. Appearance of new more virulent late
blight strains was the game changer, and the first early potato late blight outbreaks were
observed in Estonia at Jõgeva potato breeding fields in 1972 [39]. Thus, since the early
1970s, the new target in potato breeding programs was to improve gene bank with resistant
breeding material and intensive breeding for the diversification of late blight-resistant
cultivars. Nowadays, improved phytopathogenic profile (resistance for several pathogens,
including P. infestans) and early tuber maturity are the main targets in Estonian potato
breeding programs. However, a special late blight resistance breeding program ended in
2012 [40]. Local breeding has major regional relevance, especially for Nordic countries,
because no major potato breeding companies from Western or Central Europe develop
cultivars bred for cultivation in northern latitudes [41]. Although the Western and Central
European cultivars might have desirable traits, they may not cope well with local conditions
outside their breeding area. For example, the Dutch cultivar Toluca has early medium
maturation and high late blight resistance in the Netherlands, but it did not thrive well
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under drought conditions in the Northern Baltics and could not exhibit late blight resistance
under these conditions [19,35].

Late blight is constituting a direct threat to potato production worldwide, and due
to the sexual reproduction of the pathogen, there is ongoing rapid change in genotypes
and diversification within its populations. Thus, continuous monitoring of P. infestans
populations at global, regional, and local levels is needed for developing integrated plant
protection and breeding strategies to combat the infections. The present study characterized
the mating type, response to metalaxyl and virulence of P. infestans isolates in the Estonian
potato breeding fields in Jõgeva during 12 years of study. The main aim of this long-term
study was to monitor P. infestans populations in a location with a high variation in a host-
resistance background to gain an insight into changes in P. infestans populations, as driven
by the inflow of new lineages and host resistance. Phytophthora infestans isolates were
collected from potato cultivars with a wide range of host resistance to potato late blight,
allowing for the assessment of the impact of cultivar resistance level (resistant, moderately
resistant, and susceptible) on phenotypic variation in the P. infestans isolates studied.

2. Results

The main aim for this long-term study was to detect possible temporal changes in
P. infestans sub-populations collected from potato breeding fields during a 12-year study
period (2001–2007, 2010–2014). The impact of the cultivar resistance level on the phenotypic
variation in P. infestans isolates was also studied. For that purpose, P. infestans isolates
were characterized for mating type (207 isolates), virulence (251 isolates), and metalaxyl
response (235 isolates).

2.1. Mating Type

Of the 207 isolates tested, 114 belonged to A1 mating type (55.1%) and 89 to A2
mating type (43.0%). Both A1 and A2 mating types were found in eleven out of twelve
study years. Self-fertile isolates were observed only in 2006 and 2007, in total 1.9% of the
whole population. A2 mating type was found in all years except in 2002 (Figure 1). The
frequency of the A2 mating type varied between 41.2 and 71.4%, and dominated (>50%)
in 2001, 2003–2005, 2007, 2010–2012, and 2014 (χ2 = 60.5, df = 12, p < 0.001 for the year
effect). Considerable fluctuations in the frequency of A2 mating type were observed during
2001–2007 (Figure 1). In 2010–2012 and 2014, the frequency of the A2 mating type stayed
high and stable. There were no significant differences in the frequency of A1 and A2 mating
types between isolates collected from cultivars with different late blight resistance levels
(χ2 = 1.42, df = 4, p = 0.84).

2.2. Metalaxyl Resistance

Of the 235 isolates tested for their response to metalaxyl, 70 isolates (29.8%) were
classified as resistant, 74 isolates (31.5%) as intermediate, and 91 isolates (38.7%) as sensitive
(Figure 2). The metalaxyl resistance varied between sampling years (χ2 = 82.2; df = 22,
p < 0.001; Figure 2). In the period 2001–2005, metalaxyl-resistant and intermediately
resistant isolates strongly prevailed, comprising together 70.7−94.5% of tested isolates
(Figure 2). Metalaxyl-sensitive isolates prevailed in the years 2006–2007 and 2010–2014
with 50.0–87.5% (Figure 2). A strong interaction between the response to metalaxyl and the
year was observed, implying that the proportion of sensitive isolates increased with year of
study and shifted the dominance of intermediately resistant and resistant isolates (Figure 3).
A marginally significant association between cultivar resistance and response to metalaxyl
was found (χ2 = 9.10, df = 4, p = 0.059), whereas the frequency (27.4%) of metalaxyl-
sensitivity among isolates collected from moderately P. infestans-resistant cultivars tended
to be lower compared to susceptible (47.3%) and resistant cultivars (42.1%).

