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Abstract: Forest ecosystems play an important role in the global carbon cycle. Clarifying the large-
scale dynamics of net primary productivity (NPP) and its correlation with climatic factors is essential
for national forest ecology and management. Hence, this study aimed to explore the effects of major
climatic factors on the Carnegie–Ames–Stanford Approach (CASA) model-estimated NPP of the
entire forest and all its corresponding vegetation types in China from 1982 to 2015. The spatiotem-
poral patterns of interannual variability of forest NPP were illustrated using linear regression and
geographic information system (GIS) spatial analysis. The correlations between forest NPP and
climatic factors were evaluated using partial correlation analysis and sliding correlation analysis. We
found that over thirty years, the average annual NPP of the forests was 887 × 1012 g C/a, and the
average annual NPP per unit area was 650.73 g C/m2/a. The interannual NPP of the entire forest
and all its corresponding vegetation types significantly increased (p < 0.01). The increase in the NPP
of evergreen broad-leaved forests was markedly substantial among forest types. From the spatial
perspective, the NPP of the entire forest vegetation gradually increased from northwest to southeast.
Over the years, the proportions of the entire forest and all its corresponding vegetation types with a
considerable increase in NPP were higher than those with a significant decrease, indicating, generally,
improvements in forest NPP. We also found climatic factors variably affected the NPP of forests
over time considering that the rise in temperature and solar radiation improved the interannual
forest NPP, and the decline in precipitation diminished the forest NPP. Such varying strength of the
relationship between the interannual forest NPP and climatic factors also varied across many forest
types. Understanding the spatiotemporal pattern of forest NPP and its varying responses to climatic
change will improve our knowledge to manage forest ecosystems and maintain their sustainability
under a changing environment.

Keywords: forest ecology; net primary productivity; varying response; climate change; China

1. Introduction

As an essential part of terrestrial ecosystems, vegetation is a natural link between
the atmosphere, soil, and water. It not only plays an important role in the global material
and energy cycles but also reduces the concentration of greenhouse gases. Net primary
productivity (NPP) refers to the rate at which vegetation fixes carbon dioxide from the
atmosphere in the ecosystem through photosynthesis minus the rate at which vegetation
returns the carbon dioxide to the atmosphere through respiration. NPP stands for the net
carbon input from the atmosphere into vegetation. It, therefore, is an important measure
of ecosystem carbon sinks, carbon sources, and global carbon balance [1,2]. Increases
in temperature, in the frequency, intensity, and distribution of precipitation, and in the
spatiotemporal distribution of solar radiation will inevitably have the most important
impact on the development, formation, and evolution of terrestrial ecosystems. Changes
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in NPP can reflect the responses of ecosystems to climatic conditions, so it can serve as an
indicator of the responses of ecosystem functions to climate change.

As a dominant vegetation type around most of the world, forests comprise the major
component of terrestrial ecosystems [3] and cover 3999 M ha globally in 2015 [4]. They
account for about 80% of terrestrial carbon storage on the ground and 40% of it under-
ground [5,6]. Forests can retain existing carbon stocks and effectively increase carbon
sinks [7,8]. China’s forests represent a significant biomass carbon sink over the past several
decades [9]. Because of the vast land area and heterogeneous natural conditions in China,
its flora and forest types have diversified. The country harbors nearly all the types of forests
in the northern hemisphere [10], ranging from boreal coniferous forests and broad-leaved
forests, temperate deciduous broad-leaved forests, warm temperate or subtropical ever-
green broad-leaved forests to tropical rainforests [11,12]. Its diverse climatic conditions
and forest resources provide a good experimental base for studying the dynamics of the
relationship between forest vegetation productivity and climate change [10,13].

