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Abstract: The effect of melatonin (MT) on potato plants under drought stress is still unclear in the
available literature. Here, we studied the effect of MT as a foliar application at 0, 0.05, 0.1, and
0.2 mM on potato plants grown under well-watered and drought stressed conditions during the
most critical period of early tuberization stage. The results indicated that under drought stress
conditions, exogenous MT significantly (p < 0.05) improved shoot fresh weight, shoot dry weight,
chlorophyll (Chl; a, b and a + b), leaf relative water content (RWC), free amino acids (FAA), non-
reducing sugars, total soluble sugars, cell membrane stability index, superoxide dismutase (SOD),
catalase (CAT), guaiacol peroxidase (G-POX), and ascorbate peroxidase (APX) compared to the
untreated plants. Meanwhile, carotenoids, proline, methylglyoxal (MG), HyO,, lipid peroxidation
(malondialdehyde; MDA) and abscisic acid (ABA) were significantly decreased compared to the
untreated plants. These responses may reveal the protective role of MT against drought induced
carbonyl/oxidative stress and enhancing the antioxidative defense systems. Furthermore, tuber yield
was differentially responded to MT treatments under well-watered and drought stressed conditions.
Since, applied-MT led to an obvious decrease in tuber yield under well-watered conditions. In
contrast, under drought conditions, tuber yield was substantially increased by MT-treatments up
to 0.1 mM. These results may imply that under water deficiency, MT can regulate the tuberization
process in potato plants by hindering ABA transport from the root to shoot system, on the one hand,
and by increasing the non-reducing sugars on the other hand.
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1. Introduction

Drought stress or water scarcity is one of the most restricted factors to growth and
productivity of several plant species [1-3]. It poses a serious threat to food security in
many regions worldwide [4]. Moreover, frequent climatic change and global warming
can cause severe increments in the rate of evapotranspiration [5]. In this context, it is
expected that by 2050, drought stress will cause serious problems for more than 50% of
arable lands [6]. In higher plants, drought stress can be involved in a wide spectrum of
complex events at morphological, physiological, biochemical and molecular levels [7-10].
These influences include hindering of stomatal conductance, CO; fixation, transpiration
rate, nutrients’ transport, and restriction of electron transport chain (ETC) leading to
a significant disturbance in photosynthesis and respiration [11-14]. Besides, drought
stress affects hormonal balance, various signaling processes and collapses cell membranes’
structure and dysfunction [15-18]. All of these destructive effects are widely correlated
with elevating the concentration of reactive oxygen species (ROS) which cause oxidative
damages to protein, lipids, and nucleic acids [19].

Melatonin (MT; N-acetyl-5-methoxy-tryptamine) is a naturally synthesized compound
in animals, plants and microbes [20]. It is able to delay senescence, stimulating root growth,
regulation fruit ripening and protecting photosynthetic systems [21,22]. Moreover, it has
been found that exogenous melatonin can improve plant tolerance to various abiotic stresses
i.e., heat stress [23], chilling [24], heavy metals [25], salinity [26], and drought [27-29]. Since
applied MT can prevent the oxido-nitrositive induced damages by reducing the cytotoxic
effects of reactive oxygen and/or nitrogen species (ROS/RNS) [20]. Additionally, MT
plays an important role in the methylglyoxal (MG) detoxification [30] and enhancing plant
water relations by stimulating the osmolytes” biosynthesis [27]. Furthermore, MT can
reinforce the photosynthesis efficiency [31] by affecting the transcription key genes that are
involved in chlorophyll metabolism [23], upregulating the enzymes of Calvin’s cycle [32]
and maintaining the plant cell redox status [33]. Melatonin is also an important regulator
of gene expression related to phytohormones and their metabolism in plants i.e., indole-
3-acetic acid (IAA), GAs, cytokinins (CKs), ABA, jasmonic acid (JA), nitric oxide (NO),
ethylene (C;Hy) and salicylic acid [21].

