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M.; Galanty, A. Broccoli Sprouts and

Their Influence on Thyroid Function

in Different In Vitro and In Vivo

Models. Plants 2022, 11, 2750.

https://doi.org/10.3390/

plants11202750

Academic Editor: Ahmed A. Hussein

Received: 19 September 2022

Accepted: 15 October 2022

Published: 18 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Article

Broccoli Sprouts and Their Influence on Thyroid Function
in Different In Vitro and In Vivo Models
Paweł Paśko 1,* , Paweł Zagrodzki 1 , Krzysztof Okoń 2 , Ewelina Prochownik 1, Mirosław Krośniak 1
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Abstract: Broccoli sprouts are a super vegetable; however, they have possible negative effects on
thyroid function, which is especially important for patients with hypothyroidism. As the data
on this issue are scarce, this study aimed to determine the safety and possible beneficial effect
of broccoli sprouts both in vitro and in vivo. The in vitro model comprised the evaluation of the
impact of broccoli sprouts on normal and neoplastic thyroid cells and the determination of their
anti-inflammatory and antioxidant (IL-6, TNF-alpha, NO, and SOD) potential in macrophages. The
in vivo model concerned the histopathological analysis of thyroid glands in healthy rats and rats
with hypothyroidism (induced by iodine deficiency or sulfadimethoxine ingestion) fed with broccoli
sprouts. The results of our study indicated that broccoli sprouts decreased the viability of thyroid
cancer cells and prevented inflammation. The results also confirmed the satisfactory safety profile of
the sprouts, both in vitro and in vivo; however, a further in-depth evaluation of this problem is still
needed. Information on the influence of brassica vegetables on thyroid function is of great importance
in terms of public health, particularly when taking into account that the risk of iodine deficiency,
hypothyroidism, and thyroid cancer in the global population is still increasing.
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1. Introduction

Broccoli (Brassica oleracea L. convar. botrytis var. cymosa) is recognized as one of the
most important vegetables due to its nutritional value and chemoprotective potential [1].
It belongs to the family Brassicaceae, and the biological activity of this vegetable is mostly
related to its sulfur compounds and polyphenol content [2]. Generally, the regular con-
sumption of brassica vegetables may decrease the risk of breast, colorectal, bladder, lung,
and prostate cancers [3]. Today, many different broccoli products, including florets, sprouts,
stems, flour, flakes, powder, or crisps, are available in grocery stores and may be used to
enrich one’s daily diet [2]. Despite being considered a super vegetable, broccoli is not de-
void of a possible negative effect; this cannot be neglected, especially in the case of patients
with hypothyroidism [4]. Glucosinolates and their derivatives, such as isothiocyanates and
thiocyanates, which are present in broccoli in high amounts, are potentially responsible for
this negative effect on thyroid function via the inhibition of the sodium/iodide symporter
in the basolateral membrane of the thyroid follicle and thyroid peroxidase activity. These
proteins are linked with iodide uptake and its oxidization in thyroid tissue, respectively [5].
In one study, the anti-thyroid potential of broccoli florets was rated as low due to it having
the lowest level of progoitrin in comparison to other brassica vegetables (rutabaga roots,
Siberian kale, or collards) [6]. Unlike broccoli florets, knowledge about the influence of
broccoli sprouts on the thyroid is scarce. Presently, two in vivo studies about the influence
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of broccoli sprouts on the biochemical, immunological, and thyroid function of rats with
hypothyroidism have been published [7,8], in addition to two human trials [9,10]. The
animal studies showed that the addition of broccoli sprouts to the rats’ diet did not cause
any significant changes in the levels of TSH, fT3, and fT4. Additionally, a protective effect
of these sprouts against sulfadimethoxine-induced thyroid damage was noted. In rats with
hypothyroidism, the sprouts exerted a beneficial influence on the antioxidant status of the
thyroid gland and decreased IL-6 levels [7].

The first human study by Shapiro et al. [9] examining TSH, T3, and T4 levels did not
show any significant changes in these parameters or even consistent thyroidal toxicities
when broccoli sprouts were included in the diet of 12 healthy volunteers. Three different
diet schedules were evaluated, where the amount of the sprouts was related to: (1) 25
µmoL isothiocyanate; (2) 25 µmoL glucosinolate; or (3) 100 µmoL glucosinolate per day.
The sprouts were consumed three times per day for 7 days. In the second study, 45 females
received a beverage containing broccoli sprouts (40 µmoL sulforaphane and 600 µmoL of
glucoraphanin) for 84 days. The effect of this beverage on thyroid function and thyroid
autoimmunity was not significant: no changes in TSH, fT4, and thyroglobulin levels were
noted [10].