Forest NPP is a key parameter that characterizes the functions of forest ecosystems,
and it can be estimated to assess the development of forest ecosystems. The large-scale
variations in forest NPP and its responses to climatic factors are increasingly gaining
concern [2,10,14]. Large scale forest NPP estimates are of increasing interest. For example,
Fang et al. [15] explored the spatial pattern of forest NPP in different provinces of China
in terms of the third forest survey data. Zhou et al. [10] calculated China’s Larix forest
NPP based on forest inventory data. Wang et al. [16] measured the NPP in different
forests at site level in northern China with the boreal ecosystem productivity simulator.
Hasenauer et al. [17] estimated the Australian forest productivity by reconciling satellite
with ground data. Cao et al. [14] estimated aboveground NPP in secondary tropical dry
forests at the Santa Rosa National Park, Costa Rica using the Carnegie–Ames–Stanford
Approach (CASA) model. Tripathi et al. [18] estimated NPP in tropical forest plantations
of India during 2009 and 2010 using CASA model. NPP is influenced by different factors,
especially climate variables, as the main factors that affect the development and ranges
of forest ecosystems. For instance, Peng et al. [19] reported that climate change led to an
increase in the NPP of boreal forests in central Canada. Schuur and Matson [20] found that
the underground NPP decreased 2.2 times with the increase in average annual precipitation
in the mountain forests of Hawaii. Mohamed et al.. [21] stated that the variability in
NPP of global ecosystems particularly forests and grasslands was attributed to global
anomalies in temperature, precipitation and cloud cover. Cleveland et al. [22] noted that
the mean annual temperature could be the strongest predictor of the ground NPP of all
tropical forests, but this relationship may be caused by the apparent temperature difference
between highland and lowland forests. Reyer et al. [23] suggested that future forest
productivity would be subject to climate change, which in turn would largely depend on
climate scenarios and the sustainability of CO2 impacts. Yao et al. [9] quantified Chinese
forest biomass carbon sequestration capacity in the near future integrating the effects of
stand development, climate change, and increasing CO2 concentration. Although previous
studies have focused mainly on either forest NPP or the impact of climatic factors on
forest NPP, most of them were limited at specific regions or within shorter periods [24].
Moreover, previous researchers have paid relatively little attention to the varying responses
of vegetation growth (e.g., forest NPP) to climate variables [25].

We aimed to investigate the spatiotemporal variations in China’s forest NPP and
explored the dynamic responses of forests in terms of their NPP to major climatic factors
from 1982 to 2015, which were important for sustainable forest ecology and management.

2. Data and Methods
2.1. Data Sources
2.1.1. Remote Sensing Data

We utilized the Global Inventory Modeling and Mapping Studies (GIMMS) Normal-
ized Difference Vegetation Index-3rd generation (NDVI3g) remote sensing data generated



Plants 2022, 11, 2932 3 of 17

by the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High-
resolution Radiometer (AVHRR) and provided by the National Aeronautics and Space
Administration (NASA). This data set from 1982 to 2015, with 15-day time resolution
and 0.083◦ spatial resolution, is the longest sequence of NDVI data and has been widely
used in the estimation and investigation of large-scale vegetation dynamics, vegetation
NPP, and biomass [26]. The effects of cloud and atmospheric interferences were elimi-
nated and the monthly NDVI data were processed through the maximum-value composite
(MVC) method [27].

2.1.2. Meteorological Data

The monthly data, such as total solar radiation, average temperature, and precipitation
over the same period as the remote sensing data, were obtained from the records of
meteorological stations (Figure S1) in the China Meteorological Science Data Sharing
Service System (CMSDS). Spatial interpolation was performed through inverse distance
weighting (IDW) to generate meteorological grid data with spatial resolution and projection
similar to that of the NDVI data [28,29].

2.1.3. Forest-Type Data

Forest data were extracted from China’s 1:1,000,000 vegetation map provided by
the Environmental and Ecological Science Data Center for West China, National Natural
Science Foundation of China (http://westdc.westgis.ac.cn (accessed on 9 October 2022)).
Forest vegetation types (Figure S1) included evergreen broad-leaved forest, deciduous
broad-leaved forest, evergreen coniferous forest, deciduous coniferous forest, and mixed
forest [30]. The distribution of evergreen broad-leaved forests is mostly in subtropical
regions; deciduous broad-leaved forests are in temperate regions; evergreen coniferous
forests are mostly south of the Qinling–Huaihe line; deciduous coniferous forests are in
Northeastern and Northwestern China; and mixed forests are mostly in the Changbai
Mountains, Xiaoxinganling Mountains, and subtropical mountains.