Within the metalaxyl-resistant isolates, 48 belonged to A1 and 52% to A2 mating types
and 54% of metalaxyl-sensitive isolates were A1, 42% A2 mating type, and 4% A1A2 mating
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type. No significant association between response to metalaxyl and mating type was found
(χ2 = 6.74, df = 4, p = 0.15).
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Figure 3. Correlations between the percentage of P. infestans isolates with different metalaxyl
resistance and year of study in potato breeding fields in Estonia for 2001 to 2014. Metalaxyl-
sensitivity as: S—sensitive; I—intermediate; and R—resistant. Data were fitted by linear re-
gressions. S: y = 4.82 x − 9620, r2 = 0.57, p = 0.005; I: y = −3.01 x + 6080.4, r2 = 0.46, p = 0.016;
R: y = −1.80 x + 3640, r2 = 0.27, and p = 0.087.

2.3. Pathotype

Among the 251 tested isolates, all 11 known virulence factors were found (Table 1).
A significant difference in the prevalence of virulence factors (R1–R11) was observed among
the study years (F(10, 121) = 49.8, p < 0.001). Most isolates were virulent on differentials with
genes R1, R3, R4, R7, R10, and R11. Virulence factors 5 (11.0%) and 9 (13.8%) were relatively
rare (Table 1), whereas factors 6 (47.2%) and 8 (42.9%), were moderately represented
(Table 1). Prevalence of virulence factors 5, 6, 8, and 9 varied between collection years
(factor 5: χ2 = 33.9, d.f. = 11, p < 0.001; factor 6: χ2 = 27.5, d.f. = 11 p < 0.01; factor 8: χ2 = 46.6,
d.f. = 11 p < 0.001; and factor 9: χ2 = 36.6, d.f. = 11, p < 0.001). The relatively rare
virulence factor 5 was found in nine years out of 12, but its occurrence was not significantly
correlated with the year of study (Table 1; r = −0.10; p = 0.103). The relatively rare virulence
factor 9 was found in ten years out of 12. The virulence factor 6, although infrequent,
was found in each year, and factor 8 was found in all years, except for 2012 (Table 1).
The frequencies of these factors, R6, R8, and R9, decreased over time (factor 6: r = −0.17,
p = 0.007; factor 8: r = −0.19, p = 0.003; and factor 9: r = −0.23, p < 0.001). The incidence
of virulence factor 2 varied greatly between years (χ2 = 35.3, d.f. = 11, p < 0.001) and its
frequency increased over time (Table 2; r = −0.23, p < 0.001).

Factor 9 was less frequent among strains isolated from susceptible potato cultivars
(5.2%) compared to moderately resistant (24.7%) and resistant (15.5%) cultivars (χ2 = 8.58,
d.f. = 2, p = 0.014). The factors 7 (90.5%; χ2 = 6.28, d.f. = 2, p = 0.043) and 11 (81.0%;
χ2 = 7.49, d.f. = 2, p = 0.024) were less frequent among the isolates from resistant cul-
tivars. However, the frequency remained high in all cultivar groups (e.g., moderately
resistant—factor 7: 97.4%, factor 11: 92.2%; susceptible—factor 7: 98.3%; factor 11: 93.1%).
No significant differences in the frequencies of other virulence factors were observed
between potato cultivar late blight resistance groups.
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Table 1. Race frequencies among isolates, average number of virulence factors per isolate and
average ± SE number of isolates in different years in P. infestans collected from breeding fields in
Estonia during 2001–2007 and 2010–2014.