Methylglyoxal is a reactive carbonyl species causing oxidative stress under various
abiotic stresses [34]. It can also serve as a signaling molecule under stress responses and
tolerance [35,36]. Under severe stress conditions, it is considered a toxic molecule that
can restrict plant growth, developmental, photosynthesis, and seed germination, [36].
Methylglyoxal detoxification depends on two glyoxalase enzymes (Gly I and Gly II) which
can be boosted by exogenous melatonin under abiotic stress conditions [30,37].

The potato (Solanum tuberosum L.) is one of the most valuable edible crops world-
wide [38,39]. It is sensitive to drought stress during different growth stages and tuber
development due to the shallow root system that reduces its ability for water uptake and
speed recovery after stress conditions [3,40]. Tuber initiation (tuberization) is most critical
growth stage in potato plants [41,42]. Tuberization is a complex developmental and physio-
logical process in potato plants. It requires an increase in ABA and non-reducing sugars
leading to inhibition of stolon elongation and starting of tuber formation [43]. Several
previous studies revealed that tuberization in potato plants and productivity can be affected
by exogenous compounds i.e., plant growth regulators, antioxidants and osmo-protectants
under various abiotic stress conditions [44—46].

Generally, the effect of exogenous MT on potato tuberization under drought stress is
still unclear in literatures. Therefore, we conducted this study to investigate the possible
protective effects of exogenous MT on drought-stressed potato plants and to understand
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its relation to the tuberization process by regulating the endogenous ABA (the key plant
hormone under drought stress and tuberization process) and maintaining the concentration
of non-reducing sugars (the major form for sugar transport and starch synthesis in tubers).

2. Results
2.1. Effect of Melatonin on Plant Growth and Photosynthetic Pigments

Plants exposed to drought stress revealed a significant (p < 0.05) decrease in growth
parameters and photosynthetic pigments compared to the well-watered plants (Figure 1).
However, exogenous MT enhanced shoot fresh weight, shoot dry weight, Chl a, Chl b and
total chlorophyll in both water stressed and non-stressed plants. Generally, the highest
significant results were obtained by the treatment of 0.1 mM MT in this respect. Con-
versely, MT treatments revealed divergent effects on carotenoids under water stressed and
non-stressed conditions. In this context, carotenoids were significantly enhanced by MT
treatments specifically at 0.05 and 0.1 mM under well-watered conditions. In contrast,
under drought stress, all MT-treatments significantly reduced carotenoids compared to the
untreated plants. These responses may imply that MT has a dual impact on the metabolism
of terpenoids’ pathway (the major pathway of carotenoids and ABA biosynthesis in higher
plants) in potato plants under sufficient and deficit water supply.
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Figure 1. Effect of exogenous melatonin (MT; 0, 0.05, 0.1 and 0.2 mM) on shoot fresh weight (A),
shoot dry weight (B), Chl a (C), Chl b (D), Chl a + b (E) and carotenoids (F) of potato plants grown
under drought stress during the early stage of tuberization. Bars represent standard deviation (SD) of
the means (1 = 3). Different letters indicate significant differences among the treatments at p < 0.05,
according to Duncan’s multiple range test. Chl, chlorophyll.
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2.2. Effect of Melatonin on RWC and Osmolytes