Because of the limited information on the influence of broccoli sprouts on thyroid func-
tion and their increasing presence in our daily diet, we decided to focus on this problem.
To do this, different in vitro and in vivo models were applied to determine the safety and
possible beneficial effect of broccoli sprouts. The in vitro model involved an evaluation of
the impact of lyophilized broccoli sprout extract (BSE) on normal and neoplastic thyroid
cells and the determination of their anti-inflammatory and antioxidant (IL-6, TNF-alpha,
NO, and SOD) potential in macrophages. The in vivo model concerned the histopathologi-
cal analysis of thyroid glands, including papillary formation, aggregates of lymphocytes,
vacuole score, the quality of epithelial cells, follicular epithelial area, follicular luminal area,
and overall thyroid area in healthy rats and rats with hypothyroidism (induced by iodine
deficiency or sulfadimethoxine ingestion) fed with broccoli sprouts. The extract used in
the present study was chemically profiled in our previously published papers [2,7]; the
obtained data were used to reveal potential correlations with the results of the present
in vitro and in vivo experiments by means of advanced chemometric methods.

2. Results and Discussion
2.1. Cytotoxic Acivity of Broccoli Sprouts on Thyroid Cells

The experiment started with a preliminary in vitro evaluation of the toxic potential of
broccoli sprout extract towards normal, non-neoplastic thyroid follicular epithelial cells
(Nthy-ori 3-1). In addition, two thyroid carcinomas, FTC-133 and 8505C, differing in their
metastatic potential (see Section 3.3.1 for details) were also included in the study to verify
if BSE could possibly be useful in decreasing the development of thyroid cancer. The tested
broccoli sprout extract varied in its influence on the examined cell lines; however, in all
cases, the effect was dose dependent. The results are presented in Table 1 as IC50 values
and in Figure 1 for three selected concentrations (0.025, 0.1, and 0.3 mg/mL). It should be
strongly noted that the broccoli sprout extracts were not toxic to non-neoplastic thyroid
(Nthy-ori 3-1) cells in the tested concentration range, even after prolonged exposure up to
72 h (Figure 1); the IC50 values were above Cmax (Table 1).

Table 1. Cytotoxic activity of broccoli sprout extract (BSE) against normal (Nthy-ori 3-1) and cancer
(FTC-133 and 8505C) thyroid cells after 24, 48, and 72 h incubation expressed as IC50 values (µg/mL).

IC50 µg/mL 24 h 48 h 72 h

Nthy-ori 3-1 >Cmax >Cmax >Cmax
FTC-133 35.2 24.7 16.9

8505C 114.1 57.5 29.5
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Figure 1. Cytotoxic effect of broccoli sprout extract (BSE) on cancer (FTC-133, 8505C) and non-
neoplastic (Nthy-ori 3-1) thyroid cells. Cells were treated with 25, 100, and 300 µg/mL of sprout
extract for 24 h, 48 h, and 72 h. Values are presented as the mean ± SD (standard deviation) (n = 3).

At the highest tested concentration, more than 60% of Nthy-ori 3-1 cells were alive after
24 h, while their viability decreased after 48 and 72 h to 56 and 54%, respectively. However,
such high concentrations could be treated as an acute toxic dose, which is impossible to
achieve in the daily diet. The most important observation from our study was that the
BSE was almost completely non-toxic to non-neoplastic cells at the concentrations at which
significant and high cytotoxicity toward thyroid cancer cells was noted. Moreover, the cyto-
toxic effect of BSE significantly differed for FTC-133 and 8505C (IC50 35.2 vs. 114.1 µg/mL
for 24 h incubation) cells. More metastatic FTC-133 cells showed an increased response to
the tested extract, especially at lower concentrations, in comparison to the undifferentiated
carcinoma 8505C cells. As cancer cells within tumors may differ in terms of their prolifera-
tion rate and metastatic ability [11], these varied—but strong—effects of broccoli sprout
extract on the different thyroid cancer cell lines used in the study is of great importance.