Year Virulence to Potato Resistance Gene (%)

Number of
Virulence

Factors
per Isolate

Number
of Tested
Isolates

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

2001 91 71 83 97 14 69 100 54 46 97 100 8.2 c* 35
2002 93 46 100 83 7 61 98 44 20 71 49 6.7 b 41
2003 64 50 86 71 7 50 64 79 21 86 86 6.6 b 14
2004 84 63 89 84 5 32 100 42 11 95 100 7.1 bc 19
2005 100 94 100 100 56 67 100 56 17 100 100 8.9 d 18
2006 90 60 83 93 7 53 97 47 3 83 100 7.2 bc 30
2007 100 78 91 96 17 35 100 43 0 100 96 7.6 bc 23
2010 64 45 91 64 9 36 82 27 9 73 64 5.6 a 11
2011 81 81 81 71 10 62 76 14 10 86 81 6.6 b 21
2012 87 93 67 87 0 60 100 0 13 87 100 6.9 b 15
2013 100 100 100 100 0 33 100 83 0 100 100 8.2 c 12
2014 100 83 100 100 0 8 100 25 17 100 100 7.3 bc 12

Total 89 69 89 88 12 51 94 43 16 88 87 7.3 ± 0.7 251

* Values with different superscripts differ significantly from each other at p < 0.05 (one-way ANOVA followed by
Tukey HSD test).

Table 2. Racial diversity of isolates of P. infestans characterized by normalized Shannon diversity
index (h0’) in potato breeding fields in Estonia during 2001–2007 and 2010–2014.

Year h0’

2001 0.79
2002 0.91
2003 1.00
2004 0.77
2005 0.69
2006 0.68
2007 0.69
2010 0.95
2011 0.78
2012 0.60
2013 0.43
2014 0.57

Grand Total 0.66

There was a high level of race diversity, with 86 pathotypes found among 251 tested
isolates, whereas 53 phenotypes were found only once (Table S2). The number of pheno-
types found only once varied strongly during the study years (11–100% from population)
(Table S2). The average ± SE number of virulence factors per isolate was high (7.3 ± 0.7),
and varied strongly between years, from 5.6 to 8.9 (Table 1; F(11, 12) = 315.2, p < 0.001 for
the year effect). The complex races dominated in 8 years out of 12. The most complex
races dominated in 2001, 2005, 2006, 2007, 2013, and 2014 (Table 1). The average number
of virulence factors was high for all three P. infestans-resistance groups: highly resistant
(7.2), moderately resistant (7.3), and susceptible cultivars (7.1) (F(2,26) = 0.52, p = 0.95 for
group differences). During the 12 year study period, the six most common virulence races
were 1.2.3.4.6.7.10.11, 1.2.3.4.7.8.10.11, 1.2.3.4.7.10.11, 1.2.3.4.6.7.8.10.11, 1.3.4.7.10.11, and
1.2.3.4.6.7.8.9.10.11 (Table S2), representing together 49% of the characterized isolates. Race
composition changes occurred in every year, but the most frequent race 1.2.3.4.7.8.10.11
prevailed in 2001, 2004, 2006, 2013, and 2014. However, it was not found in year 2007 and
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in 2010–2012. The race 1.2.3.4.6.7.10.11 was most frequent in 2002, 2005–2007, 2010–2012,
and was also found in 2001, 2004, and 2014, but it was missing in 2003 and 2006 (Figure S1
for time-dependent changes in the prevalence of most common virulence phenotypes).

The global average normalized Shannon diversity index was 0.66. It was the highest
in 2003 (1.00), 2010 (0.95), and 2002 (0.91) (Table 2; F(10,11) = 10.7, p = 0.032 for the year
effect). The normalized Shannon diversity index (h0’) decreased over the years (Figure 4).
The average values of the Shannon diversity index for isolates collected from moderately
resistant (0.89) and resistant cultivars (0.82) did not significantly differ from the average
in susceptible cultivars (h0’ = 0.70; F(2,26) = 2.11, and p = 0.142). The diversity index
decreased in isolates collected from late blight-resistant cultivars (r = −0.82, p = 0.007)
and sensitive cultivars (r = −0.85, p = 0.002) over time (Figure S2). For isolates collected
from moderately resistant cultivars, the diversity index remained high through the study
(r = 0.04, p = 0.92; Figure S2).
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3. Discussion