2.2. Methods
2.2.1. CASA Model

NPP prediction models have become powerful alternative tools for investigating
the NPP scale and geographic distribution of vegetation because the direct measurement
of terrestrial vegetation NPP at the regional or global scale has been difficult [31]. The
Carnegie–Ames–Stanford Approach (CASA) model is an NPP simulation model considered
more realistic than others [1,14,32]. We used it in this study to estimate the NPP of the
entire forest and the forest vegetation types and calculated it as follows:

NPP(x, t) = APAR(x, t)× ε(x, t) (1)

where APAR(x, t) represents the photosynthetically active radiation (PAR, in units of MJ/m2)
absorbed at pixel x in month t, and ε(x, t) represents the actual light energy utilization at
pixel x in month t (g C/MJ). APAR was computed as follows:

APAR(x, t) = SOL(x, t)× FPAR(x, t)× 0.5 (2)

where SOL(x, t) represents the total solar radiation (MJ/m2) at pixel x in month t; FPAR(x,
t) represents the fraction of photosynthetically active radiation (FPAR) absorbed by the
vegetation layer; and 0.5 represents the proportion of the effective solar radiation relative
to the total solar radiation and with a wavelength of 0.4–0.7 µm that can be utilized by
vegetation [33]. FPAR is represented by NDVI and vegetation type, and it does not exceed
0.95 in the equation [34]:

FPAR = min
(

SR(x, t)− SRmin
SRmax − SRmin

, 0.95
)

(3)

http://westdc.westgis.ac.cn
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where SR(x, t) represents the ratio index at pixel x in month t; SRmin is 1.08, and SRmax,
ranging from 4.14 to 6.17, is related to vegetation type. We calculated SR(x, t) using NDVI(x,
t) as follows:

SR(x, t) =
1 + NDVI(x, t)
1 − NDVI(x, t)

(4)

The light energy utilization rate (ε), subject to temperature and water conditions, refers
to the efficiency of the conversion of PAR absorbed by vegetation into organic carbon. We
computed it as follows:

ε(x, t) = Tε1(x, t)× Tε2(x, t)× Wε(x, t)× εmax (5)

where Tε1(x, t) and Tε2(x, t) represent the effects of temperature on ε; Wε represents the
effect of water on ε, and εmax represents the maximum ε under ideal conditions (g C/MJ).

Estimation of temperature stress factors: Tε1(x, t) and Tε2(x, t) reflect the effects of
temperature on ε. We calculated the former as follows:

Tε1(x, t) = 0.8 + 0.02 × Topt(x)− 0.0005 ×
[
Topt(x)

]2 (6)

where Topt(x) represents the average temperature (◦C) of the month when the NDVI of a
certain area reaches the maximum in a year. If the average temperature of a month is less
than or equal to −10 ◦C, Topt(x) is set to 0.

Tε2(x, t) =
1.184{

1 + exp
[
0.2 ×

(
Topt(x)− 10 − T(x, t)

)]} × 1{
1 + exp

[
0.3 ×

(
−Topt(x)− 10 + T(x, t)

)]} (7)

If T(x, t), the average temperature of a month is 10 ◦C higher or 13 ◦C lower than
Topt(x); then, the Tε2(x, t) value for this month is half the value of Tε2(x, t) for which T(x, t)
is Topt(x).

Estimation of water stress factors: Wε(x, t) reflects the effect of water on the light
utilization efficiency of plants. It gradually increases with the rise in effective water in the
environment, and its value ranges from 0.5 (under extreme drought conditions) to 1 (under
very wet conditions). We calculated it as follows:

Wε(x, t) = 0.5 + 0.5 × E(x, t)/Ep(x, t) (8)

where E(x, t) represents the actual evapotranspiration (mm) of a region based on the actual
evapotranspiration model of Zhou et al. [10], and Ep(x, t) represents the potential evapotran-
spiration of a region based on the complementary relationship proposed by Boucher [35].

Determination of εmax: We determined the value of εmax through Zhu’s method of simu-
lating the εmax of different vegetation types based on the principle of error minimization [36].

2.2.2. Linear Regression Analysis

The annual change rate of NPP based on the total annual NPP of forest vegetation in
the same period was calculated through a linear regression model [37,38]. The pixel-by-
pixel change rate of NPP was calculated based on the average annual forest NPP for all the
pixels from 1982 to 2015, as shown in the equation:

y = αt + β + ε (9)

where t is a year in the time series; α is the regression coefficient indicating the annual
change rate of NPP; β is the regression constant; and ε is the fitted residual. A value of
p < 0.05 (or 0.01) indicated that a linear regression coefficient was significantly based on
the t-test.



Plants 2022, 11, 2932 5 of 17

2.2.3. Partial Correlation Analysis

The interference of other variables on the impacts of climatic factors on NPP was
eliminated through second-order partial correlation analysis [39,40]. The pixel-by-pixel
partial correlation coefficient (r) of forest NPP was calculated with total solar radiation,
temperature, and precipitation. The partial correlation coefficient between NPP and tem-
perature was calculated while solar radiation and precipitation were fixed, whereas that
between NPP and precipitation was determined while solar radiation and temperature
were set, and that between NPP and solar radiation was computed while temperature and
precipitation were constant [41].