To the best of our knowledge, this is the first study to describe the influence of
broccoli sprout extract on the viability of thyroid cells. Interestingly, in our previous
study, kale sprouts (up to 500 µg/mL) did not have any significant cytotoxic effect on
normal and cancer thyroid cells (8305C, FTC133) [12]. Wang et al. [13] evaluated the
effect of sulforaphane on six different human thyroid cancer cell lines (8305C, IHH4,
FTC133, BCPAP, TPC1, and K1) and noted that this compound significantly inhibited
the proliferation of thyroid cancer cells in a dose- and time-dependent manner. Another
study described the enhancement effect of the compound, combined with a photosensitiser
(Photofrin), on anaplastic thyroid carcinoma FRO cells in photodynamic therapy. This
combination resulted in cell cycle arrest via ROS generation and MMP depolarization, with
the subsequent suppression of the expressions of the Ras, MEK, ERK, B-Raf proteins [14].
Sulforaphane is known to have significant cytotoxic properties in many different cell lines;
the different mechanisms of its activity, such as cell cycle arrest in the G2/M and G1 phase
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or the blockage of phase I metabolic enzymes, were recently reviewed [15]. However, our
study suggests that the cytotoxic impact of broccoli sprouts is more related to the presence
of polyphenolic compounds, such as robinin and gentisic acid, than to sulforaphane (see
Section 2.4, Table 2). This observation was confirmed by Shen et al. [16] who noted that
robinin inhibited the growth of thyroid cancer cells (TPC-1 and SW1736) via apoptosis
and caused the loss of membrane integrity in cells. This compound increased the activity
of caspases 8 and 9 and the levels of Bax and caspase 3. Additionally, a decrease in the
levels of Bcl-2, c-Myc, and cyclin-D1 was observed. In the case of gentisic acid, this is
the first observation describing its role in the cytotoxic activity of broccoli sprout extract
against thyroid cancer cells. Some previous observations indicated that gentisic acid was
not cytotoxic to hepatoma tissue culture and a murine melanocyte cell line but significantly
inhibited the proliferation and colony growth of C6 glioma cells [17].

Table 2. Correlation weights for the pairs of parameters based on PCA model.

Pairs of Correlated Parameters Correlation Weights

SOD500 robinin 0.126
FTC133/48 robinin 0.126
FTC133/48 gentisic acid 0.120
FTC133/48 SOD500 0.119

FTC133/48–48 h of incubation; SOD500–SOD activity 500 µg/mL.

It is known that different polyphenolic compounds may exhibit cytotoxic activity
against thyroid cancer cells. Quercetin was shown to induce the differentiation of NIS
in PTC cells, apigenin has been shown to increase iodine influx rate in PTC cells, and
myricetin has been shown to enhance iodine retention and increase influx and decrease
efflux via the Na+/I− symporter in FTC cells. Natural plant compounds may also have an
impact on MAPK, AKT/mTOR, and apoptosis in thyroid cancer. Curcumin, one of the most
well-known curcuminoids, can change the expression of Bcl-2, Bcl-X, p53, p21, and PARP,
which are involved in the apoptotic process, and subsequently inhibit the proliferation and
invasion of human anaplastic thyroid cancer cells (SW-1736) [18,19].

2.2. Influence of Broccoli Sprout Extract on the Inflammation Process

Cancer is often accompanied by an inflammation process, which enables the progres-
sion of the disease. In addition, the chronic inflammation of normal tissue may increase the
risk of developing many diseases, including carcinogenesis. This prompted us to determine
the protective anti-inflammatory potential of broccoli sprout extract in an LPS-stimulated
RAW 264.7 macrophage model. The results are presented in Figure 2. A significant inhibi-
tion of NO synthesis was observed in macrophages pre-treated with broccoli extract in all
evaluated concentrations when compared to LPS-stimulated cells (p < 0.05). In the case of
TNF-alpha, the evaluated broccoli sprout extract significantly decreased its release when
compared to LPS-stimulated cells only in case of the highest concentration (100 µg/mL);
the slight decrease observed at 50 µg/mL did not differ significantly from the LPS-treated
cells. In our study, only a minor and insignificant suppression of IL-6 release was noted in
LPS-stimulated macrophages pre-treated with broccoli sprout extract.

Brassica vegetables, such as broccoli, have significant anti-inflammatory proper-
ties [20]. Olszewska et al. [21] found that broccoli sprouts downregulated the release
of pro-inflammatory cytokines (TNF-α and IL-6) from LPS-stimulated human peripheral
blood mononuclear cells and increased the production of IL-10; furthermore, they sug-
gested that phenolic constituents may also be responsible for the anti-inflammatory effects
of broccoli sprouts and the stimulation of the secretion of IL-10. A similar decrease in NO
and TNF-alpha release without an influence on IL-6 concentration was also observed in
our previous study on kale sprouts [12].
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Figure 2. Effect of broccoli sprout extract (BS) on tumor necrosis factor-alpha (TNF-alpha), interleukin-
6 (IL-6), and nitric oxide (NO) release in LPS-stimulated RAW 264.7 macrophages. RAW cells were
pre-treated with 10, 20, 50, and 100 µg/mL of sprout extract for 1 h; afterwards, cells were incubated
with (10 ng/mL) or without LPS (untreated) for the next 24 h. Dexamethasone (DEX) was used
as a reference. Values are presented as the mean ± SD (standard deviation) of three independent
experiments in triplicate. Statistical analyses were carried out using one-way ANOVA and Tukey’s
post-hoc test with *: p < 0.05 against the LPS-stimulated cells.