This study examined time-dependent changes in virulence, mating type, and meta-
laxyl resistance of P. infestans isolates collected from potato breeding fields. Considerable
fluctuations in the frequency of the mating types (A1 or A2) were observed over the study
period. Although the mating type A2 was dominant across the whole study period, it was
missing in year 2002, and its frequency was very low in 2006 (Figure 1). Nevertheless, its
frequency remained steadily high for the last five years (Figure 1). Temporary fluctuations
in the proportions of mating types between study years were previously observed in Euro-
pean populations of P. infestans including the Baltics [42–44], Finland [29,45], Poland [9,46],
Czechia [47], Ireland [48], Spain [49], and the Pskov region in North-West Russia [50].
Similarly, in Moscow region of Russia, considerable fluctuations in the frequency of A1
and A2 mating types were found in a long-term P. infestans monitoring study, whereas the
frequency of A2 mating type varied from a low to a moderate level of 3–35% in 2009–2011
and 2015–2017 to an extremely high level of 65–85% in 2012–2014 [51].

The mating type (A1 or A2) frequency depends on which genotypes at any given
moment dominate the infecting P. infestans populations. The frequency of A2 increased in
several European populations, such as the UK, where the aggressive genotype EU_13_A2
spread rapidly since its first detection in 2004 [4,12], but also in P. infestans populations
in Central, Southern, and Western Europe [11,18,49,52,53]. The genotype EU_13_A2 was
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introduced later to Asia and Africa through seed potatoes imported from Europe [16,54,55].
However, in recent years, the frequency of the dominant genotype EU_13_A2 decreased
among European populations of P. infestans, and lately (for two last seasons) was almost
replaced by novel invasive lines EU_36_A2 and EU_37_A2 [53,56,57]. Strain shifts also
occurred in sexually reproductive, highly diverse P. infestans populations in Eastern and
Northern Europe; recently the invasive clonal lineage EU_41_A2 rapidly spread in Nordic
areas of pathogen occurrence [53,58].

In this study, both the mating types A1 and A2 co-existed together in most of the potato
fields sampled similarly to previous studies in the Baltic and Nordic countries and Eastern
Europe [42–45,50,51,59,60]. All these studies highlighted the presence of genetically very
diverse populations of P. infestans [30,46,50,61–64]. These results suggest the continuous
sexual reproduction of P. infestans and contamination of soils with long-lived oospores,
and thus indicate a direct risk of early soil infection of late blight in potato breeding fields
in Estonia.

In this long-term study, we observed an increase and dominance in P. infestans
metalaxyl-sensitive isolates among the P. infestans populations collected from Jõgeva breed-
ing fields. These results concord with similar observations in several European populations
of P. infestans, such as Baltic countries [30,42,44], the Nordic region [29,45,59], Poland [46],
Belarus [65], Czechia [31], and the regions so far studied in Russia [51,65,66]. The main
reason for the decrease in metalaxyl-resistant isolates is the limited use of this fungicide
compared to the 1990s and 2000s [30,59,64].

In contrast, according to recent data, the proportion of metalaxyl-resistant and interme-
diately resistant isolates increased in Poland (2016–2020) and in Czechia (2012–2016) [60,67].
In fact, the rapidly spreading P. infestans genotype EU_13_A2 is metalaxyl-resistant, and
the proportion of resistant isolates increased substantially since the mid-2000s in the Eu-
ropean regions where this genotype became dominant [4,8,52,54,68–70]. The increase in
metalaxyl resistance in EU_13_A2-dominated regions occurred despite the limited used of
the fungicide (Ridomil Gold MZ 68 WG). This genotype (EU_13_A2) is not found in the
Estonian and other Baltic populations of P. infestans [63,64].

