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Abstract: Plant stress induced by high temperature is a problem in wide areas of different regions in
the world. The trend of global warming is going to enhance the effects of heat stress on crops in many
cultivation areas. Heat stress impairs the stability of cell membranes and many biological processes
involving both primary and secondary metabolism. Biostimulants are innovative agronomical tools
that can be used as a strategy to counteract the detrimental effect of abiotic stresses, including heat
stress. In this work, two biostimulants based on Ascophyllum nodosum extracts (named Phylgreen)
and based on animal L-α amino acids (named Delfan Plus) were applied as priming treatments
to Arabidopsis thaliana plants subjected to heat stress exposure. Plants at the vegetative stage were
treated with biostimulants 12 h before high temperature exposure, which consisted of maintaining
the plants at 37 ± 1 ◦C for 4 h. Transcriptional profiles, physiological, and biochemical analyses were
performed to understand the mode of action of the biostimulants in protecting the plants exposed
to short-term heat stress. At a physiological level, chlorophyll, chlorophyll a fluorescence, phenolic
index, total anthocyanins, reactive oxygen species (ROS) were measured, and significant variations
were observed immediately after stress. Both biostimulants were able to reduce the oxidative damage
in leaves and cell membrane. Transcriptomic data revealed that upregulated genes were 626 in
Phylgreen and 365 in Delfan Plus, while downregulated genes were 295 in Phylgreen and 312 in
Delfan Plus. Bioinformatic analysis showed that the biostimulants protected the plants from heat
stress by activating specific heat shock proteins (HPS), antioxidant systems, and ROS scavengers. The
results revealed that the biostimulants effectively induced the activation of heat stress-associated
genes belonging to different transcription factors and HSP families. Among the heat shock proteins,
the most important was the AtHSP17 family and in particular, those influenced by treatments were
AtHPS17.4 and AtHPS17.6A, B, showing the most relevant changes.

Keywords: abiotic stress; Arabidopsis thaliana; Ascophyllum nodosum; HPS; heat shock; secondary
metabolism; high temperature

1. Introduction

Heat stress is well known as one of the main abiotic stresses that affect the performance
of cultivated crops, and its potential severity is going to be increased by global climate
change [1]. Heat stress due to high temperature can negatively affect plant growth, devel-
opment, and, more severely, the reproductive stages causing a decrease of crop yield [2].
The exposure of crops to heat stress is not always constant and its intensity generally
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shows a gradual increase until the early afternoon and then decline until the end of the day.
Moreover, different weather conditions can affect heat stress intensity with daily changes.
This behavior is commonly known as a heat wave and it can influence crop performance
during the summer season [3]. The main consequence of stress conditions produced by
high temperatures is the cell membrane damage which leads to the loss of cellular or-
ganization and to cell death [4]. Moreover, plant injuries include protein denaturation,
aggregation, and enhanced fluidity of membrane lipids. High temperatures also affect the
organization of microtubules. The severity of damage depends on the time of exposure and
the temperature intensity. All this damage is due to the loss of cell compartmentalization
that induces the activation and loss of enzymatic activities, ion flux disorder, accumulation
of toxic compounds, including reactive oxygen species (ROS) [4]. The reproductive growth
is altered by heat stress in various species, including rice, which showed an optimum at
33 ◦C for vegetative growth, while grain formation and yield were negatively affected
by temperatures above 25 ◦C. Moreover, temperatures above 33 ◦C reduced the viability
of pollen which reached zero for temperatures of 40 ◦C with a similar phenomenon for
sorghum (optimum at 26–34 ◦C for vegetative growth and at 25–28 ◦C for reproductive
growth) and for Arabidopsis thaliana, in which the abortion of the whole inflorescence was
observed at a temperature of 36 ◦C [5]. The same authors emphasized the cellular response
to temperature stress which includes the altered organization of organelles, cytoskeleton,
and membrane structures. To maintain membrane stability and normal cellular functions
in the presence of heat stress, plants synthesize heat shock proteins (HSPs), molecular
chaperones that prevent protein misfolding or aggregation, as well as other co-chaperones,
hormones, and other protective molecules. These HSPs have a role in protein quality
control and can protect the protein functionality, also under stress [6]. Their function in
plants is essential for normal growth and development, this can explain their activation,
also under heat stress responses in order to guarantee plant performance. The expression
of genes encoding for the HSPs is induced by heat stress transcription factors (HSFs) that
bind to heat shock elements in the promoters of HSPs. There are many steps of regulation
allowing dynamic control of the heat stress response, as the HSFs themselves can be post-
transcriptionally modified. In addition to the constitutive role that HSPs play in heat stress
responses across cell types, these proteins can acquire specialized functions that regulate
developmental responses of organs to environmental stress [7,8].

The expression of a variety of biochemical markers correlates plant responses to abiotic
stress. Secondary metabolites, and in particular phenolic compounds, playing a major role
in the adaptation of plants to the environment and in overcoming stress conditions, can
be easily detected because of their natural autofluorescence. Environmental factors such
as air temperature and humidity, light intensity, water supply, mineral nutrition, and CO2
influence plant growth and secondary metabolite production [9].

HSPs are clustered into five families highly evolutionarily conserved as small heat
stress proteins, (sHPSs < 40 kDa) HSP60, HSP70, HSP90, HSP100. The HSP100 family is
not exclusively expressed under heat stress but also under other abiotic stresses such as
salinity, drought, abscisic acid, and cold stress. HSP90 genes have been found in different
plants exposed to various abiotic stresses such as sub-optimal temperature, salinity, and
heavy metals [4]. The HSP90 protein is required both for normal development and stress
tolerance. It represents 1–2% of total proteins in unstressed cells and is involved in many
cellular processes. The role of HSP includes the stabilization and regulation of homeostasis
of proteins, transcriptional regulation, chromatin organization, defence mechanisms, and
DNA repair. HSP70 proteins are molecular chaperones and found in almost all plant species.
The sHSPs are a large family of proteins that are not normally expressed in plants under
optimal conditions but increase if exposed to stress conditions.

Hydrogen peroxide is one of the main ROS and it is known to play a central role in
plant responses to abiotic stresses. An excessive production and accumulation of ROS in
plant tissues induces oxidative stress. The ROS accumulation occurs in plants exposed to
abiotic stress conditions [10]. Such oxidative stress, potentially damaging to plant cells,
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was reported in plants subjected to drought, flooding, high light intensity, chilling, heat,
salinity, air pollutants, and herbicides. Enhanced ROS generation has also been found in
heat stressed plants with an increase of membrane lipid peroxidation [11].

H2O2 is a stable ROS that has a pivotal role in response and defence in plants. The
H2O2 is the regulator of physiological and biochemical processes in plants under biotic and
abiotic stresses [12]. At high concentrations, it can be toxic, while in low concentrations,
it activates specific defence mechanisms in plants, allowing them to overcome stressful
conditions [13].