2.3. Influence of Broccoli Sprout Extract on SOD1 Activity

Antioxidant enzymes such as SOD play an important function in maintaining redox
homeostasis and mediating the inflammation process. Thus, to obtain more thorough infor-
mation on the anti-inflammatory potential of broccoli sprouts, we also decided to evaluate
their influence on SOD activity in addition to their impact on pro-inflammatory mediators.
The results (Figure 3) indicated that the activity of SOD in broccoli sprout extract-treated
cells was significantly increased at the concentrations of 250 and 500 µg/mL in a dose-
independent manner. Le et al. [22] indicated that the antioxidant activity of broccoli sprouts
was associated with the presence of ascorbic acid, α-tocopherol, carotenoids, and phenolic
compounds and that these compounds were responsible for 80−95% of the total antioxidant
capacity in broccoli sprouts. The correlation weights (CWs) for the pairs of parameters
based on the PCA model (Table 2) revealed that SOD activity was positively correlated
with flavonoid robinin (CW = 0.126), which confirmed the abovementioned thesis.

The results of this study demonstrated that broccoli sprout extract was not able to
restore the original antioxidant ability of cells by increasing SOD activity in LPS-stimulated
macrophages. However, our previously published results indicated a considerable an-
tioxidant activity (FRAP 50.67 ± 2.40 mmol Fe2+/100 g dw; DPPH 11.35 ± 0.44 mmol
Trolox/100 g dw) and total phenolic compounds (4.26 ± 0.13 g/100 g dw) of the evaluated
broccoli sprout extract [23].
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Figure 3. Effect of broccoli sprout extract (BS) on SOD1 activity in LPS-stimulated RAW
264.7 macrophages. RAW cells were pre-treated with 250 and 500 µg/mL of sprout extract for
1 h; afterwards, cells were incubated with (10 ng/mL) or without LPS (untreated) for the next 24 h.
Values are presented as the mean ± SD (standard deviation) of three independent experiments in
triplicate. Statistical analyses were carried out using one-way ANOVA and Tukey’s post-hoc test
with *: p < 0.05 against the LPS-stimulated cells.

It is known that the activities of antioxidant-related enzymes are downregulated
in some antioxidant-treated cells because oxidative stress is directly attenuated by the
antioxidants [24]. Kaiser et al. [3] noted that sulforaphane increased the levels of NQO1,
TXNRD1, GSTM1, MGST1, SOD1, and PRDX1.

2.4. Chemometric Analysis of In Vitro Parameters

A statistically significant PCA model of two significant components was derived
for the in vitro experiment. The parameters included in the PCA model were: NO, TNF-
α, FTC133/48, 8505C/24, 8505C/48, 8505C/72, SOD500, Nthy-ori 3-1/48, Nthy-ori 3-
1/72, sulforaphane, chlorogenic acid, p-coumaric acid, ferulic acid, gentisic acid, sinapic
acid, oleic acid, linoleic acid, α-linolenic acid, stearic acid, palmitic acid, and robinin.
Other parameters (IL-6, FTC133/24, FTC133/72, Nthy-ori 3-1/24, and SOD250) were
not included in the model as they were considered noninformative. The model had two
significant components and explained 75.3% of the variance in the original parameters,
with eigenvalues of 2.47 and 2.05, respectively. The loadings for the first two principal
components are shown in Figure 4. In our analysis, cytotoxic activity against thyroid cancer
cells was not correlated with sulforaphane but was correlated with robinin and gentisic
acid (Table 2).
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2.5. Influence of Broccoli Sprouts on Rat Thyroid Histopathology