The composition of races with a specific suite of virulence factors provides important
information for site-specific potato breeding for enhanced resistance. The results of this
study show that the population of P. infestans in Jõgeva is diverse, consists of complex races,
and strongly varies among years. Considerable changes in the share of R2, R6, R8, and R9
were observed during the 12-year study (Table 1). Particularly prominent was the temporal
increase in the frequency of the virulence factor R2 (Table 1). Similarly, the frequency of
the virulence factor R2 was at a moderate level (32–49%) in previous population studies
of P. infestans in Estonia [43,71], and increased in recent studies to more than 70% [30,72].
The R2 frequency is relatively high, 65–85%, in the Baltic P. infestans populations [30,42,44],
such as in Spain (over 80%) [73] and in Russia (60–85%) [66], but at a moderate level in
Czechia (61%) [47] and in Poland (40–70%) [7,9,67]. In contrast, the frequency of R2 in
Finland was relatively low over the years, less than 18% on average [29]. In other Nordic
countries, Denmark, Norway and Sweden, the frequency varied between 10 and 50%
depending on the country [59]. Phytophthora infestans resistance genes R1 (Rpi-R1) and
R2 (Rpi-R2) from S. demissum were used previously for cross-breeding in potato breeding
programs in Estonia [74]. Thus, the Rpi-R1 gene is identified with SSR markers in most
of the moderately and highly late blight-resistant cultivars ‘Ando’, ‘Mats’, ‘Olev’, ‘Piret’,
‘Reet’, ‘Tuljak’, and ‘Maret’; however, the gene Rpi-R2 is identified only in one breeding
line ‘1182-97’ [74]. Similarly, the Rpi-R1 gene was present in several common susceptible
and moderately resistant cultivars, such as ‘Craigs Snow White’, ‘Pentland Dell’, Picasso’,
‘Spunta’, and highly resistant cultivars ‘Cara’ and ‘Innovator’ [36], while the Rpi-R2 gene
and Rpi-R2-like gene are rarer and contained in some highly late blight-resistant cultivars,
such as ‘Bionica’ and ‘Innovator’ [36]. The presence of other R-genes in Estonian potato
cultivars is currently unclear. Several wild Solanum species, such as S. andigenum, S. chilense,
S. demissum, S. infundibuliforme, and S. vernei were used over the years in potato breeding
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programs, and it is likely that multiple other R-genes were introduced into the cultivated
potato by crossing [19,40].

We found that pathotype shifts occurred in most monitoring years (Table S2). Never-
theless, one of the most common pathotypes, 1.2.3.4.6.7.10.11, was found in ten study years
out of twelve, and the other two, 1.2.3.4.7.10.11, 1.2.3.4.7.8.10.11, prevailed in seven study
years. These results are similar with other findings in Estonia for 2011–2012 [30] and for
2001–2007 [43,71]. The virulence phenotypes 1.2.3.4.6.7.10.11 and 1.2.3.4.7.10.11 also pre-
dominate in Czechian, Latvian, and Lithuanian populations [42,44,47]. The most common
race in Europe, 1.3.4.7.10.11 [29,46,59,75], was found in this study only in some of the years
and did not prevail during the study period. The most frequent pathotype in as long-term
a study of Russian P. infestans populations (Leningrad region) was 1.2.3.4.5.6.7.8.10.11 [76],
but this genotype was very rare in our study.

We observed a large proportion of unique pathotypes, reflecting sexual reproduction of
the pathogen [30]. The average number of virulence factors (infected Black’s differentials)
per isolate observed in the study area, 7.3 ± 0.7, was high. This is comparable with
studies in Poland [66,77,78], Latvia, Lithuania, Russia [51,66,76], and previous works from
Estonia [42–44], in Czechia [47]. In contrast, the number of virulence factors was lower in
other populations in Estonia [30], and in Finland and in Norway [59], indicating variation in
the degree of sexual reproduction in different locations. In fact, we found that race diversity
characterized by the Shannon index also decreased notably over the study period. This
is probably due to the fact that there were fewer isolates from P. infestans-resistant potato
cultivars in the later years of the study; the number of resistant cultivars and breeding lines
were considerably less at the end than in the beginning of the study.