Exogenous MT exhibited a significant (p < 0.05) improvement in leaf relative water
content (RWC) free amino acids (FAA) compared to the untreated plants under both water
stressed and non-stressed conditions (Figure 2A,B). In this respect, the highest significant
results were obtained by the treatment of 0.1 mM MT under both irrigation conditions.
Despite proline was not affected by different MT-treatments under well-watered conditions,
an obvious and significant (p < 0.05) decrease in proline was observed with increasing the
concentration of MT under drought stress conditions (Figure 2C). Moreover, reducing, non-
reducing and total soluble sugars were differentially affected by MT- treatments under both
watering levels (Figure 2D-F). Under well-watered conditions, MT-treated plants displayed
an obvious increase in reducing sugars. However, an opposite trend was observed in the
non-reducing sugars. These changes slightly affected the concentration of total soluble
sugars. In contrast, under drought stress, the general trend was that MT-treated plants at
0.05 and 0.1 mM exhibited an obvious increase in non-reducing sugars and total soluble
sugars in parallel with a slight decrease in the reducing sugars. These findings imply that
under drought stress condition, exogenous MT at the suitable concentrations (0.05 and
0.1 mM) may induce the sucrose biosynthesis (non-reducing sugar) which is considered
the most transported form of soluble sugars. This effect may help potato plants to produce
more tubers under water stress condition.
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Figure 2. Effect of exogenous melatonin (MT; 0, 0.05, 0.1 and 0.2 mM) on leaf relative water content;
RWC (A), free amino acids; FAA (B), proline (C), reducing sugars (D), non-reducing sugars (E) and
total soluble sugars (F) of potato plants grown under drought stress during the early stage of
tuberization. Bars represent standard deviation (SD) of the means (1 = 3). Different letters indicate
significant differences among the treatments at p < 0.05, according to Duncan’s multiple range test.
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2.3. Effect of Melatonin on Cell Membrane Stability Index (CMSI), Methylglycoxal (MG), H;O;
and Lipid Peroxidation

To evaluate the drought induced damages that occurred to plants in this study, CMSI,
MG, H;O,, and MDA were estimated (Figure 3). Under well-watered condition, no significant
changes were observed between all MT treatments in respect to MG and MDA. Meanwhile,
MT at 0.2 and 0.1 mM resulted in the highest and lowest values of CMSI and H,O; respectively.
On the other hand, plants exposed to drought stress demonstrated a significant (p < 0.05)
decrease in CMSI, while, MG, H,O, and MDA were significantly and dramatically increased
in leaf tissues. Exogenous MT at all investigated concentrations significantly enhanced CMSI
compared to the untreated plants either under well-watered or water-stressed conditions. On
the contrary, MT-treated plants exhibited a significant decrease in MG, H,O, and MDA under
water deficit. In this respect, the lowest values were achieved by the treatments of MT at 0.1
and 0.2 mM compared to the untreated plants.
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Figure 3. Effect of exogenous melatonin (MT; 0, 0.05, 0.1 and 0.2 mM) on cell membrane stability
index; CMSI (A), methylglycoxal; MG (B), H,O,; (C), malondialdehyde; MDA (D) of potato plants
grown under drought stress during the early stage of tuberization. Bars represent standard deviation
(SD) of the means (n = 3). Different letters indicate significant differences among the treatments at
p < 0.05, according to Duncan’s multiple range test.

2.4. Effect of Melatonin on the Activities of Antioxidant Enzymes

Regarding the antioxidant enzymes activities (Figure 4), it was observed that under
water-stressed conditions, the activities of SOD, CAT, G-POX and APX were significantly
(p < 0.05) increased in potato plants compared to those of well-watered conditions. More-
over, the results showed that no significant differences were detected between MT-treated
and non-treated plants in respect to SOD, CAT, and APX under well-watered conditions.
Meanwhile, G-POX activity was increased in all MT-treated plants compared to the control
under well-watered conditions. Under water shortage, applied MT led to a significant
increase in the activities of all studied antioxidant enzymes. The highest activities of CAT
and G-POX were obtained by the treatment of 0.2 mM MT, while, the treatment of 0.1 mM
MT achieved the maximum findings in respect to SOD and APX.
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Figure 4. Effect of exogenous melatonin (MT; 0, 0.05, 0.1 and 0.2 mM) on superoxide dismutase;
SOD (A), catalase; CAT (B), guaiacol peroxidase; G-POX (C), ascorbate peroxidase; APX (D) of potato
plants grown under drought stress during the early stage of tuberization. Bars represent standard
deviation (SD) of the means (n = 3). Different letters indicate significant differences among the
treatments at p < 0.05, according to Duncan’s multiple range test.