2.2.4. Sliding Partial Correlation Analysis

The sliding correlation coefficient can be used to investigate the variations in the
impacts of climatic factors on vegetation NPP [40]. The 10–20a is considered to be the
appropriate range of years for a moving window in sliding correlation analysis [42]. Thus, in
order to determine the temporal variations in the relationship between vegetation NPP and
climate despite the limited study period, we selected 17a as the sliding stride to calculate
the second-order partial correlation coefficient of forest NPP with temperature (RNPP-T),
precipitation (RNPP-P), and total solar radiation (RNPP-S). A sequence for each correlation
coefficient from 1982 to 1998, 1983 to 1999, . . . , and 1999 to 2015 was obtained. Thus,
the variations in the correlation coefficient between the NPP of China’s forest vegetation
and the climatic factors with time were analyzed, and statistical significance tests were
performed for such changes. Values of p < 0.05 indicated that the responses of forest NPP
to climatic factors were statistically significant.

3. Results
3.1. Temporal Variations in Forest NPP

The total NPP of China’s forest vegetation from 1982 to 2015 was between 770 × 1012 g C/a
and 965 × 1012 g C/a, and the average annual NPP was 887 × 1012 g C/a. From the per-
spective of different vegetation types, the NPP per unit area of evergreen broad-leaved
forests was the highest (1323.71 g C/m2/a), followed by mixed forests (832.06 g C/m2/a)
and deciduous broad-leaved forests (637.21 g C/m2/a). The NPP per unit area of ev-
ergreen coniferous forests and deciduous coniferous forests was 497.59 g C/m2/a and
442.35 g C/m2/a, respectively. All five types of forests showed a significantly increasing
trend in NPP during the study periods (Figure 1). The NPP growth rate of evergreen
broad-leaved forests was the highest (4.78 g C/m2/a; p < 0.01), followed by mixed forests
(3.64 g C/m2/a; p < 0.01), deciduous broad-leaved forests (2.42 g C/m2/a; p < 0.01), and ev-
ergreen coniferous forests (2.35 g C/m2/a; p < 0.01), whereas that of deciduous coniferous
forests was the lowest (1.65 g C/m2/a; p < 0.01). The total NPP of forest vegetation in China
extensively increased by 11.67% from 848.86 × 1012 g C in 1982 to 947.89 × 1012 g C in 2015
and at a linear rate of 3.558 × 1012 g C/a per year (p < 0.01) over thirty years (Figure 1).

3.2. Spatial Variations in Forest NPP

The annual difference in forest NPP from 1982 to 2015 was between −24.23 g C/m2/a
and 35.59 g C/m2/a, with an average growth rate of 2.36 g C/m2/a. The NPP of 89.25%
of the total forest area increased, whereas that of only 10.45% decreased. About 51.40% of
forest vegetation in the Changbai Mountains, Sichuan–Shaanxi–Gansu bordering region,
the Xiaoxinganling Mountains, the northern Daxinganling Mountains, the Han River valley,
southern Yunnan, and Eastern Taiwan showed a substantial increase (p < 0.05) in their
NPP. Only 1.33% of forest vegetation in the Bhareli River and Subansiri River regions
in Southeastern Tibet showed a noteworthy decrease (p < 0.05) in their NPP. Our results
demonstrated that the area of forest vegetation with increasing NPP was greater than
that with decreasing NPP and that the NPP of the entire forest increased over thirty years
(Figure 2).



Plants 2022, 11, 2932 6 of 17Plants 2022, 11, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 1. Interannual change in NPP across forest types from 1982 to 2015 (Here, the vertical solid 
rectangles represent NPP anomalies across forest types; the black lines represent the interannual 
change trend in forest NPP.). Shading denotes 95% prediction intervals. 