The potato cultivar resistance plays an important role in the control of late blight, but
does it also affect P. infestans populations? This aspect is less studied because the majority
of potato cultivars grown in commercial fields generally does not harbor any resistance to
P. infestans and the traditional commercial cultivars are susceptible or very susceptible to
late blight [19,21]. Our study shows that cultivar resistance background did not influence
the frequency of the P. infestans mating type, response to metalaxyl, and the race diversity.
However, the diversity index decreased in time among isolates collected from resistant
and susceptible cultivars, and remained at a high level in moderately resistant cultivars.
Contrary to our results, Stellingwerf et al. [48] found that late blight isolates sampled from
resistant potato genotypes, such as ‘Sarpo Mira’ and ‘Bionica’, were more often of the
EU_13_A2 lineage than those sampled from potato cultivars with low resistance. This
aggressive strain dominated European populations for many years and is a major cause
of severe late blight epidemics in potato fields [24,25]. Analogously, Flier et al. [79] and
Blandón-Díaz et al. [80] pointed out that P. infestans isolates sampled from highly resistant
cultivars have more complex virulence races.

In general, breeding for highly productive, genetically homogenous, and disease-
resistant cultivars of main agricultural crops does not keep pace with pathogen spread and
divergence, resulting in large and devastating epidemics [81], including the emergence or
re-emergence of major pathogens [82,83]. In addition, since the early 2000s, there was the
pressure for commercial cultivars not only to be high-yielding, but to mature early and
have more attractive tubers with smoother skin; thus, breeding for the late blight resistance
was relegated to the background [40]. Targeted breeding for late blight resistance basically
ended in Estonia in 2009; and since then, the breeding lines with late blight resistance
are used in combination with lines with other desirable traits in breeding programs [84].
In Estonian potato breeding program, every year 60 different cross-parents are used to
create 2500 combinations, and about 10% of crossings contain late blight resistance genes
R1 and R2 [74]. Lack of emphasis on late blight resistance is also evident in this work; as
noted above, fewer isolates were available from highly resistant cultivars at later stages of
the study.

Increasing use of highly specialized fungicides is expected to lead to pathogen resis-
tance development and subsequent loss in the efficacy of fungicides, implying a constant
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need for novel chemicals for plant protection [85,86]. In addition, the European Green
Deal foresees a major reduction in pesticide use in European agriculture [87]. Exploiting
host resistance, adaptation of landraces to new management systems, and use of decision
support systems (DSS) for the selection of cultivars and application of plant protection
measures are essential tools to curb fungicide use while limiting the risk to plant health
and resistance development [88–90]. All these approaches applied together may help
achieving the goals of the European Green Deal [87]. Locally bred and adapted potato
cultivars are also needed to adapt to the increased frequency of drought stress episodes
caused by changes in precipitation patterns and to cope with near future climate change in
Northern Europe [91,92].

Given the devastating spread of P. infestans, finding methods to employ major re-
sistance genes against P. infestans remains an important goal for potato breeding [93].
Currently, breeders isolate variants of R genes and deploy them in pyramids or stacks for
obtaining durable and broad spectrum resistance against late blight in the field [94,95].
However Rakosy-Tican et al. [96] showed that the combination of somatic hybridization
with the use of gene-specific markers and corresponding avirulence (Avr) effectors is an effi-
cient approach for the successful introgression of late blight resistance genes into the potato
gene pool. Thus, the information of the diversity of virulence phenotypes in potato breeding
fields provides key input for the breeding of highly field-resistant cultivars. As P. infestans
is now also a soil-borne pathogen, the longer crop rotations remain perhaps one of the
most effective control methods for late blight in Northern European areas. However, the
epidemics can end primarily by the replacement of susceptible cultivars with moderately
resistant or resistant cultivars and the rapid registration of alternative fungicides [97–99].