As the final step of the experiment, the impact of broccoli sprouts on the thyroid
was evaluated in healthy and hypothyroid rats. The histopathological analysis of thyroid
glands was focused on the assessment of papillary formation, aggregates of lymphocytes,
vacuole score, the quality of epithelial cells, follicular epithelial area, follicular luminal area,
and overall thyroid area. The results for these qualitative and quantitative parameters are
gathered in Table 3 and shown in Figure 5. The highest overall thyroid area in comparison
to healthy rats was observed in the rats that received sulfadimethoxine (S), where the
difference was significant. Broccoli sprouts did not have any significant influence on the
follicular epithelial area, follicular luminal area, and overall thyroid area. However, a
tendency for prevention against these negative increasing changes was mostly observed
in the group of rats with iodide deficiency (BS/DI), while no such protective effect was
noticed in rats that received sulfadimethoxine (BS/S). The same positive effect of broccoli
sprouts was noted for the follicular luminal area of BS/DI rats. In healthy rats fed with
broccoli sprouts (BS), 25% papillary formation was also observed. The highest papillary
formation appeared in the S group and did not increase in the BS/S group; however, in the
case of DI rats, the addition of broccoli sprouts to the diet increased papillary formation by
40%. The vacuolization process was observed in thyroid cells (40%) only in the DI group,
without any aggregates of lymphocytes in any samples. In the control group, the thyroid
follicles were lined by flattened epithelial cells; in the case of the DI and S groups, the
follicles were lined by cuboidal cells in 60% and 100% of evaluated thyroids from each
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group, respectively. It should be noted that the addition of broccoli sprouts to the diet of
healthy rats caused significant changes in the shape of the epithelial cells: 80% of the BS
rats had cuboidal cells.

Table 3. Qualitative and quantitative parameters describing the changes observed during the
histopathological examination of thyroid glands from the investigated rats (see Section 3.4.1 for
an explanation of the groups’ acronyms).

Parameters C BS DI BS/DI S BS/S

Papillary formation (%) 0% 25% 0% 40% 60% 60%

Aggregates of
lymphocytes (%) 0% 0% 0% 0% 0% 0%

Vacuolization of the
colloid (%) 0% 0% 40% 0% 0% 0%

Shape of epithelial cells
(flattened vs. cuboidal) (%)

100%
Flattened

80%
Cuboidal

60%
Cuboidal

40%
Cuboidal

100%
Cuboidal

80%
Cuboidal

Follicular epithelial area
(mm2) 1.57 ± 0.14 ab 1.62 ± 0.82 c 3.06 ± 0.71 2.36 ± 0.55 de 4.37 ± 1.03

bcd 3.96 ± 0.65 ae

Follicular luminal area
(mm2) 0.32 ± 0.06 a 0.43 ± 0.13 0.69 ± 0.24 abc 0.31 ± 0.04 c 0.41 ± 018 0.45 ± 0.06 b

Overall thyroid area (mm2) 1.79 ± 0.25 a 1.61 ± 0.56 3.50 ± 1.13 2.67 ± 0.60 b 4.64 ± 1.40 ab 4.42 ± 0.63

(%)—percent of animals in which changes were observed. Results marked with the same letters within each row
differ significantly (p < 0.05).

The morphological changes observed in rats fed with broccoli sprouts varied from
those observed in rats receiving kohlrabi or rutabaga sprouts in the same models of hy-
pothyroidism. In contrast to broccoli sprouts, kohlrabi sprouts caused the lining of follicles
by cuboidal cells in 60% of the evaluated thyroids and rutabaga sprouts in only about
40% [4,25]. In the case of extensive follicle hypertrophy, broccoli sprouts induced these
changes in heathy rats and rats with hypothyroidism, which is a similar observation to that
reported for rats receiving rutabaga sprouts [25]. Kohlrabi sprouts induced this parameter
only in a group of rats that received sulfadimethoxine as a harmful agent, without any
effect observed in healthy animals [4]. Papillary formation was noted previously for a field
mustard diet [26], with the highest development in rats fed with rape seeds. In all thyroid
gland samples evaluated in this experiment, aggregates of lymphocytes were not detected,
as was observed in rats receiving kohlrabi sprouts [4]. However, in the case of animals with
iodine deficiency fed with rutabaga sprouts, lymphocyte aggregates were observed and
coincided with high papillary formation [25].
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Figure 5. Histological appearance of the thyroid according to experimental group. All images were
stained with hematoxylin–eosin at 200× magnification. (a) Group C: regular folliculi are lined by a
rather flat epithelium and are full of colloid. (b) Group BS: folliculi are smaller with slightly higher
cells. (c) Group DI: folliculi are also rather small and lined with cuboid cells, and the vacuolation
of the colloid is prominent. (d) Group BS/DI: folliculi are smaller on the right and more dilated
and lined by slightly flattened cells on the left. (e) Group S: variously sizes of folliculi, some with
papillary projections. (f) Group BS/S: folliculi are smaller on the left and larger on the right; the
papillary projections are evident.