3.2. Spatial Variations in Forest NPP 
The annual difference in forest NPP from 1982 to 2015 was between −24.23 g C/m2/a 

and 35.59 g C/m2/a, with an average growth rate of 2.36 g C/m2/a. The NPP of 89.25% of 
the total forest area increased, whereas that of only 10.45% decreased. About 51.40% of 
forest vegetation in the Changbai Mountains, Sichuan–Shaanxi–Gansu bordering region, 
the Xiaoxinganling Mountains, the northern Daxinganling Mountains, the Han River 
valley, southern Yunnan, and Eastern Taiwan showed a substantial increase (p < 0.05) in 
their NPP. Only 1.33% of forest vegetation in the Bhareli River and Subansiri River regions 
in Southeastern Tibet showed a noteworthy decrease (p < 0.05) in their NPP. Our results 
demonstrated that the area of forest vegetation with increasing NPP was greater than that 
with decreasing NPP and that the NPP of the entire forest increased over thirty years 
(Figure 2). 

Figure 1. Interannual change in NPP across forest types from 1982 to 2015 (Here, the vertical solid
rectangles represent NPP anomalies across forest types; the black lines represent the interannual
change trend in forest NPP). Shading denotes 95% prediction intervals.

Based on the annual difference in NPP per unit area of the forest types, the areas
of mixed forests with significant increase (p < 0.05) comprised the largest proportion
(83.33%) of the total area of mixed forests; those of deciduous broad-leaved forests and
deciduous coniferous forests with substantial increase both exceeded 60%; whereas those of
evergreen broad-leaved forests and evergreen coniferous forests with considerable increase
accounted for 44.06% and 33.89%, respectively. On the other hand, the proportions of all
forest vegetation types with a notable decrease (p < 0.05) in NPP were low. The area of
mixed forests with significant decrease in NPP per unit area was almost zero; all those of
deciduous broad-leaved forests, evergreen coniferous forests, and deciduous coniferous
forests with substantial decrease in NPP per unit area were less than 1%; whereas those of
evergreen broad-leaved forests with noteworthy decrease in NPP per unit area comprised
the largest proportion that was only 6.67%. Our findings showed that the area of each
forest vegetation type with a significant increase (p < 0.05) in NPP per unit of area covered
a proportion larger than that with significant decrease (p < 0.05), and that the NPP of the
five forest types generally increased during the study periods.
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3.3. Interannual Correlation between Forest NPP and Climatic Factors
3.3.1. Total Annual NPP and Temperature

The partial correlation coefficient of the total annual forest NPP and mean annual
temperature (MAT) was 0.558 at a 0.01 significant level, suggesting that forest NPP was
significantly correlated with MAT in the past three decades (Figure 3). Spatially, the areas
with a positive correlation between total forest NPP and MAT accounted for 70.92% of the
total forest area (Table 1). Approximately 8.60% of the areas in the northeastern region of
the Yunnan–Guizhou Plateau, Chongqing, the southeastern region of Sichuan Basin, and
western Hunan passed the significance test (p < 0.05). The areas with negative correlation
between forest NPP and MAT accounted for 29.08%, and those with significantly negative
correlation were mainly distributed in southern Hainan and the Bhareli River as well as
in the Subansiri River in Tibet. The areas in southeastern Jilin and southern Hainan that
passed the significance test (p < 0.05) accounted for only 3.24%.

The pixels of the mixed forests with significant correlation between the NPP of different
forest types and MAT (p < 0.05) accounted for 36.01%, which is the greatest proportion, of
the total pixels of mixed forests; those of green broad-leaved forests (p < 0.05) accounted
for 20.27%; those of deciduous broad-leaved forests and evergreen coniferous forests
(p < 0.05) both comprised greater than 10%; whereas those of deciduous broad-leaved
forests (p < 0.05) accounted for slightly higher than 7%. The pixels of other forest types,
except the deciduous broad-leaved forests, with the positive correlation between NPP
and MAT, generally constituted proportions greater than those with negative correlation,
indicating that temperature evidently altered the NPP across different forest types.
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temperature from 1982 to 2015.

Table 1. Percentages of the area with significant partial correlations (p < 0.05) between forest NPP
and climatic factors. The numbers in parentheses indicate the percentage of area with significant
partial correlations between forest NPP and climatic factors.