4. Materials and Methods
4.1. Collection and Isolation of P. infestans Isolates

Potato leaves infected by P. infestans were collected from potato breeding fields
at the Estonian Crop Research Institute in Jõgeva, Jõgeva County, Estonia (58◦45′ N,
26◦24′ E) during 12 years (2001–2007 and 2010–2014; Table 3). In total, 251 P. infestans
isolates were analyzed. In this dataset, 180 isolates were analyzed in a previous study
by Runno-Paurson et al. [100], but the host resistance aspect of potato late blight was not
considered. The data were reanalyzed with new a data set of P. infestans from 2010 to 2014.
Most isolates originated from leaves, and the tuber isolates were collected only in 2001.
During the 12-year study, infected leaf samples were collected in different epidemiological
phases, at the beginning of late blight infection, in mid-outbreak (1–2 weeks later) and at
the end of the growing season (>3 weeks later). In the early stages of the outbreak, ap-
proximately 10–15% of the leaf area of the infected plants and less than 10% of plants were
infected with late blight. In the later stages, about 20–30% of the leaf area and more than
50% of the plants were infected. Overall, the study area is characterized by high genetic
diversity of the host plants, including several genotypes that have race-specific genes [101].
Samples from potato plants were collected randomly across the field. From each plant,
only single-lesion leaves were taken at random, excluding any with several or no lesions.
At each site, leaf samples were collected from three to twenty-two different cultivars or
breeding lines with varying late blight resistance levels (Table 3 and Table S1). In total,
116 isolates were obtained from resistant cultivars and breeding lines; 81 isolates from
moderately resistant cultivars and breeding lines; and 54 isolates from susceptible cultivars
(Table S1). In the breeding fields, conventional agrotechnical methods were used without
the application of fungicide treatment during the period 2001–2007. Due to the earlier
outbreaks of late blight infestation, one-time fungicide treatments for preventive control
of late blight were applied in 2010 (tattoo C; propamocarb + chlorothalonil), 2011 (Electis
75 WG; zoxamide + mancozeb) and in 2014 (Orvego; ametoctradin + dimethomorph).
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Table 3. Year of sampling, potato (Solanum tuberosum) cultivars studied, and number of Phytophthora infestans isolates tested for mating type, metalaxyl resistance,
and virulence for strains collected from the potato breeding fields in Estonia during periods 2001–2007 and 2010–2014.

Isolate Number Tested for
Year Potato Breeding Lines/Cultivars Mating Type Metalaxyl Resistance Virulence

2001
Breeding lines (359, 386, 476, 477, 569, 1370-94, 1572-98, 458-98, 522-98,

93-BXY-1)/Cultivars (Ando, Anti, Ants, Danva, Folva, Impala, Kuras, Latona, Oleva
Sarme, Sava, Van Gogh)

25 31 35

2002
Breeding lines (391-93, 405-98, 92-BVU-2, 93-BXL-11, R437-98, R989-93,

R992-95)/Cultivars (Ando, Anti, Ants, Asterix, Danva, Kuras, Maret, Ofelia, Oleva, Piret,
Sante, Sarme)

13 41 41

2003 Cultivars (Ants, Berber, Bintje, Folva, Latona, Oleva, Sarme, Van Gogh) 9 14 14

2004 Cultivars (Bintje, Fresco, Impala, Latona, Milva, Piret, Platina, Remarka, Agrie
dzeltenie/Varajane kollane, Victora) 18 18 19

2005 Cultivars (Alpha, Anti, Ants, Evita, Juku, Oleva, Picasso, Piret, Raja, Sarme) 17 17 18

2006 Cultivars (Ando, Anti, Ants, Asterix, Berber, Granola, Juku, Maret, Princess, Sante,
Sarme, Satina, Sinora, Van Gogh) 30 29 30