Heat stress is a common abiotic stress during summer in Mediterranean areas and the
severity of the stress is increased if associated with low water availability. Prediction of
these events is not easy with the available forecast models. Thus, farmers need additional
practical tools to alleviate crops from abiotic stresses [14–16]. To date, several biostimulant
products are available on the market and they can be used as a good agronomic tool to
prepare plants for incoming critical periods (priming) or to counteract the negative effects
and help plants to recover after stress [15,17]. Priming is an agronomic strategy used in
agriculture for inducing the seeds or plants to activate specific physiological or biochemical
processes for improving germination or plant performance against specific events (i.e.,
germination for seeds, counteract abiotic stresses for plants, etc.). Biostimulants can act
by increasing the capacity of the crops to face a stressful condition and avoid the negative
effects on their performance. This priming effect is due to the activation of a complex
mechanism of molecular interactions [18] that is triggered by the active components of
the biostimulant [19] (Fleming et al., 2018). Previous studies have shown that Ascophyllum
nodosum seaweed extracts can act as biostimulants maintaining crop productivity during
and after exposure to abiotic stresses, by protecting the plant cells from the stress-induced
oxidative damage [20]. However, it has been shown that, starting from the same raw
material, the success of a seaweed-based biostimulant depends on the manufacturing
procedures [21]. Biostimulants containing amino acids can also be used as a priming
treatment for the activation of different physiological processes. The application of amino
acid-based biostimulants (Delfan Plus) applied as a priming treatment was able to increase
drought tolerance, mitigating stress, in the Arabidopsis thaliana model [19]. Understanding
the mechanism of action of biostimulants and the plant response to their application in
combination with abiotic stress conditions is crucial for the optimization and use of these
novel agronomic tools [22].

The aim of the work was to evaluate the priming effect of the biostimulant products
applied to Arabidopsis thaliana plants subjected to a short-term heat stress (37 ◦C). This was
achieved by the identification of the transcriptional changes in stressed plants previously
treated with biostimulants. The physiological, biochemical, and molecular approaches
provided useful information for understanding the mode of action of the products when
applied prior to the stress (priming/preventive effect). The hypothesis of this work was
that biostimulants containing Ascophyllum nodosum extracts or containing amino acids
could be applied as protective treatments against heat stress in plants. Biochemical and
molecular analyses have been used to identify the activation of the specific clusters of genes
that are responsible for the increase in plant tolerance and recovery in plant performance
after stress exposure.

2. Results
2.1. Transcriptional Changes

The RNA-seq analysis enabled identification of a total of 32,833 sequences correspond-
ing to gene sequences in the Arabidopsis thaliana reference genome. Based on the count of
each read, the expression of each gene was estimated as Log FC, compared to non-stressed
control (CTR). The Venn diagram has been used for identifying the differentially expressed
genes activated or repressed by the treatments. A total of 1756 DEGs were expressed under
heat stress, while 1228 DEGs were found in response to Phylgreen application, and 844
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in Delfan Plus application. Biostimulant treatments shared 1620 DEGs and only 174 were
commonly expressed in the biostimulants and stress conditions (Table 1).

Table 1. Up- or downregulated (FC > 2) of differential expressed genes (DEGs) associated with
heat stress in the CTRS, Phylgreen and Delfan Plus. Red bold color highlights DEGs common in all
treatments, while blue bold color highlights DEGs common in Phylgreen, and Delfan Plus.

Upregulated Genes

Accession n Description—CTRS Upreg

at5g12030 Arabidopsis thalianaHeat Shock Protein 17.6A 7
at1g71000 heat shock protein binding 2.807
at4g24190 SHD (SHEPHERD), HSP90.7 2.585

Description—Phylgreen

at3g46230 AtHSP17.4 6.778

at5g12020 AtHSP17.6II (17.6 KDA CLASS II HEAT SHOCK
PROTEIN) 5.775

at5g12030 Arabidopsis thalianaHeat Shock Protein 17.6A 5.547
at2g29500 class I small heat shock protein (HSP17.6B-CI) 17.6 kDa 5.175
at1g07400 class I heat shock protein (HSP17.8-CI) 17.8 kDa 5.018
at2g21510 DNAJ heat shock N-terminal domain-containing protein 4.64
at1g72070 DNAJ heat shock N-terminal domain-containing protein 3.858

at5g51440 mitochondrial small heat shock protein (HSP23.5-M)
23.5 kDa 3.474

at5g59720 AtHSP18.2 (heat shock protein 18.2) 2.545
at5g47600 heat shock protein-related 2.459
at1g44160 DNAJ chaperone C-terminal domain-containing protein 2.459
at1g71000 heat shock protein binding 2.399
at3g12580 AtHSP70(heat shock protein 70) 2.142
at5g52640 HSP81-1, ATHS83, HSP81.1, HSP83, ATHSP90.1 2.129
at1g28210 ATJ1; heat shock protein binding/nucleic acid binding 2.079
at1g76770 heat shock protein-related 2

Description—Delfan Plus

at3g46230 AtHSP17.4 8.898
at5g12030 Arabidopsis thalianaHeat Shock Protein 17.6A 7.79

at5g12020 AtHSP17.6II (17.6 KDA CLASS II HEAT SHOCK
PROTEIN) 7.562

at2g29500 class I small heat shock protein (HSP17.6B-CI) 17.6 kDa 6.98
at5g59720 AtHSP18.2 (heat shock protein 18.2) 6.523
at1g07400 class I heat shock protein (HSP17.8-CI) 17.8 kDa 5.938
at1g72070 DNAJ heat shock N-terminal domain-containing protein 4.585

at5g51440 mitochondrial small heat shock protein (HSP23.5-M)
23.5 kDa 4.281

at4g21320 HSA32 (HEAT-STRESS-ASSOCIATED 32); 4.138

at5g52640 HSP81-1, ATHS83, HSP81.1, HSP83,
ATHSP90.1|ATHSP90.1 3.262

at3g12580 AtHSP70(heat shock protein 70) 2.716
at2g32120 HSP70T-2 (HEAT-SHOCK PROTEIN 70T-2); ATP binding 2.413
at1g59860 17.6 kDa class I heat shock protein (HSP17.6A-CI) 2.409
at2g26150 AtHSFA2; DNA binding/transcription factor 2.369
at2g21510 DNAJ heat shock N-terminal domain-containing protein 2.259
at1g71000 heat shock protein binding 2.142
at1g28210 AtJ1; heat shock protein binding 2.036

Downregulated genes

Description—Phylgreen Downreg.