Climatic Factors Positive Negative

Temperature 70.92% (8.60%) 29.08% (3.24%)
Precipitation 88.10% (31.72%) 11.90% (0.28%)

Solar radiation 98.89% (80.22%) 1.11% (0.03%)

3.3.2. Total Annual NPP and Precipitation

The partial correlation coefficient of the total annual forest NPP and the mean annual
precipitation (MAP) was 0.167 (p > 0.05), suggesting that there was no significant correla-
tion between the total annual forest NPP and MAP in the past three decades (Figure 4).
Spatially, the areas with a positive correlation between forest NPP and MAP accounted
for 88.10% of the total forest area (Table 1). About 31.72% of the areas, mainly in the
Tibet–Yunnan–Sichuan bordering regions, eastern and western Liaoning, southeastern
Guizhou, the Daxinganling Mountains, southeastern Liaoning, the Xiaoxinganling Moun-
tains, Shandong, the Changbai Mountains, Fujian, Yunnan, eastern Guizhou, southern
Jiangxi, and eastern Guangdong showed a significantly positive correlation (p < 0.05). The
areas with negative correlation between forest NPP and MAP accounted for 11.90%. Only
0.28% of the areas mainly in northern Sichuan passed the significance test (p < 0.05).
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Based on the proportion of pixels of forest type with correlation between NPP and
MAP relative to the total pixels of the same vegetation type, the NPP of 49.47% of deciduous
coniferous forests, 38.54% of deciduous broad-leaved forests, 32.96% of mixed forests,
25.19% of evergreen coniferous forests, and 12.66% of evergreen broad-leaved forests were
significantly affected by precipitation (p < 0.05). All the areas in the five forest vegetation
types with a positive correlation between NPP and precipitation comprised a proportion
greater than those with a negative correlation. Hence, precipitation minimally affected the
forest NPP in the study periods.

3.3.3. Total Annual NPP and Total Solar Radiation

The partial correlation coefficient of the total annual NPP of forest vegetation and
total solar radiation (TSR) was 0.476 at 0.05 significant level, suggesting that the total
annual forest NPP was significantly correlated with TSR in the past three decades (Figure 5).
Spatially, the areas with a positive correlation between forest NPP and TSR accounted
for 98.89% of the total forest area (Table 1). About 80.22% of the areas, mainly in the
Daxinganling Mountains, eastern Liaoning, Han River valley, Xiaoxinganling Mountains,
and south of the Yangtze River, passed the significance test (p < 0.05). The areas with the
negative correlation between forest NPP and TSR accounted for 1.11%. Those mainly in
Sichuan, northwestern Yunnan, and Xinjiang that passed the significance test (p < 0.05) only
accounted for 0.03% of the total forest area.
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Based on the proportion of pixels of each forest type showing correlation between
NPP and TSR relative to the total pixels of the corresponding forest type, the proportion of
areas across forest types with significantly positive correlation (p < 0.05) exceeded 60%, and
those with significantly negative correlation (p < 0.05) were almost zero. Thus, the increase
in solar radiation notably facilitated the growth of forest NPP in the study periods.

3.4. Varying Responses of Forest NPP to Climate Change
3.4.1. Dynamic Relationship between Forest NPP and Temperature

The sliding correlation coefficient RNPP-T between the NPP of the entire forest from
1982 to 2015 and MAT significantly increased (p < 0.01) (Figure 6). Similarly, the RNPP-T for
deciduous broad-leaved forests and mixed forests also considerably increased (p < 0.01).
Although the RNPP-T for deciduous coniferous forests increased, it failed the significance
test (p > 0.05). The RNPP-T for evergreen broad-leaved forests and evergreen deciduous
forests decreased, and it failed the significance test (p > 0.05).

Considering different time periods, the positive correlation between forest NPP and
MAT gradually weakened from the 1982–1998 period to the 1985–2001 period, but it steadily
strengthened after 1986–2002 and slowly declined again after 1993–2009 until 1999–2015.
The deciduous broad-leaved forests showed an increasingly positive correlation between
NPP and MAT, whereas the evergreen coniferous forests and evergreen broad-leaved
forests demonstrated no significant change in their corresponding positive correlation. The
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pertinent correlation in the deciduous coniferous forests and mixed forests changed from
negative to positive and continuously increased.
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3.4.2. Dynamic Relationship between Forest NPP and Precipitation