2.5. Effect of Melatonin on ABA Concentration and Its Relationship with RWC

The results of this study cleared that ABA was lower in potato plants under well-
watered conditions compared with water-stressed conditions (Figure 5A). In addition,
exogenous MT has no significant (p < 0.05) effect on ABA content in potato under well-
watered conditions. Under water-stressed conditions, ABA content was significantly
affected by MT treatments. Also, 0.1 mM MT gave the lowest ABA content, followed
by 0.2 mM, while the highest ABA content was recorded with control. Also, our results
revealed that there is a linear and significant (p < 0.01) negative correlation between RWC
and ABA content in potato plants (Figure 5B).
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Figure 5. Effect of exogenous melatonin (MT; 0, 0.05, 0.1 and 0.2 mM) on abscisic acid; ABA (A), the
relationship between ABA concentration and leaf relative water content; RWC (B) of potato plants
grown under drought stress during the early stage of tuberization. Bars represent standard deviation
(SD) of the means (n = 3). Different letters indicate significant differences among the treatments at
p < 0.05, according to Duncan’s multiple range test. ** (p < 0.01).
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2.6. Effect of Melatonin on Tuber Yield

There was a highly significance difference between the effect of MT treatments on
potato tuber yield under well-watered and drought stress conditions (Figure 6). Interest-
ingly, applied-MT reduced the tuber yield compared to untreated plants under well-watered
conditions, conversely, MT treatments up to 0.1 mM maximized tuber yield under water-
stressed conditions. However, the treatment of 0.2 mM significantly inhibited tuber yield
under drought stress condition.
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Figure 6. Effect of exogenous melatonin (MT; 0, 0.05, 0.1 and 0.2 mM) on tuber yield of potato plants
grown under drought stress during the early stage of tuberization. Bars represent standard deviation
(SD) of the means (n = 3). Different letters indicate significant differences among the treatments at
p < 0.05, according to Duncan’s multiple range test.

3. Discussion

Drought is one of the devasting abiotic stresses that facing the cultivation of plants
in throughout the world, limiting the growth and reducing the yield of plants. Drought
sensitive vegetables, such as potato can be seriously affected by water shortage. Re-
searchers around the world have made great efforts to overcome and alleviate the effect
of this problem. In this context, some chemicals such as salicylic acid, jasmonic acid and
y-aminobutyric acid etc. have been extensively studied to induce drought tolerance in
plants [47-49]. Similarly, melatonin as a new plant growth regulator has been suggested
to mitigate a wide array of abiotic stresses [50]. Also, previous studies have revealed that
exogenous melatonin can positively affect the productivity of various plant species [51-53].
In this study, the role of melatonin in alleviating water stress in potato plants was investi-
gated. Melatonin treatment improved the fresh weight of potato plants and dry weight
under water-stressed conditions compared with the untreated plants. These effects imply
that exogenous melatonin as foliar application induced the tolerance to water stress in
potato plants. Consistent with our results, Ye, et al. [54] found that melatonin improved
the leaf area and shoot dry weight of maize seedlings under water stress. Moreover, the
present study demonstrated that melatonin enhanced the chlorophyll content in potato
plants under drought stress. Similarly, the activity of photosynthesis and photosystem II in
rice seedlings were improved by exogenous melatonin. These responses were associated
with increasing the activities of antioxidant enzymes leading to reduce the accumulation of
ROS and MDA in plant cells [55]. Chlorophyll plays an important role in the light energy
transmission and absorption [56], thereby synthesizing carbohydrates can be related to en-
hancing plant growth and productivity [57]. The results of this study indicated that 0.1 mM
of melatonin was more effective in increasing chlorophyll and maximizing the yield of
potato under water-stressed conditions. This effect could be attributed to increase the pho-
tosynthetic efficiency and protecting potato plants from drought induced oxidative damage.
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The physiological processes in the leaves of plant, such as transpiration, photosynthesis
and respiration are regulated by leaf stomata through opening and closing which is affected
by water balance and the pathways of complex signal transduction [8,45]. Relative water
content (RWC) is an important physiological marker for the water status and plant’s ability
to survive under drought stress conditions. In this study, water stress significantly reduced
the RWC in the untreated plants. However, the exogenous melatonin as foliar application
attenuated the reduction in RWC of treated potato. This suggests that melatonin improves
the function of stomatal by stimulation of plant to reopen its stomata [28], and enhances the
photosynthetic rate, allowing the RWC to increase under drought stress conditions. Also,
Ahmad, et al. [51] found that length, width and area of stomata and pore numbers were
reduced in maize seedlings under drought stress conditions compared to the control and
MT-treated plants. In addition, the closure of stomata to prevent loss of water from the leaf
by evapotranspiration may be due to the abscisic acid accumulation [58].