at1g09080 AtBIP3; ATP binding −2.518
at4g19590 DNAJ heat shock N-terminal domain-containing protein −2
at2g03020 heat shock protein-related −2
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The DEGs with a fold change (FC) > 2 and up- or downregulated genes are shown in
the Venn diagram (Figure 1A,B). Upregulated DEGs were 611 genes in CTRS, 626 genes in
Phylgreen, and 365 in Delfan Plus (Figure 1A), 14 were DEGs in all treatments compared to
CTR. Downregulated DEGs were 229 in CTRS, 295 in Phylgreen, 312 in Delfan Plus, only
one gene was common in all treatments (Figure 1B).
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The two biostimulants had different effects on transcription activation. Phylgreen and
Delfan Plus showed a higher number of upregulated DEGs than downregulated. The total
number of DEGs was higher in Phylgreen compared to the stressed control and Delfan Plus
(Figure 2A, Supplementary Dataset S1).
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2.2. Expression of Transcription Factors

Transcription factors are important regulators of gene expression, and their regulatory
function is extremely important under stress conditions. Phylgreen and Delfan Plus showed
changes in the number of transcription factors that were found differentially expressed
compared to the control. In plants treated with Delfan Plus the upregulated genes were 71,
while 36 were downregulated (Figure 2B). Only one gene, the at2g38250 that encodes for
Homeodomain-like superfamily protein was in common among the treatments. Phylgreen
and Delfan Plus shared 35 differentially expressed transcription factors. The transcription
factors mostly affected by Phylgreen and Delfan Plus (Log FC > 5) belonged to the families
MYB, bHLH, and DREB which are usually involved in abiotic stress plant responses. The
AtbHLH and AtMYB1 genes regulate the activation of the shikimate pathway and were
highly expressed in response to both biostimulants (Supplementary Dataset S2). The
analysis of transcription activation between CTRS vs. Phylgreen showed that the ZINC
FINGER PROTEIN 6 (AtZEP2, AtZFP6), LITTLE ZIPPER 2 (AtZPR2), zinc finger, AP2 domain-
containing transcription factor, and WRKY74 were upregulated in the Phylgreen compared to
CTRS (Supplementary Dataset S1). The transcription activation in Delfan Plus compared to
CTRS revealed that the transcription factors activated in plants under stress treated with
Delfan Plus were AtWRKY72, WRKY31, ALCATRAZ (at5g67110), and CHP-rich zinc finger
protein putative (Supplementary Data S1).

2.3. Heat Stress Response-Associated Genes

The analysis of genes specifically associated to heat stress response revealed a signifi-
cant increment in the number of genes activated by all the treatments (stressed control and
biostimulants) compared to untreated plants. In general, the biostimulants induced the
overexpression of genes rather than the downregulation, as shown in Figure 2C.

The expression pattern observed in all treatments was similar and markedly different
compared to the one of CTR. However, specific responses were induced by each of the
treatments. All treatments induced or inhibited the expression (Log FC > 2 or < −2) of a
few genes in a specific manner. Most of these genes encoded for heat shock proteins (HSP),
which could be further used as marker for studying the specific mode of action of each
biostimulant. In the stress-control (CTRS), the highest expressed genes were AtHSP17.6,
HSP binding protein (at4g24190), and AtHSP90.7. The higher gene expression belonging to
associated heat stress genes was found in the HPS17 families (AtHPS17.4, AtHPS17.6A, B),
between Phylgreen and Delfan Plus treatments. Downregulated genes in the biostimulants
treatments were AtBIP3 and heat shock-related protein (At2g03020).

2.4. Secondary Metabolism—Phenylpropanoid Pathway

The DEGs encoding for secondary metabolism were analyzed, and differences were ob-
served in the phenylpropanoid pathway. Delfan Plus treatment based on RNAseq data after
16 h showed a downregulation of this biosynthetic route, while no difference was observed
as a response to Phylgreen application (Figure 2D). In CTRS, the AtACOS5 (Acyl-COA Syn-
thetase 5) and 4-coumarate-CoA ligase genes were upregulated, while laccase/diphenol oxidase
and transferase family protein were downregulated. In Phylgreen treated plants, AtCCR2,
(cinnamoyl-CoA reductase), O-methyltransferase family 2 protein, and 4-coumarate-CoA
ligase family protein were upregulated. No downregulated genes with FC < −2 were
observed (Supplementary Dataset S2).

Delfan Plus application induced the expression of genes that encode for UDP-
glycosyltransferase/coniferyl-alcohol glucosyltransferase/transferase (UGT72E2), cinnamoyl-CoA
reductase-related, and an O-methyltransferase family 2 protein (at1g77530), while only
downregulating one gene (Supplementary Dataset S2). This gene was encoding for an
O-methyltransferase family 2 protein (at4g35160).

A mitochondrial AtHSP23-5 was upregulated in both biostimulants ranging from 3.4
to 4.3 FC. This gene could play an important role in heat stress tolerance.
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2.5. DAVID Enrichment Analysis

The enrichment analysis was performed to identify classes of genes that were over-
represented in each treatment and an association with a specific biostimulant treatment
could be highlighted. The results obtained from the enrichment analyses are shown as func-
tional annotation clustering and gene function classification (Supplementary Dataset S3).

In CTRS, the enrichment analysis showed a fold enrichment > 1.015 and the top ten cate-
gories highlighted in CTRS treatments were SAMRT, INTERPRO, GOTERM, KEGG_PATHWAY,
and UP_SEQ_FEATURE (Table 2). The most significant terms enriched were the knottin, a
scorpion toxin-like, palmitoyl protein thioesterase in the INTERPRO category. The thiol-
ester and palmitoyl hydrolase activity were the most enriched terms in the GOTERM
category. In the Phylgreen treatment the top ten categories were the same as CTRS ex-
cept for the KEGG_PATHWAY and the most enriched terms were related to wounding
response, following from AP2/ERF DNA binding protein. Delfan Plus treatment showed
the GOTERM, UP_SEQ_FEATURE, and UP_Keywords as the most enriched categories,
which include abiotic defence response and oxidoreductase or oxidation-reduction process.

Table 2. DAVID functional analysis: functional annotation chart (FACH) of differentially expressed
genes in CTRS, Phylgreen, and Delfan Plus (FC > 2) recognized in DAVID database. Functional
category, terms, p value, fold enrichment, and statistical significance (Bonferroni, Benjamini, and
FDR). Top ten (if available) genes in each treatment.