We used the results obtained in our previous paper from a chemometric analysis
(TSH, fT3, and fT4) [7] and combined them with the present histopathological study.
The correlation weights for the pairs of parameters based on the PLS model, including
histopathological parameters, are shown in Table 4.

Table 4. Correlation weights for the pairs of parameters based on the PLS model.

Pairs of Correlated Parameters Correlation Weights

Overall thyroid area Follicular epithelial area 0.219
Follicular luminal area Vacuolization of the colloid 0.218

Follicular epithelial area Papillary formation 0.196
Overall thyroid area Papillary formation 0.186

Follicular epithelial area TSH 0.150
Overall thyroid area TSH 0.144

Cuboidal epithelial shape Follicular luminal area 0.129
Papillary formation TSH 0.128
Overall thyroid area Flattened epithelial shape −0.133
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Table 4. Cont.

Pairs of Correlated Parameters Correlation Weights

Follicular epithelial area Flattened epithelial shape −0.137
Overall thyroid area Lack of papillary formation −0.183

Follicular epithelial area Lack of papillary formation −0.194
Follicular luminal area Lack of vacuolization of the colloid −0.202

The morphological changes observed in the rats being fed broccoli sprouts were
positively correlated with TSH, which is one of the most significant factors influencing the
morphofunctional status of follicles [27]. In particular, positive correlations were observed
between TSH and follicular epithelial area (0.150), overall thyroid area (0.144), and papillary
formation (0.128). Previous experiments on the influence of kohlrabi sprouts showed a
negative correlation between fT3 and follicular epithelial area and fT3 and overall thyroid
area [4]. Papillary formation occurring in the thyroid gland was positively corelated with
follicular epithelial area and overall thyroid area, which was confirmed by Bell et al. in
their study on mustard or rapeseed meal varieties with high glucosinolate content (oriental
mustard (Brassica juncea), yellow sarson (B. campestris), and target (B. napus)) [26]. Rats
fed with rutabaga sprouts and treated with sulfadimethoxine showed extreme papillary
formation, which was significantly greater than that in the control group and the group
receiving only sulfadimethoxine [25].

A previous study on the biochemical, hematological, and immunosignal parameters
of rats with hypothyroidism receiving broccoli sprouts did not reveal a significant harmful
effect [7]. The levels of TSH, fT3, and fT4 remained unchanged, which was suggested to
be a protective effect against sulfadimethoxine-induced thyroid damage. Furthermore,
thyroid thioredoxin reductase activity increased in response to the ingestion of sprouts. In
animals with hypothyroidism, the sprouts were found to exert a beneficial influence on the
antioxidant capacity of the thyroid gland. In comparison to the rats with iodine deficiency,
the addition of broccoli sprouts to the diet decreased the level of IL-6. Despite the beneficial
effect of broccoli sprouts, it should be noted that some negative histopathological changes
were observed. It is possible that additional changes in histopathology would be visible
and correlated with additional biochemical thyroid parameters in a longer experiment,
which should be evaluated in the future.

2.6. Chemometric Analysis of In Vivo Parameters

A PLS model fulfilling the cross-validation criteria was constructed for the in vivo
model. The following histopathological features were selected as predictive parameters:
follicular epithelial area, follicular luminal area, overall thyroid area, papillary formation.
In addition, the following dichotomous features were selected: vacuole score and quality
of epithelial cells. fT3, fT4, and TSH were set as response parameters. The model had two
significant components and explained 77.5% of the variance in the predictive parameters
and 32.6% of the variance in the response parameters, with eigenvalues of 4.21 and 2.77,
respectively. The loadings for the first two latent components are shown in Figure 6 and
the correlation weights for the pairs of parameters based on the PLS model are shown in
Table 4.
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3. Materials and Methods
3.1. Plant Material

Four-day old broccoli sprouts were harvested by the Uniflora Company, Poland in
2018. A voucher specimen of broccoli seeds (Brassica oleracea L. convar. botrytis var. cymosa)
was deposited at the Department of Food Chemistry and Nutrition, Jagiellonian University
Medical College (No#BOCB/PP/PL 1036). Samples of raw sprouts were frozen at −20 ◦C
for 48 h before the freeze-drying process, carried out as described previously [2].