2007 Cultivars (Ando, Anti, Ants, Fontane, Juku, Latona, Maret, Secura, Agrie
dzeltenie/Varajane kollane) 21 21 23

2010 Breeding lines (R1067-05, R3456-06; R458-07)/Cultivar (Asterix) 11 8 11
2011 Breeding lines (R1003-05, R3456-06)/Cultivar (Anti) 21 16 21
2012 Cultivars (Anti, Certo, Evolution, Agrie dzeltenie/Jõgeva Kollane, Sarme) 16 14 15
2013 Cultivars (Ambition, Arielle, Birgit, Evolution, Milva, Rosella) 12 12 12
2014 Breeding line (127-12)/Cultivars (Arielle, Flavia, Red Lady, Solist) 14 14 12
Total 207 235 251
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Eleven to forty-one isolates were cultured in each study year (Table 1). For pure culture
isolation, tubers of susceptible cultivars without known R-genes were used (Berber, Bintje).
The tubers were washed and dried, sliced and flame-sterilized, and a fragment of infected
leaf tissue placed between ethanol and the sterilized tuber slices. The slices were placed
onto sterile Petri dishes with a moist filter paper disc on top and incubated for 6–7 days at
16 ◦C in a growth chamber until the mycelia grew through the slices. A small sample of
mycelia from the tuber slices was transferred with a sterile needle to rye B agar. The pure
cultures were preserved at 5 ◦C and transferred to the rye agar after every two months. All
phenotypic tests were carried out in October–November of the year of isolation.

4.2. Phenotypic Analyses

Mating types were determined by the method described in Runno-Paurson et al. [101]
for 207 isolates. The tester isolates were 90209 (A1) and 88055 (A2) as described in
Hermansen et al. [75]. Isolates forming oospores on plates with the A1 mating type were
registered as A2; isolates that formed oospores with the A2 mating type were regis-
tered as A1.

The resistance to metalaxyl of 171 isolates collected during 2001–2007 was tested using
a modification of the floating leaflet method (leaflets in a plastic tray) [75] as described in
Runno-Paurson et al. [102]. For 64 isolates collected during 2010–2014, the resistance to
metalaxyl was tested with a modification of the floating leaflet method (leaf disks in Petri
plates) by Runno-Paurson et al. [44].

The virulence pathotype was determined for 251 isolates with a detached leaflet using
a set of Black’s differentials of potato genotypes containing resistance genes R1–R11 from
Solanum demissum provided by the Scottish Agricultural Science Agency [102]. Laboratory
procedures were as described in Runno-Paurson et al. [101]. Phytophthora infestans isolates
from this study are preserved in pure culture at Tartu Fungal Collection (TFC) in Estonia.

4.3. Data Analysis

Statistical analyses were performed with SAS/STAT version 9.1 (SAS Institute Inc.,
Cary, NC, USA). Differences in the prevalence of the two mating types among P. infestans
isolates between years were tested using a logistic analysis (GENMOD procedure in SAS)
with a multinomial response variable (A1, A2, or both). Analogous logistic procedures
were used to examine the differences in the resistance to metalaxyl (a multinomial response
variable: resistant, intermediate, or sensitive) between years, and also between different
mating types.

Separate logistic analyses were used to test for the differences in the prevalence of
virulence against different R genes (virulent vs. non-virulent) between years, and for
the dependence of mating type on race prevalence (unique vs. prevalent). Variation in
virulence complexity among different years and racial diversity were analyzed with one-
way ANOVA and Tukey HSD post hoc test and the differences were considered significant
at p < 0.05.

Pathotype diversity was computed based on the Shannon (Hs = −ΣPiLnPi) and the
normalized Shannon (h0′ = −ΣPiLnPi/lnN) indices, where Pi is the frequency of the i-th
pathotype and N the sample size. h0’ gives the Shannon index as a fraction of the maximum
diversity in the sample, and it ranges from 0 (single pathotype present) to 1 (each isolate in
the sample has a different pathotype). This statistic provides a more representative basis
for comparison when sample sizes vary [103]. Regression analyses were used to test for
the time-dependent trends in normalized Shannon index values across the study years.
Pearson correlation coefficients were calculated to analyze the statistical relatedness among
the studied variables at significance levels p < 0.001, p < 0.01, p < 0.05, or ns (no significant).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants11182426/s1, Figure S1: Changes in the prevalence of six most
common virulence races in Phytophthora infestans populations collected from Estonian potato (Solanum
tuberosum) breeding fields over the study period 2001–2014. Figure S2: Correlations of racial diversity
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of P. infestans isolates and late blight resistance category of potato cultivar in potato breeding fields
in Estonia for 2001–2014. Data were fitted by linear regressions; Table S1: Resistance of potato
(Solanum tuberosum) foliage to late blight. Table S2: Number of different pathotypes among isolates of
Phytophthora infestans from potato breeding fields in Estonia (2001–2007, 2010–2014).
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