CTRS

Category Terms p F Bonferroni FDR

INTERPRO IPR003614: Knottin, scorpion
toxin-like 3.1 × 1011 7.4 × 1014 2.2 × 1015 4.8 × 1016

INTERPRO IPR002472: Palmitoyl
protein thioesterase 6.3 × 1011 2.1 × 1015 4.0 × 1015 9.6 × 1015

GOTERM_MF_DIRECT GO:0016790~thiolester
hydrolase activity 6.5 × 1011 2.1 × 1015 2.3 × 1016 9 × 1015

GOTERM_MF_DIRECT GO:0008474~palmitoyl-(protein)
hydrolase activity 7.7 × 1011 1.1 × 1016 2.6 × 1015 1.1 × 1016

SMART SM00505:Knot1 2.7 × 1012 9.9 × 1015 3.1 × 1015 3.0 × 1016

GOTERM_BP_DIRECT GO:0002084~protein
depalmitoylation 6.1 × 1014 1.0 × 1016 9.8 × 1015 8.7 × 1015

UP_SEQ_FEATURE active site:Proton acceptor 6.6 × 1015 1.7 × 1016 9.8 × 1015 9.3 × 1015

GOTERM_CC_DIRECT GO:0005829~cytosol 7.0 × 1015 1.3 × 1016 7.4 × 1015 8.4 × 1015

INTERPRO IPR008176:Gamma thionin 8.4 × 1015 9.3 × 1015 10 × 1015 12 × 1016

KEGG_PATHWAY ath00062:Fatty acid elongation 3.9 × 1016 5.6 × 1015 3.0 × 1015 4.2 × 1015

Phylgreen

Category Term p FE Bonf. FDR

GOTERM_BP_DIRECT GO:0009611~response to wounding 4.1 × 10−19 5.2 2.7 × 10−16 6.1 × 10−16

GOTERM_BP_DIRECT GO:0006952~defense response 6.53 × 10−19 3.0 4.2 × 10−16 9.7 × 10−16

UP_SEQ_FEATURE DNA-binding region: AP2/ERF 1.2 × 10−12 5.1 8.1 × 10−10 1.8 × 10−9

INTERPRO IPR001471:AP2/ERF domain 1.5 × 10−11 4.7 1.2 × 10−8 2.3 × 10−8

GOTERM_BP_DIRECT GO:0010200~response to chitin 2.2 × 10−13 5.3 1.4 × 10−10 3.3 × 10−10

GOTERM_BP_DIRECT GO:0009753~response to
jasmonic acid 4.7 × 10−13 4.8 3.1 × 10−10 7 × 10−10

SMART SM00380:AP2 3. × 10−11 4.4 4.5 × 10−9 4.1 × 10−8

INTERPRO IPR016177:DNA-binding,
integrase-type 1.1 × 10−10 4.3 8.5 × 10−8 1.6 × 10−7

GOTERM_MF_DIRECT GO:0043565~sequence-specific
DNA binding 3.9 × 10−9 2.3 1.7 × 10−6 5.5 × 10−6

GOTERM_BP_DIRECT GO:0006355~regulation of
transcription, DNA-templated 143 11.5 1.3 × 10−8 1.6 × 10−5
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Table 2. Cont.

Delfan Plus

Category Term p FE Bonf. FDR

GOTERM_MF_DIRECT
GO:0003700 transcription factor

activity, sequence-specific
DNA binding

1.7 × 1008 2.66 × 10−16 2.66 × 10−16 6.12 × 10−16

GOTERM_BP_DIRECT GO:0042542 response to
hydrogen peroxide 1.8 × 10−9 4.24 × 10−16 2.1 × 10−16 9.74 × 10−16

UP_SEQ_FEATURE region of interest: type E motif 1.2 × 10−8 1.45 × 10−10 4.83 × 10−11 3.33 × 10−10

GOTERM_BP_DIRECT GO:0009408 response to heat 2. × 10−10 3.06 × 10−10 7.64 × 10−11 7.02 × 10−10

UP_KEYWORDS Pyrrolidone carboxylic acid 2.3 × 10−12 8.16 × 10−10 8.16 × 10−10 1.80 × 10−9

UP_SEQ_FEATURE DNA-binding region:WRKY 5.9 × 10−9 3.55 × 10−9 3.55 × 10−9 1.17 × 10−8

GOTERM_MF_DIRECT GO:0044212 transcription
regulatory region DNA binding 6.7 × 10−9 1.21 × 10−8 1.21 × 10−8 2.31 × 10−8

UP_SEQ_FEATURE region of interest:Type E(+) motif 8.1 × 10−9 4.52 × 10−9 4.52 × 10−9 4.13 × 10−8

UP_KEYWORDS Apoplast 1.1 × 10−11 8.50 × 10−8 4.25 × 10−8 1.63 × 10−7

GOTERM_BP_DIRECT GO:0009751 response to
salicylic acid 2.0 × 10−10 1.67 × 10−6 8.33 × 10−7 5.50 × 10−6

The DAVID functional annotation clustering (FAC) considering an Enrichment Score > 2
identified one cluster for CTRS, 11 for Phylgreen (Supplementary Data S3) and two for
Delfan Plus. The FAC analysis reported for the CTRS terms mainly belonged to fatty acid
metabolism (Table 3). The two highest enriched clusters identified in the Phylgreen treat-
ment included transcriptional regulation terms and ethylene signalling pathways (Table 3).
The first class with an enrichment score of 5.5 included ROS, heat, and high light responsive
genes. The second enrichment score of 4.5 included the WRKY transcription factor in
the following terms DNA-binding region: WRKY, SM00774:WRKY, and IPR003657:DNA-
binding WRKY. The Phylgreen showed the highest percentage of genes annotated in cluster
2 and with percentages ranging from 5 to 11.6% (Table 3).

Table 3. DAVID functional analysis: functional annotation cluster (FAC) of differentially expressed
genes in CTRS, Phylgreen, and Delfan Plus (Enrichment Score >2) recognized in DAVID database.
Functional category, terms, p value, fold enrichment, and statistical significance (Bonferroni, Ben-
jamini, and FDR). In the table, two annotation clusters (if available) with highest enrichment score for
each treatment.

CTRS

Annotation Cluster 1—Enrichment Score: 2.2

Category Term % p FE Bonf Benj FDR

INTERPRO IPR002472: Palmitoyl protein
thioesterase 0.5 6.3 × 10−4 21.2 0.40 0.22 0.96

GOTERM_MF_DIRECT GO:0016790~thiolester
hydrolase activity 0.5 6.5 × 10−4 20.9 0.20 0.22 0.90

GOTERM_MF_DIRECT
GO:0008474~palmitoyl-

(protein) hydrolase
activity

0.7 7.7 × 10−4 11.4 0.26 0.14 1.06

KEGG_PATHWAY ath00062: Fatty acid
elongation 0.8 0.004 5.6 0.30 0.30 4.15

GOTERM_BP_DIRECT GO:0002084~protein
depalmitoylation 0.5 0.006 10.3 0.98 0.98 8.71

KEGG_PATHWAY ath01212: Fatty acid
metabolism 0.7 0.17 2.2 1.0 0.93 88.32
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Table 3. Cont.