3.2. Extract Preparation and Quantitative Analysis

The extract prepared and chemically profiled in our previous study [2] was used for
the present experiments. Briefly, lyophilized broccoli sprouts were smashed in a mortar
for over 1.5 min and then incubated (forced-air oven at 30–40 ◦C) for 4 h to promote the
hydrolysis of glucoraphanin to sulforaphane by myrosinase [28]. The obtained material
was extracted with methanol using a Soxhlet apparatus. The methanol broccoli sprout
extract (BSE) was further evaporated, and the dry residues were dissolved in DMSO for
the evaluation of the cytotoxic and anti-inflammatory activity of broccoli sprouts.

Sulforaphane (113.33 ± 12.58 mg/100 g dw) concentration in the BSE was evaluated
previously via the UPLC–MS/MS method. An HPLC analysis of BSE showed several
phenolic acids and flavonoids, including chlorogenic acid (37.26 ± 0.6 mg/100 g dw);
p-coumaric acid (27.75 ± 0.70 mg/100 g dw); ferulic acid (73.85 ± 3.50 mg/100 g dw); gen-
tisic acid (80.80 ± 4.79 mg/100 g dw); sinapic acid (140.53 ± 3.17 mg/100 g dw); and robinin
(1.04 ± 0.10 mg/100 g dw). A GC analysis of the fatty acids profile showed oleic (45.5%),
linoleic (20.8%), alpha-linolenic (17.06%), palmitic (5.7%), and stearic (2.8%) acids [2].

3.3. Broccoli Sprouts
3.3.1. Cytotoxic Activity of Broccoli Sprouts

Cytotoxic activity was tested on the following human thyroid cancer and normal cells:
(1) follicular thyroid carcinoma, derived from lymph node metastasis FTC-133, ECACC
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94060901; (2) undifferentiated thyroid carcinoma 8505C, ECACC 94090184; and (3) thyroid
follicular epithelial cells Nthy-ori 3-1, ECACC 90011609. The cells were grown in standard
conditions (37 ◦C, 5% CO2, relative humidity) and culture media (DMEM/F12 for FTC133
and 8505C and RPMI1640 for Nthy-ori 3-1) supplemented with 10% fetal bovine serum
(FBS) and 1% antibiotic solution (10,000 U penicillin and 10 mg streptomycin/mL). The
examined extracts were diluted in the culture media from freshly made stock solution in
DMSO (10 mg/mL) to the working concentrations (from 0 to 300 µg/mL). Cell viability was
determined using an LDH assay as described previously [29]. Briefly, cells were seeded onto
96-well plates (1.5 × 104 cells/well) and cultured for 24 h. Then, the culture medium was
replaced with the same medium containing different concentrations (0.025–0.3 mg/mL) of
the broccoli sprout extract. After 24, 48, and 72 h of incubation, cell viability was determined.
The absorbance was measured at 490 nm using a BioTek Synergy microplate reader (BioTek
Instruments Inc., Winooski, VT, USA). All analyses were performed in triplicate; the results
are expressed as % of cell viability (mean ± SD) and IC50 values (concentration at which
the viability was inhibited by 50 percent).

3.3.2. Inflammation Model

For the anti-inflammatory assays, RAW 264.7 murine macrophages were seeded onto
96-well plates (1.5 × 105 cells/well) and pre-treated with the tested broccoli sprout extract
(10–100 µg/mL) for 1 h, followed by the addition of 10 ng/mL of LPS to induce the
inflammation process, according to Paśko et al. [30]. Dexamethasone (0.5 µg/mL) was
used as a reference drug. The incubation was continued for the next 24 h. Cell culture
supernatants were used for further analysis.

3.3.3. Nitric Oxide Determination

A Griess reagent kit was obtained from Promega Corporation (Madison, Winooski,
VT, USA) and a nitric oxide evaluation was performed according to the manufacturer’s
instructions. The analysis was performed in RAW 264.7 cell culture supernatants on three
replicates using a BioTek Synergy microplate reader (BioTek Instruments Inc., Winooski,
VT, USA); the results are shown as % of LPS control.

3.3.4. TNF-Alpha and IL-6 Analysis

Cytokine determination was performed with human ELISA kits (Bioassay Technology
Laboratory, Shanghai, China) according to the manufacturer’s instructions. RAW 264.7 cell
culture supernatants (see Section 3.3.3) were used for the analysis, which was performed
for three replicates using a microplate reader (BioTek Instruments Inc., Winooski, VT, USA);
the results are shown as % of LPS control.

3.3.5. Human Superoxide Dismutase 1 Activity

An evaluation of human superoxide dismutase (Cu-Zn) activity was performed with
human ELISA kits (Bioassay Technology Laboratory, Shanghai, China) according to the
manufacturer’s instructions. RAW 264.7 cell culture supernatants (see Section 3.3.3) were used
for the analysis, which was performed for three replicates using a microplate reader (BioTek
Instruments Inc., Winooski, VT, USA); the results are shown as % of control (untreated).