The sliding correlation coefficient RNPP-P between the NPP of the entire forest from
1982 to 2015 and MAP showed a fluctuating downward trend (p > 0.05) (Figure 7). The
RNPP-P of evergreen broad-leaved forests significantly decreased (p < 0.01), whereas that of
deciduous broad-leaved forests substantially increased (p < 0.01). The RNPP-P of evergreen
coniferous forests increased (p > 0.05), whereas that of deciduous coniferous forests and
mixed forests decreased (p > 0.05).
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The RNPP-P in all the periods showed positive correlation and failed the significance
test of p < 0.05, but the underlying change was periodic. The RNPP-P increased from the
1982–1998 period to the 1993–2009 period, gradually decreased from the 1988–2004 period
to the 1996–2012 period, and steadily increased again after 1994–2010, but it did not reach a
significantly positive correlation. The RNPP-P of evergreen broad-leaved forests changed
from positive to negative, but it was not statistically significant, whereas that of deciduous
broad-leaved forests and evergreen coniferous forests was positive in all the study periods.
Nevertheless, the changes varied as the RNPP-P of deciduous broad-leaved forests increased
annually, whereas that of evergreen coniferous forests decreased yearly. The RNPP-P of
deciduous coniferous forests similarly changed, and that of the mixed forests changed from
positive to negative.
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3.4.3. Dynamic Relationship between Forest NPP and Solar Radiation

The sliding correlation coefficient RNPP-S between the NPP of the entire forest from
1982 to 2015 and TSR did not significantly change (p > 0.05) (Figure 8) and the RNPP-S
was positive in each sliding window. The correlation between forest NPP and TSR was
significantly positive from 1982 to 1998 (p < 0.05), but it gradually weakened from the
1983–1999 period to 1989–2005 period. Its correlation coefficient reached a significantly
positive correlation (p < 0.05) from the 1990–2006 period to the 1992–2008 period. It sharply
declined but remained positively correlated from 1993 to 2009, after which it gradually
increased but did not show a significantly positive correlation (p < 0.05) until 1998–2014.
However, the notable decrease in the RNPP-S of all the forest types demonstrated the
dynamic responses of forest NPP to TSR. The RNPP-S of evergreen broad-leaved forests and
deciduous broad-leaved forests significantly decreased (p < 0.01).
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4. Discussion

In this study, we simulated China’s forest NPP and investigated the spatiotemporal
patterns of forest NPP from 1982 to 2015. Even though the CASA model has been widely
applied to NPP in China [1,32], the calculation still needs to be verified. Thus, we compared
the NPP calculated from the CASA model with other simulation results in the literature.
The mean annual NPP estimated for the entire forest (887 × 1012 g C/a) in this study was
similar to the forest biomass given by Zhan et al. [43] (approximately 840.3 × 1012 g C/a)
and Ni [12] (738.9 × 1012 g C/a). However, it was about twice the estimate of Fang et al. [11]
(461.0 × 1012 g C/a) between 1949 and 1998. The average NPP per unit area estimated
for the entire forest in this study was slightly lower than that of the MODIS MOD17A3
products (666.19 g C/m2/a) with a spatial resolution of 1000 m at an annual interval
(https://modis.gsfc.nasa.gov/ (accessed on 9 October 2022)), which is commonly used
to explore the spatiotemporal patterns of NPP on regional and global scales. Moreover,
our estimate of the NPP per unit area of evergreen broad-leaved forests was close to
that reported by Wu et al. [44] (1327.22 g C/m2/a); that of deciduous broad-leaved
forests was consistent with those provided by Ni [12] (671.80 g C/m2/a), Liang et al. [13]
(688.50 g C/m2/a), and Zhu et al. [36] (642.90 g C/m2/a); that of evergreen coniferous
forests was similar to those determined by Wu et al. [44] (515.69 g C/m2/a), Jiang et al. [45]
(519.34 g C/m2/a), and Liang et al. [13] (542.80 g C/m2/a); that of deciduous conifer-
ous forests was similar to those determined by Zhu et al. [36] (438.80 g C/m2/a) and
Liang et al. [13] (401.40 g C/m2/a); and that of the mixed forests was consistent with those
reported by MOD17A3 (749.65 g C/m2/a). Despite the closeness of our pertinent estimates
with those in the literature, there were still differences, and they were possible owing to
the discrepancies in research periods, data sources, study areas, vegetation types, and
classification accuracy. In addition, more detailed field measurements on NPP should be
examined in our future studies in order to accurately explore the spatiotemporal pattern of
forest NPP in China.