Phylgreen

Annotation Cluster 1—Enrichment Score: 8.6

Category Term % p FE Bonf. Benj. FDR

UP_SEQ_FEATURE DNA-binding
region:AP2/ERF 2.4 1.1 × 10−12 5.1 8.1 × 10−10 8.1 × 10−10 1.8 × 10−9

INTERPRO IPR001471:AP2/ERF domain 2.4 1.5 × 10−11 4.7 1.2 × 10−8 1.2 × 10−8 2.3 × 10−8

SMART SM00380:AP2 2.4 3.6 × 10−11 4.4 4.5 × 10−9 4.5 × 10−9 4.1 × 10−8

INTERPRO IPR016177:DNA-binding,
integrase-type 2.4 1.1 × 10−10 4.3 8.5 × 10−8 4.2 × 10−8 1.6 × 10−7

UP_KEYWORDS Ethylene signalling pathway 1.9 8.3 × 10−7 3.3 2.0 × 10−4 5.0 × 10−5 0.001

GOTERM_BP_DIRECT
GO:0009873~ethylene-

activated signalling
pathway

1.9 2.1 × 10−6 3.2 0.001 1.3 × 10−4 0.003

UP_KEYWORDS Activator 3.5 6.9 × 10−6 2.1 0.001 3.3 × 10−4 0.008

Annotation Cluster 2—Enrichment Score: 6.3

Category Term % p FE Bonf. Benjamini FDR

GOTERM_MF_DIRECT

GO:0003700~transcription
factor activity,

sequence-specific DNA
binding

10.3 8.3 × 10−12 1.8 3.6 × 10−9 3.6 × 10−9 1.2 × 10−8

GOTERM_MF_DIRECT
GO:0043565~sequence-

specific DNA
binding

5.0 3.9 × 10−9 2.3 1.7 × 10−6 8.3 × 10−7 5.5 × 10−6

GOTERM_BP_DIRECT
GO:0006355~regulation of

transcription,
DNA-templated

11.6 1.3 × 10−8 1.6 8.5 × 10−8 1.7 × 10−6 2.0 × 10−5

GOTERM_BP_DIRECT GO:0006351~transcription,
DNA-templated 10.5 2.1 × 10−8 1.6 1.4 × 10−5 2.3 × 10−6 3.2 × 10−5

UP_KEYWORDS Transcription regulation 10.7 1.2 × 10−7 1.6 2.9 × 10−5 1.5 × 10−5 1.6 × 10−4

UP_KEYWORDS Transcription 10.7 4.5 × 10−7 1.6 1.1 × 10−4 3.6 × 10−5 5.8 × 10−4

UP_KEYWORDS DNA-binding 8.9 8.4 × 10−5 1.4 0.02 0.003 0.11
GOTERM_MF_DIRECT GO:0003677~DNA binding 8.9 0.002 1.3 0.49 0.109 2.26

Delfan Plus

Annotation Cluster 1—Enrichment Score: 5.5

Category Term % p FE Bonf. Benj. FDR

GOTERM_BP_DIRECT GO:0042542~response to
hydrogen peroxide 1.2 1.9 × 10−7 7.1 1.1 × 10−4 5.7 × 10−5 2.8 × 10−4

GOTERM_BP_DIRECT GO:0009408~response to heat 2.0 2.0 × 10−6 3.7 0.001 4.2 × 10−4 0.003

GOTERM_BP_DIRECT GO:0009644~response to high
light intensity 1.0 8.6 × 10−5 5. 4 0.05 0.007 0.12

Annotation Cluster 2—Enrichment Score: 4.5

Category Term % p FE Bonf. Benj. FDR

UP_SEQ_FEATURE DNA-binding region:WRKY 1.1 5.9 × 10−6 5.7 0.003 0.001 0.009
SMART SM00774:WRKY 1.2 2.6 × 10−5 4.9 0.003 0.003 0.03

INTERPRO IPR003657:DNA-binding
WRKY 1.2 3.5 × 10−5 4.0 0.02 0.02 0.05

2.6. Histochemical Analysis

For all the samples, the presence of secondary metabolites of the phenylpropanoid
pathway (mainly lignin) and ROS (H2O2) by histochemical analysis on mature leaves,
in non-stressed control (CTR), stressed control CTRS, and treated plants were analyzed.
ROS were visualized by 3,3’-diaminobenzidine (DAB) staining. DAB is oxidized in the
presence of peroxidase and hydrogen peroxide resulting in the deposition of a brown,
alcohol-insoluble precipitate at the site of enzymatic activity (Figure 3). The CTR did not
show any brown spots. The stressed control CTRS showed several brown spots along
the leaf margins and spread onto the leaf blade, indicating the accumulation of ROS in
different areas of the leaves. Phylgreen and Delfan Plus application strongly reduced the
ROS accumulation and only a few small spots were visible, demonstrating the positive
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effects of these treatments against heat stress (Figure 4). In particular, leaves treated with
Phylgreen (A) and Delfan Plus (B) only showed small patches of DAB signal along the leaf
margins or on the leaf blade. It is interesting to note that on the leaf areas reached by the
drops of the products Phylgreen and Delfan Plus used to treat the plants, a faint but clear
DAB signal was present. Damaged cells induced by heat stress could be visualized using
autofluorescence. The intensity of autofluorescence depends on the cell wall composition
and construction. Changes in autofluorescence can be used only as a coarse indicator
of cell wall products. High autofluorescence signals were found in CTRS, indicating the
heat stress damage. In contrast, no damage was found in control plants, while almost no
autofluorescence signals were found in two samples treated with Delfan Plus (B) and only
a few spots were found in leaves treated with Phylgreen (A) (Figure 4).
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Figure 3. ROS histolocalization by DAB staining on mature leaves. The brown spots represent the
sites where ROS are accumulated. For each sample, one picture was taken from the central area of
the leaf blade (left) and one from the leaf border (right). CTR: non-stressed control, CTRS: stressed
control, A: Phylgreen, B: Delfan Plus. Bars: 500 µm. The arrow indicates the faint signal caused by
treatment drops.
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Figure 4. Phenylpropanoid histolocalization by autofluorescence visualization. For each sample one
picture was taken from the central area of the leaf blade (left) and one from the leaf border (right).
CTR: non-stressed control, CTRS: stressed control, A: Phylgreen, B: Delfan Plus. Bars: 200 µm.

The cell membrane breakdown was estimated by measuring the electrolyte leakage.
The results indicated that plants treated with Phylgreen showed lower values than CTR,
CTRS, and Delfan Plus. The electrolyte leakage results demonstrated that Phylgreen
preserved the membrane integrity even under heat stress conditions (Figure 5). The Delfan
Plus treatment showed similar membrane integrity to the controls (CTR and CTRS). The
stomata cell length and mesophyll cells were affected by neither the biostimulants nor the
heat stress.
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same letter are not significantly different (Tukey test, p < 0.05). Data are means of three biological 
replicates (n = 50). Bars represent standard error. 
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quantum efficiency of photosystem II and is an indicator of plant stress. The Fv/Fm ratio 
did not change among treatments, indicating that maximum quantum efficiency of PSII 
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Figure 5. Electrolyte leakage expressed as µS/cm (A), stomata cell length in µm (B), and mesophyll
cells in µm, (C). On the x-axis, CTR, CTRS, A: Phylgreen, B: Delfan Plus. Means followed by the same
letter are not significantly different (Tukey test, p < 0.05). Data are means of three biological replicates
(n = 50). Bars represent standard error.