Several plant species, i.e., maize [59], tomato [27], green beans [1], and potato [7] can
create a potential strategy to adapt stress conditions by maintaining osmotic potential.
This effect can be occurred due to the accumulation of osmolyte substances, i.e., soluble
sugars, free amino acids, soluble protein and proline. In this respect, in maize seedlings,
proline has been found to scavenge OH?® radicals and quenches singlet oxygen to protect
the membrane cells, protein and DNA from damage by ROS under abiotic stress [51].
The results of the present study showed that soluble sugars, free amino acids and proline
content of MT-treated plants were significantly enhanced under water-stressed conditions
compared to the untreated plants. These findings indicate that melatonin can stimulate
the production of osmotic solvents to minimize water loss and protect the cell membrane
under water-stressed conditions.

Exposure of plants to environmental stresses leads to generate the reactive oxygen species
(ROS), including singlet oxygen (O'5), hydrogen peroxide (H,O,), hydroxyl radicals (OH),
alkoxy radicals (RO), superoxide anion radicals (O~ ). These toxic molecules may react with
proteins, deoxyribonucleic acid and lipids triggering oxidative damage in plant cell [60]. In
the same line, the results showed that hydrogen peroxide (H,O,) increased in potato under
water-stressed conditions compared to the well-watered conditions. Meanwhile, exogenous
melatonin significantly reduced HyO, accumulation compared to the control under drought
stress conditions. Also, a high significant reduction was detected in malondialdehyde (MDA)
content in MT-treated plants compared to the untreated ones. Moreover, cell membrane
stability index (CMSI) of potato was improved by MT treatments under water-stressed.
Furthermore, the study of Li et al. [58] indicated that MT was effective in decreasing ROS
under drought stress conditions. Therefore, the present study suggests that MT acts as
an antioxidant and plays a vital role in overcoming the oxidative damage.

Methylglycoxal (MG) is an emerging signaling molecule in abiotic stress responses
and tolerance in plants, is produced as a result of glycolysis in cells. Under normal
conditions, MG remains at very low level. While, under stress conditions, MG accumulates
to higher level. However, MG at low level, regulates the opening and closing stomata,
reactive oxygen species production, concentration of cytosolic calcium ion and many stress-
responsive genes expression. Whereas, MG high levels act as a toxic molecule, inhibits
growth development processes, such as seed germination, root growth and photosynthesis,
50, MG is considered as biochemical marker for abiotic stress tolerance in plants [61]. Our
results indicated that MG significantly increased under water-stressed conditions, however,
MT-treatment at a rate of 0.1 mM maintains MG at low level. This result cleared that 0.1 mM
of melatonin is the best concentration to induce drought stress tolerance in potato plants.