3.4. Broccoli Sprouts—Experiment In Vivo
3.4.1. Animals

Detailed information about the animal experiment was described previously [7]. Seventy-
two 4-week-old Wistar male rats (mean weight 249.5 ± 9.1 g) were maintained in the Animal
House of the Faculty of Pharmacy, Jagiellonian University Medical College. After the
acclimatization process, the rats were divided into 6 groups, each consisting of 12 animals,
and fed one of the following diets: a standard diet (C); an iodine deficient diet (DI); a
broccoli sprout diet (BS); an iodine deficient diet with broccoli sprouts (BS/DI); a standard
diet with sulfadimethoxine delivered in drinking water (S); or a diet containing broccoli
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sprouts and sulfadimethoxine (BS/S). The dietary models described above were applied to
imitate the healthy status of the thyroid (standard diet) or hypothyroidism induced by diet
with iodine deficiency causing thyroid hyperplasia or sulfadimethoxine-impaired thyroid
hormone synthesis [4]. The protocols for animal experiments were approved by the Animal
Experimentation Committee of Jagiellonian University, Kraków, Poland (No. 76/2014).

3.4.2. Histopathology of Rat Thyroids

The thyroid histopathology analysis was described in detail previously by Paśko et al. [4].
The assessment of histology was completed in a blinded manner. Both qualitative

description and image acquisition were performed with an Axioskop microscope (Zeiss
GmbH, Oberkochen, Germany). All the sections containing recognizable thyroid tissue
were photographed using a Plan NeoFluar 2.5× lens and a Nikon D5300 camera. For
calibrating the images, a 1 mm microscopic grid (Zeiss, Jena, Germany) was photographed
with the same microscopy system. The images were transferred to standard personal
computer and processed interactively using the Photoshop CS4 (Adobe Systems Inc., San
Jose, CA, USA) software. Measurements were made with the AnalySIS 3.2 pro (Soft Imaging
Systems GmbH, Münster, Germany) image analysis system controlled by a program written
by one of the authors (K.O.) in the Imaging C macro language. The program loaded the
successive image files and recorded the surface area of the thyroid tissue as well as area of
the empty ‘holes’ that constituted the lumens of thyroid follicles.

3.5. Statistical Analysis

All experiments were performed in triplicate, and the data were reported as the mean
± standard deviation (SD). The results obtained for subsequent groups were analyzed
using a one-way analysis of variance (ANOVA) followed by a post hoc Tukey’s test. The
differences among the groups were considered to be statistically significant when the p val-
ues were 0.05 or less. This part of the statistical analysis was performed using STATISTICA
v. 13.3. (TIBCO Software Inc., Palo Alto, CA, USA).

Chemometric Methods

The partial least square approach (PLS) and principal component analysis (PCA) were
applied to describe the correlation structure between the parameters in the in vivo and
in vitro models, respectively. The details of our implementation of both models for were
described in several previous papers [7,31–33]. Statistical analyses were performed using
the SIMCA-P v.9 (Umetrics, Umeå, Sweden) package. The STATISTICA v. 13.3. (TIBCO
Software Inc., Palo Alto, CA, USA) software was used for the visualization of results. The
correlation weights in both models were calculated using software delivered by MP System
Co. (Kraków, Poland).

4. Conclusions

The determination of the safety profile of broccoli sprouts, a popular element of our
daily diet, is crucial especially for people with thyroid dysfunctions. Although the health
effects of these sprouts have been well known for years, the inconclusive results of limited
human and animal studies did not clearly indicate their impact on thyroid function. The
results of our study indicate an interesting potential of broccoli sprouts to decrease the
viability of thyroid cancer cells and to prevent the associated inflammation. Moreover, our
results suggest a satisfactory safety profile of the sprouts both in vitro and in vivo; however,
a further in-depth evaluation of this problem is still needed.

Information on the influence of brassica vegetables on thyroid function is of great
importance in terms of public health, especially when taking into account that that risk
of iodine deficiency and hypothyroidism in the global population is still increasing, and
thyroid cancer will replace colorectal cancer as the fourth leading cancer diagnosis by 2030.
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2. Paśko, P.; Tyszka-Czochara, M.; Galanty, A.; Gdula-Argasińska, J.; Żmudzki, P.; Bartoń, H.; Zagrodzki, P.; Gorinstein, S.
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