2.7. Physiological and Biochemical Changes
2.7.1. Chlorophyll and Chlorophyll a Fluorescence

The effect of treatments was evaluated by the determination of non-destructive chloro-
phyll content and chlorophyll a fluorescence measurements. Immediately 4 h after stress
(HAS), the highest chlorophyll content was found in Phylgreen treatment, 7.6 arbitrary
units (a.u.), while CTR showed a value of 5.8 a.u. The CTRS showed intermediate values,
while CTR and Delfan Plus showed similar chlorophyll content. Two days after stress
(DAS), the plants did not show significant variations among treatments. After 6 days of
recovery, an increase of chlorophyll was observed in the CTRS and treated plants (Figure 6).
Delfan Plus at the beginning of the experiments had lower chlorophyll but during recovery,
it increased, reaching values similar to control and Phylgreen. The chlorophyll a fluores-
cence analysis, enables a non-destructive estimation of leaf functionality that can provide
information on the health or stress conditions of plants. Statistical analysis showed that
Fv/Fm, PI, and DIo/RC were not statistically different, while a difference was found in the
time. The Fv/Fm ratio represents the maximum quantum efficiency of photosystem II and
is an indicator of plant stress. The Fv/Fm ratio did not change among treatments, indicating
that maximum quantum efficiency of PSII was not affected by the treatments (Figure 6B).
The performance index (PI) represents the measurement of the leaf functionality of the
plants. Phylgreen after 4 h heat stress exposure showed a value of 2.4 a.u. similar to CTR,
indicating that the stress did not affect leaf functionality (Figure 6C). During the recovery
period, the PI values ranged from 1.8 to 2.6 a.u. (Figure 6C). The dissipation energy per
reaction centre (DIo/RC) indicates the energy lost as heat under stressful conditions. No
differences among treatments were found (Figure 6D).

2.7.2. Total Phenolics and Anthocyanins

Total phenols, expressed as the phenolic index, showed similar trends of antho-
cyanins for all the treatments. Data subjected to two-way ANOVA revealed that no signif-
icant differences were found. The phenolic index, after 2 days of recovery, ranged from
19.8 ABS320nm/g FW to 17.7 ABS320nm/g FW (Figure 7A).

Statistical analysis of anthocyanins showed that there were no significant differ-
ences among treatments. Anthocyanin concentrations ranged from 21.5 to 24 mg/100 g
(Figure 7B).
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Figure 6. Non-destructive chlorophyll content (A), Fv/Fm ratio (B), performance index (C), and
DIo/RC (D) measured in Arabidopsis thaliana plants treated in CTR, CTRS, Phylgreen, and Delfan Plus
in 3 different moments (4 HAS, 2 and 6 DAS). Data are means with standard errors (n = 5). Statistical
analysis was performed using two-way ANOVA and differences amongst means were determined
using LSD test. Asterisks indicate significant differences, * for p < 0.05, ** for p < 0.01. In the A and D,
significant differences for each timepoint have been highlighted using different letters.
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Arabidopsis thaliana plants (n = 5) treated in CTR, CTRS, Phylgreen, and Delfan Plus. Data were
subjected to two-way ANOVA and no differences were found.

3. Discussion

Biostimulants represent innovative tools to be used for protecting plants from abiotic
stresses [15,22,23]. Several studies have shown that biostimulants can play a key role in
helping crops against abiotic stresses, including heat stress [15]. A biostimulant containing
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a mixture of sugarcane molasses with yeast extract has been applied to tomatoes grown
in high temperature (32 ◦C). The treated plants showed higher ascorbic acid in fruits and
leaves. Positive effects were also found on yield [24]. The effect of treatments can be ascribed
to the increase of the antioxidant compounds in plants that reduce the ROS accumulation.
It is well known that ROS increase under heat stress and induce cell membrane damage
with lipid peroxidation. Membrane destabilization, at leaf level, can reduce the electron
transfer and the photosynthetic activity. At the physiological level, high temperatures
can induce heat stress, while the severity of damage depends on crop sensitivity and
exposure period. Heat stress is usually associated with a reduction in gas exchange and
photosynthesis activity due to stomatal closure. The heat stress damage can affect the
repair activity of photosystem II [25]. Chlorophyll a fluorescence measurement enables
the non-destructive evaluation of plant health status and can provide useful information
on the effect of treatments on heat stress tolerance induction. The Fv/Fm ratio and Fo
have been successfully used as parameters for screening the tolerance of tropical fruit
crops to heat stress [26]. Phylgreen treatment was the most active in increasing chlorophyll
content under heat stress. This result can be explained by the effect of Ascophyllum nodosum
extract that increases chlorophyll concentration and promotes growth [26]. After the
recovery period, both biostimulants showed the same leaf functionality as non-stressed
plants. Another mechanism used by plants to protect themselves from heat stress is
the enhanced production of secondary metabolites and among them phenylpropanoids
play a central role in plant response to heat stress [27–29]. Their antioxidant capacity
is responsible for the neutralization of ROS generated by heat shock, thus preventing
oxidative stress and cell damage [30]. The presence of secondary metabolites and ROS in
controls and treated plants was also analyzed through histochemical analysis. Microscopic
image analysis showed damage on the leaf blade in CTRS plants while Phylgreen and
Delfan Plus treated plants avoided H2O2 accumulation, demonstrating the positive effect
of biostimulants to mitigate heat stress. The Phylgreen is an Ascophyllum nodosum extract
and the antioxidant activities demonstrated in plants and in vitro can explain the reduced
electrolyte leakage [31]. In CTR leaves, microscopic analysis failed to detect any signal of
ROS and secondary metabolites. The values of phenolic post-stress index demonstrated
that plants were able to cope with heat stress and also enhanced the leafy functionality as
observed by chlorophyll a fluorescence.