Sueroxide dismutase (SOD), catalase (CAT), guiacol peroxidase (G-POX) and ascorbate
peroxidase (APX) are essential protective enzymes related to the enzymatic defense system,
effectively decomposing ROS and reducing HyO, levels in plants [27,62,63]. Under stress
conditions such as water deficit, plants evolve the mechanisms of tolerance to resist abiotic
stress via activation several antioxidant enzymes, including SOD, CAT, G-POX and APX to
protect the cell against oxidative damage [56]. The key of action mode of these enzymes
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is the balance between them, where SOD scavenges ROS and converts superoxide anion
radicals (O™ 5) to O, and H,O,, and then G-POX and CAT breakdown H,O, to water [64]. In
the present study, under water-stressed conditions, all antioxidant enzymes activities were
significantly increased compared to the well-watered conditions. However, exogenous MT
maximized the activities of SOD, CAT, G-POX and APX compared to control under water-
stressed conditions. Whereas; H,O, content decreased, the reduction of H;O, may relate
to antioxidant enzymes activity in MT-treated plants. Similarly, MT treatment improved
CAT, SOD and G-POX activity in maize under drought stress [65]. These findings suggest
that MT may play a crucial role in the activity of antioxidant enzymes and protecting plant
cells from damage under drought stress.

Concerning the yield of potato, inevitably, water-stressed conditions had a negative
effect and reduced the tuber yield of potato, but exogenous melatonin foliar application at
a rate of 0.1 mM significantly increased tuber yield compared to control and another two
concentrations. This indicates that melatonin has a vital role in tuber development under
water stress by regulating the formation of growth regulators and non-reducing sugars.
From the previous studies, melatonin and ABA function antagonistically or synergistically
in order to regulate many processes in plants under stress conditions [58,66]. In this
study, under drought stress, MT-treated plants showed a significant decrease in ABA
compared to the untreated plants. This effect could be attributed to enhance leaf water
status and antioxidant capacity of MT-treated plants. Several lines of evidence confirmed
that, tuberization in potato plants is a developmental stage correlated with reducing of
gibberellin (GA3) and increasing of sucrose. Also, there is an antagonism between ABA
and GAj in the presence of sucrose [43]. Indeed, ABA stimulates the tuber formation in
potato via inhibition of stolon elongation, as prerequisite for formation process [67]. Also,
there is a negative correlation between tuberization and reducing sugars content, while
sucrose induces the tuberization by causing a hormonal changes in potato plants [68],
sucrose induces the tuber-specific genes expression [69], acts as secondary messengers
which have the ability to regulate the growth and development under abiotic and biotic
stresses. Moreover, it is well documented that the photosynthetic carbon metabolites can be
transported in plant as sucrose [70]. Hence, our study suggests that melatonin induces the
potato tuberization and tubers formation and enhances tubers development under water-
stressed conditions by increasing the non-reducing sugars and inhibition ABA transport
from the root to shoot system leading to improving the tuber yield.

4. Material and Methods
4.1. Plant Material and Growth Conditions

Imported basic seed potatoes (Solanum tuberosum L.; CV, Hermes, Scotland) were
kept for 3 weeks in a ventilated room until sprouting. After that, the homogenous seed
tubers in size and form (35-40 mm) were planted in plastic pots (40 cm diameter) filled
with 16 kg pre-washed sand (one sprouted tuber/pot). All pots were kept under green-
house conditions during the period from 19 January to 10 May 2021. Air minimum and
maximum temperatures and relative humidity (Table 1) were recorded inside the green-
house using a digital Thermo/Hygrometer Art placed in the middle of the greenhouse
(No0.30.5000/30.5002, TFA; Wertheim, Baden-Wiirttemberg, Germany).

Table 1. Summary of the monthly mean climate condition, maximum (Tmax) and minimum (Tyn),
mean (Tave) temperatures and relative humidity (RH), inside the greenhouse.