From the spatial perspective, the forest NPP in this study gradually decreased from
southeast to northwest, consistent with the spatial distribution of precipitation in China [1,13].
Furthermore, we found that forest NPP was mainly distributed in the humid or very humid
monsoon regions of China. The spatial pattern of NPP is generally in line with previous
studies [32,46]. For instance, the areas with forest NPP ranging from 1000 to 2100 g C/m2/a
were distributed in Eastern Taiwan, southwestern Yunnan, and southern Hainan, where
the main vegetation type is evergreen broad-leaved forests and where productivity was
generally high due to abundant precipitation, warm climate, and rich groundwater. Con-
trarily, annual NPP below 200 g C/m2/a was mainly in the Qinghai–Tibetan Plateau and
Xinjiang Regions, where the climate is characterized by a low precipitation amount. In
addition, our findings of the annual NPP at the biome level also agreed well with previous
studies [13,46]. For example, evergreen forests exhibited a higher NPP than deciduous
forests. The highest NPP witnessed in the evergreen broad-leaved forest, with an average
range of 1000–2100 g C/m2/a. The deciduous coniferous forest has the lowest annual NPP
(mostly 200–600 g C/m2/a) in areas with either dry climate or low temperature.

On average, forest NPP in China significantly increased during the past three decades.
Despite its overall trend as a whole, NPP trends in the forest showed an obvious geograph-
ical heterogeneity. The overall rising trends in NPP are also consistent among biomes, with
the increasing trends being all statistically significant at a significant level of 0.01. Such
upward trends in forest NPP were consistent with the increasing NPP of terrestrial vegeta-
tion in the northern hemisphere [13], indicating that forest vegetation in China played an
increasingly irreplaceable role in carbon sequestration in the past few decades [9,13].

Relative to other areas, those covered with forest vegetation had a significant increase
in mean annual temperature and total annual solar radiation but had a decrease in annual
precipitation from 1982 to 2015. The annual increase in temperature improved the forest
NPP of these areas because it may have prolonged the growth period of their forest vegeta-
tion [47] and controlled on plant metabolic activity, water and nutrient availability [48]. The
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yearly increase in solar radiation also augmented the NPP of the forested areas probably
because it increased the rate of photosynthesis among the flora, facilitated the accumulation
of organic matter, and intensified the warmth therein. Conversely, the decline in precipita-
tion diminished the forest NPP because it may have reduced the water supply essential for
the growth of the forest vegetation. By analyzing the relationship between climatic factors
and NPP, we found precipitation had a lower correlation with NPP than temperature and
solar radiation, implying that the effect of annual precipitation on forest vegetation growth
was smaller than other climatic factors, which was also presented by the previous study
on biogeographic patterns of China’s forests growth rate and their climatic control [6].
Our findings even showed that forest NPP significantly increased only in eastern Taiwan,
southern Yunnan, and south of the Yangtze River, where southeast and southwest monsoon
systems were dominant and where rainfall from the Pacific Ocean and the Indian Ocean
was abundant during the growing season. As a whole, we showed that ongoing climate
change could exert positive impacts on forest growth and carbon sequestration capacity,
which was widely acknowledged by previous studies [1,8,9].

Previous researchers have also investigated the climate-driven effect on variations in
forests NPP [6,13,22]. However, little is known about the temporal differentiation in the
relationships between forests NPP and climate variables, which is essential for future forest
ecology and management. Our results of the sliding partial correlation analysis in each
17-year moving window indicated that the interannual partial correlation coefficient be-
tween annual NPP and annual TSR (RNPP-S) showed little change, that between annual NPP
and MAT (RNPP-T) significantly increased, but that between annual NPP and MAP (RNPP-P)
displayed a fluctuating downward trend. Obviously, the correlations exhibited temporally
varying strength in our study, which also has been reported by previous studies [29,40,49].
However, unlike previous studies [25,50,51], we did not detect a loss of sensitivity of forest
vegetation growth to increasing warming. Instead, we find that the impacts of precipitation
on forest NPP were also weakening as the annual precipitation amount decreased, which
was similar to the earlier findings that the relationship between NPP and MAP varied
with the rising in MAP [52]. Given that the mechanistic explanation for varying forest
response to environmental change was still unknown, a complete understanding of the
combined environmental effect on forest ecosystem productivity remained a great challenge
for further studies.

5. Conclusions

Overall, the interannual NPP of the entire forest and its corresponding vegetation
types in China from 1982 to 2015 significantly increased. Our findings demonstrated that
climatic factors could variably affect the NPP of forests, as the increase in temperature and
solar radiation enhanced the interannual forest NPP, whereas the decrease in precipitation
reduced the forest NPP. However, such responses of the forest NPP to climatic factors
constantly changed, and they varied with the type of forest vegetation. Studies on the
dynamics of the correlation between forest NPP and climatic factors are essential for
elucidating the adaptability of forests to global warming.
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meteorological stations.
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