Considering the analysis of cell dimension, the heat stress did not influence this param-
eter. In fact, the analysis of stomata dimensions showed no significant differences amongst
the different samples and the slight differences observed in mesophyll cell dimension
even if statistically significant, are more probably due to differences in dimension and
developmental stage of the leaves analyzed than to the treatments. Considering all the
histochemical analyses together, it could be observed that the Phylgreen and Delfan Plus
treatments were shown to exert a positive effect on plant protection by reducing the conse-
quences of thermal stress. The biostimulants induced a strong induction of differentially
expressed transcription factors (TFs) compared to CTRS. Amongst the TFs associated with
the heat responses, AtZat10 and AtZat12 were upregulated in both biostimulants with
2.4–2.7 and 2.7–3.0-fold change, respectively. The AtZat 10 is an HPS sensor of hydrogen
peroxide and AtZat12 is a heat response transcription factor [32], which suggests that the
biostimulant treatment induced the activation of the transcriptional machinery involved
in stress protection. Both biostimulants also induced the AtHsfs, which is associated with
the heat response regulation of plants. Since these TFs were not expressed in the CTRS,
this could be the strategy of the plants to enhance the activation of specific genes in heat
defence. The common expression of ATHsfs3 in both biostimulants has been found to
induce thermotolerance in Arabidopsis [33]. AtHSF3 can be considered as the key regulator
of the immediate stress-induced activation of heat stress gene transcription [34]. These
high gene regulation inductions have also been highlighted by the DAVID results which
revealed the categories affected by the different treatments. DAVID bioinformatics tools
can provide information on over-representation of the GO category terms [35] and help
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in understanding the mode of action of the biostimulants. In fact, most of the GO terms
evidenced by the DAVID analysis were those related to the transcriptional regulation,
abiotic stress defence and secondary metabolism. At the transcriptional level, among the
heat stress-associated genes, the AtHSP17.6A was upregulated in all treatments. This gene
was the highest expressed in CTRS and literature confirmed that it rapidly increases after
heat stress, while it is not detectable in vegetative tissues in the absence of stress [36]. The
activation of AtHSP17.6A is the plant strategy to counteract heat stress. Biostimulants
were able to strongly induce a higher number of HSPs and it could indicate the mode of
action of these products to enhance abiotic or heat stress tolerance. Phylgreen and Delfan
Plus showed similar results in the activation of the heat shock proteins (HSP) DEGs. The
most expressed DEG was AtHSP17.4 in both biostimulants and this gene encodes for the
small HPS (sHPS) protein localized in the cytosol [37]. These HPS are mainly expressed
during development, embryo maturation, and germination under normal conditions. In
heat stress conditions, the expression of AtHSP17.4 has been found in leaves and seems to
have a protection function against the stress [36]. However, the expression of AtHSP17.4 is
associated with the activation of ABI3 [38,39]. In the current data presented, the expression
of AtABI3 was induced but at values from 0.5 to 0.8. Other highly expressed HPS genes
were AtHSP17.6 CII, AtHSP17.8 CI, AtHSP18.2, and AtHSP70 [40]. All these genes have
been associated with different abiotic stresses. The AtHSP17.6 has been induced by abscisic
acid or osmotic stresses [37,41]. The expression of AtHSP17.8 is associated with drought
and salt stress. Overexpression of AtHSP17.8 in Arabidopsis and lettuce increased tolerance
against drought and high salinity stresses [42]. The expression of this gene seems to induce
hypersensitivity to ABA with an improved crop sensitivity to water reduction.

In this work the AtHSP23-5 was upregulated in both biostimulants suggesting an
important role in heat stress defence. This gene is located in the nuclear genome and
studied from evolution in Brassicaceae [43], while a mitochondrial HPS22 has been found
in Drosophila melanogaster under heat stress conditions [44].

4. Materials and Methods
4.1. Plant Materials and Treatments

Arabidopsis thaliana L. (NASC ID: N6209, FRI-Sf2, http://arabidopsis.info/, (accessed
on 6 March 2022)) plants were grown in fertilized peat substrate under controlled conditions
(24 ◦C, 55–70 RH%, photoperiod 16/8 day/night 400 W m−2). In this study, we selected
two commercially available products Phylgreen, and Delfan Plus. Phylgreen composition
is the following: 1.2% p/p (1.3% p/v) mannitol, 2% p/p (2.2% p/v) alginic acid, 100% p/p
(110% p/v) seaweed extract Ascophyllum nodosum, dry matter (from seaweed extract): 15%
w/w (16.5% w/v). Delfan Plus is composed of L-α Free Amino Acids: 24.0% w/w 29.8%
w/v, nitrogen (N), total: 9.0% w/w 11.2% w/v. Biostimulants were applied as priming
treatments 12 h prior to heat stress as foliar application on plants at mature growing stage
(stage 3.90, when the rosette growth is complete, https://www.arabidopsis.org/portals/
education/growth.jsp, (accessed on 6 March 2022)) with concentration of 1 mL L−1 until
run-off. From the growth chamber, control and treated plants were placed in a cabinet
where intense heat stress (37± 1 ◦C) was applied for 4 h. The experimental scheme has been
reported in Supplementary Figure S1. Each treatment sample was composed of 10 pots
containing three plants per pot.

4.2. RNA Isolation

RNA sampling was immediately performed at the end of heat stress treatment, after
4 h of heat stress and 16 h after biostimulant application. Total RNA was extracted from
100 mg of leaf powder using the Spectrum Plant Total RNA Kit (Sigma-Aldrich, Milan,
Italy). RNA purity and integrity were assessed with an Agilent 2100 bioanalyzer-RNA
6000 Nano Chip (Agilent Technologies, Santa Clara, CA, USA) and quantified with a Nan-
odrop 8000 (Thermo Scientific, Waltham, MA, USA). RNA samples with A260/A280 ≥ 1.9
and RNA integrity number (RIN) ≥ 7 were used for the RNA sequencing and further

http://arabidopsis.info/
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library preparation (libraries corresponding to a biostimulant product and to stressed and
unstressed controls).

4.3. RNA-Seq and Library Preparation

Illumina sequencing and de novo assembly were performed at BMR Genomics Labs
(Padua, Italy). The de novo assembly was performed to verify if the biostimulants could
induce the activation of new specific genes. Random primed cDNA libraries were prepared
with a TruSeq RNA Sample Prep kit (Illumina, San Diego, CA, USA) and sequenced in
two paired-end modes in one run on the Illumina HiSeq-2000 Platform, generating up to
60M reads of 100 bp per sample. Alignment of reads to the reference genome of Arabidopsis
(Arabidopsis_thaliana TAIR10 v42) was performed using HISAT 2.1.0 tool [45,46]), while gene
association was performed with feature Counts v 1.6.0 (DESeq2 package version: 1.34.0
DESeq2 package version: 1.34.0). Specific libraries were prepared for unstressed untreated
control plants (CTR) and for stressed untreated control plants (CTRS) and for biostimulants
(applied on stressed plants). RNAseq data have been stored and available in the NCBI
database (Accession n. PRJNA777374). The validation of RNAseq data has been performed
by qPCR gene expression analysis on the following up- and downregulated genes at2g29500,
at5g12030, at5g12020, at1g09080, at3g46230, at1g72070, at5g59720, at5g37750, at5g37440, and
at3g14200 (Supplementary Table S1) RPKM Log2 fold changes versus qPCR 2−∆∆CT log2
fold changes were compared as reported by Li [47] and correlation coefficient was r = 0.58.