Month Tmax Thmin Tave RH (%)
January 23.9 114 17.6 62.6
Febrauary 26.2 13.1 19.6 65.2
March 27.4 13.9 20.6 65.7
April 33.7 15.6 24.6 60.2

May 38.5 242 314 58.6
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4.2. Treatments and Experimental Layout

To investigate the effect of exogenous melatonin (MT) as a foliar application on potato
plants grown under well-watered and drought stressed conditions, plants were sparyed
with MT (Bio Basic, Markham, York, Ontario, Canada) at 0.05, 0.1 and 0.2 mM. Addationally,
distilled water was sprayed as a control. Tween-20 at 0.05% (v/v) as a wetting agent was
used with all foliar treatments. The total number of pots (144) was divided into two major
groups to apply the irrigation treatments (72 pots to apply the drought stress and 72 pots
to apply the well-watered level). The timeline infographic for the treatments and sampling
was shown in Figure 7. Each major group was divided into four subgroups to apply the
different foliar treatments of MT (18 pots/subgroup). Each pot containing a single plant
was weekly sprayed with 20 mL of specific MT concentration for 5 times at 42, 49, 56, 63, and
70 days after planting respectively. The progressive drought stress was applied during the
most critical period of potato tuberization. Irrigation was stopped for 10 days (55-64 days
after planting), rehydration was applied once with full strength Hogland’s solution at
65 days after planting; then irrigation was stopped again for 10 days (6675 days after
planting). However, the well-watered plants were irrigated seven times during this period
(six times with tap water and one time with full strength Hogland’s solution as shown in
Figure 7. The experimental layout was a Complete Randomized Design (CRD) including
3 replicates x 6 pots X 4 melatonin x 2 irrigation. Two pots from each replicate were left
to the end of experiment at 110 days after planting to evaluate the tuber yield /plant.

Exogenous melatoninas | The most critical period to
a foliar application ! drought stress
I Senescence of
Q© Irrigation with Hoagland’ | A plants & Tuber
solution I ( \ harvesting
© Irrigation with water Sampling at
| Tuber - : s
seed tub I initiati maximum vegetative .}
ee' u. er initiation gaowth stage
cultivation | Progressive drought
|_ __1L__ _St_’esi _ Increase tuber
I 1 size
Drought
stress
Allocation of
carbohydrates &
starch synthesis
Well-
watered

0 time

>

55 65
2 110

Days after planting

Figure 7. The timeline infographic for the treatments of melatonin as a foliar application and sampling
of potato plants subjected to the well watered conditions and progressive drought stress during the
tuberization stage.

4.3. Determination of Growth Parameters

When plants reached the maximum vegetative growth stage at 75 days after planting,
two pots from each replicate were gathered to evaluate the growth parameters. Shoot fresh
weight was immediately estimated after sampling using a digital balance, whereas shoot dry
weight was determined by drying the samples in an air-forced ventilated oven at 105 °C.
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4.4. Determination of Leaf Photosynthetic Pigments

The concentration of chlorophyll (Chl) a and b, and carotenoids in fresh leaves was
determined spectrophotometrically according to Lichtenthaler and Wellburn [71]. Fresh
weight (0.05 g) of fully expanded young leaves was used for pigment extraction in 80%
acetone. The extract of pigments was measured versus a blank of pure 80% acetone at 663,
644, and 452.5 nm for Chla, Chlb, and carotenoid contents, respectively.

4.5. Determination of Relative Water Content (RWC), Osmolytes and Soluble Sugars

Leaf relative water content (RWC) was estimated according to Abd El-Gawad et al. [1].
Leaf discs from 6 of fully expanded leaves were weighed (FW) and placed immediately in
distilled water for 2 h at 25 °C then the turgid weight (TW) was recorded. After that discs
were fully dried in an oven at 110 °C for 24 h (DW). Relative water content (RWC) was
calculated using the following formula:

o FW-—-DW
RWC (%) = TW_DW ~ 100

Free amino acids were determined using the ninhydrin reagent according to the
method of Hamilton, et al. [72]. Proline concentration was determined by the method of
ninhydrin reagent as described by Bates, et al. [73]. Total soluble sugars were estimated
using the anthrone method [74], whereas, the reducing sugars were determined using the
dinitrosalicylic acid method [75], and the non-reducing sugars content was estimated using
the difference between the total soluble sugar content and the reducing sugars.