4.4. Bioinformatic Analysis

Gene annotation was performed using various platforms (including Blast2GO and
Panther Tair tools). Genes differentially expressed were identified in each treatment and
calculated as follows (Log2FC > 2, calculated as follow LOG ([A]; 2)-LOG ([B]; 2), A gene
expression in the treatment vs. B gene expressed in the unstressed control) were selected
and Venn diagrams were prepared to individuate common and unique responses in all
the libraries. MapMan tool was used to display transcriptomic datasets onto diagrams of
metabolic pathways and biological processes. This analysis allowed the identification of the
most affected biochemical or signalling transduction pathways and the identification of the
genes differentially expressed in the most interesting pathways for each treatment versus
control unstressed/untreated. Enrichment of pathways, gene functions, and organelle
associations based on Gene Ontology (GO) and other functional annotation data were
identified using DAVID (http://david.abcc.ncifcrf.gov/, accessed 3 March 2021) [35]. The
DAVID bioinformatics tool was also used to examine the biological significance of the
transcriptome changes in the different treatments. Medium stringency was applied for the
analyses. DAVID analysis identifies significantly enriched biological themes by examining
for enrichment in over 40 different publicly available annotation categories (Supplementary
Table S2), analyzing up- and downregulated sets separately. Significance was determined
using a modified Fisher’s exact statistic (EASE score), and significantly enriched biological
themes were identified as clusters of annotated terms and KEGG_PATHWAYs (https://
www.genome.jp/kegg/pathway.html, accessed on 20 January 2022). A cluster enrichment
score of 1.3 for an annotation cluster is equivalent to non-log scale 0.05, and therefore scores
of 1.3 or greater are considered enriched [35] Fold-enrichment scores were also used to
indicate the magnitude of enrichment for individual terms and KEGG_PATHWAYs, and
fold-enrichment scores greater than 2 are suggestive of an informative change [35,46–48].

4.5. Non-Destructive Determination: Chlorophyll and Chlorophyll a Fluorescence

Non-destructive analysis was carried out in vivo on leaf tissue for the leaf functionality
evaluation of Arabidopsis thaliana plants after treatments and stress applications (12 h of
priming and 4 h after stress—HAS, 2 days after stress—DAS, and 6 days after stress).
The chlorophyll content was colorimetrically measured in vivo using a non-destructive
instrument (CL-01, Hansatech, UK). Chlorophyll a fluorescence was measured using a
portable fluorometer (Handy PEA, Hansatech, Kings Lynn, UK). Leaves were dark-adapted

http://david.abcc.ncifcrf.gov/
https://www.genome.jp/kegg/pathway.html
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using leaf clips; after 30 min, a rapid pulse of high-intensity light of 3000 µmol m−2 s−1

(600 W m−2) was applied to the leaf inducing fluorescence. Fluorescence parameters were
calculated automatically by the used device, such as Fv/Fm, the variable fluorescence
to maximum fluorescence. Starting from these parameters, OJIP test analyses [49] were
performed to determine the following index: performance index (PI); dissipation of energy
per cross-section (DIo/RC) and density of reaction centre at P stage (RC/CSm).

4.6. Phenolic Index and Anthocyanins Content

These parameters were determined two and six days after stress application. The
phenolic index and the total anthocyanin content in leaf tissue were determined using
spectrophotometric methods (Spectrophotometer, Thermo, Italy). Phenolic index was
determined by a direct measurement of the leaf extract absorbance at 320 nm. About
20–30 mg of fresh leaf tissue (disk of 5 mm diameter) was weighed and 3 mL methanolic
HCl (1%) were added. After overnight incubation, the supernatant was read at 320 nm. The
values were expressed as mg/100 g fresh weight (FW). Anthocyanin concentrations were
determined on samples of 20–30 mg of fresh leaf (disks of 5 mm diameter) extract using
3 mL of methanolic HCl (1%). Samples were incubated overnight at 4 ◦C in darkness. The
concentration of cyanidin-3-glucoside equivalents was determined spectrophotometrically
at 535 nm using an extinction coefficient (ε) of 29,600. Sampling was performed taking four
biological replicates for each treatment.

4.7. Histochemical Analysis

Samples for the histochemical analysis were collected 4 h after heat stress. Arabidopsis
leaves were detained in ethanol 100% and then observed using a Zeiss Axiophot D1
microscope, using ultraviolet epifluorescence (excitation filter 365 nm; dichroic mirror
395 nm, barrier filter 420 nm), equipped with an AxioCam MRc1 digital camera. Hydrogen
peroxide (H2O2) detection was performed as previously reported [50]. Arabidopsis leaves
were submerged in 3,3′-Diaminobenzidine (DAB) solution (1 mg/mL DAB, pH 3.8) and left
overnight in the dark. The leaves were then rinsed in water, transferred to tubes containing
ethanol 96% that were left in boiling water until chlorophyll was completely removed. The
leaves were observed using a Zeiss Axiophot D1 microscope, equipped with an AxioCam
MRc1 digital camera [51]. Cell death was quantified as electrolyte leakage measurement,
as reported by Roberts et al. [52]. Briefly, for each leaf analyzed, 4 leaf discs (diameter:
8 mm) were floated in water for 30 min, then transferred to tubes containing 4 mL distilled
water. The conductivity of the solution was determined with an Orion Conductivity Meter
(µSiemens/cm). For each histochemical analysis, three biological replicates were used
obtaining similar results. To determine mesophyll and stomata cell size, mature leaves
were collected and treated with a clearing solution (160 g chloral hydrate, 20 mL glycerol in
60 mL water). Cleared leaves were mounted on slides, and interference contrast images
were taken using a Zeiss IMAGE R.D1 microscope equipped with an AxioCam MRc1
digital camera. For each treatment, 3 plants were analyzed, from each plant one leaf was
cleared and at least 50 mesophyll/stomata cells were measured.

4.8. Statistical Analysis

Analytical data were subjected to two-way ANOVA performed by GraphPad Prism
6.0 (GraphPad Software, San Diego, CA, USA). Significant differences amongst means
were determined using LSD multiple comparisons test. Specific details are also reported in
figure legends.

5. Conclusions

In conclusion, results revealed that biostimulants effectively induced activation of
heat stress-associated genes belonging to different transcription factors and HSP families.
The specific cluster of genes confirmed the physiological and biochemical data observed,
demonstrating that the biostimulants were able to reduce the heat damage in Arabidopsis
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plants by activating antioxidant systems and heat repair systems. In general, both treat-
ments with Phylgreen and Delfan Plus treatments had a positive effect in counteracting
heat stress and transcriptional and biochemical data observed in Arabidopsis thaliana can
represent a starting point for further studies focusing on agricultural crops.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11091130/s1, Figure S1: Experimental plan; Figure S2:
Category and terms reported in the DAVID analysis. Table S1: Set of primers used for the qPCR;
Table S2: Terms and categories used in the DAVID analysis. Supplementary Dataset S1; Supplemen-
tary Dataset S2; Supplementary Dataset S3.
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