4.6. Determination of Cell Membrane Stability Index, Methylglyoxal, HyO, and Lipid Peroxidation

Cell membrane stability was estimated as described by Abd Elbar, et al. [76] with some
modifications. Eight leaf discs with 1.8 cm diameter were incubated in 10 mL deionized
water for 24 h on a shaker. After that EC; values of contents were measured by EC meters
(DOH-5D1, TC-OMEGA, USA /Canada). Then, samples were autoclaved at 120 °C for
20 min to determine the values of EC;. Cell membrane stability index was calculated using

the following equation:
EC1
MSI = [1 - (ECZ)] x 100

Methylglyoxal (MG) content was determined according to Hossain et al. [35] with some
modifications. Fresh leaves (0.5 g) were homogenized in 3 mL of 0.5 M perchloric acid, then
incubating for 15 min on ice. The mixture was centrifuged at 4 °C for 10 min at 10,000 rpm.
The supernatant was decolorized by adding charcoal, kept for 15 min at room temperature,
and centrifuged at 10,000 rpm for 10 min. Before using this supernatant for MG assay, it
was neutralized by keeping for 15 min with saturated solution of potassium carbonate
at room temperature and centrifuged again at 10,000 rpm for 10 min. The neutralized
supernatant was used for MG estimation. One ml of the reaction mixture containing 250 pL
of 7.2 mM 1, 2-diaminobenzene, 100 uL of 5 M perchloric acid, and 650 pL of the neutralized
supernatant were added in that order. The absorbance at 335 nm was read after 25 min
using a UV-spectrophotometer. Hydrogen peroxide (H;O;) concentration was estimated
colorimetrically by the method of potassium iodide [77]. Malondialdehyde (MDA) was
determined by thiobarbituric acid (TBA) method [78].

4.7. Assay of Antioxidant Enzymes and ABA Determination

Fresh leaves (0.2 g) were ground in 4 mL of 0.1 M ice-cold sodium phosphate buffer
(pH 7.0) containing 1% (w/v) polyvinylpyrrolidon (PVP) and 0.1 mM EDTA, centrifuged
at 10,000 g at 4 °C for 20 min. The supernatant was used for the next enzyme activity
assays. To calculate the specific activity of different enzymes, total soluble protein was also
determined in the supernatant according to Bradford [79]. Superoxide dismutase (SOD;
EC 1.15.1.1) activity was evaluated according to the ability to inhibit the photochemical



Plants 2022, 11, 1151

12 of 16

reduction of nitro blue tetrazolium (NBT) at 560 nm [80]. Catalase (CAT; EC 1.11.1.6) activity
was assayed by monitoring the decrease in absorbance of H,O, at 240 nm [81]. Guaiacol
peroxidase (G-POX; EC1.11.1.7) activity was evaluated by observing its ability to convert
guaiacol to tetraguaiacol by monitoring the increase in absorbance at 470 nm [82]. Ascorbate
peroxidase (APX; EC 1.11.1.11) activity was determined based on the decrease in ascorbate
at 290 nm [83]. Abscisic acid (ABA) was extracted from fresh leaf tissues according to
the method of Shindy and Smith [84]. Then, High-Performance Liquid Chromatography
(HPLC; SCIEX, Framingham, MA, USA) was used to complete the quantification procedure
according to Nakurte, et al. [85].

4.8. Statistics

One way ANOVA procedure was followed using SAS [86] software. Means + SD
were calculated from three replicates and Duncan’s multiple range test (p < 0.05) was used
to determine the significant differences between means.

5. Conclusions

In conclusion, this study demonstrated the beneficial effects of melatonin (MT) in
alleviating drought stress during the most critical period of early tuberization. Applied-MT
decreased the harmful effects of drought induced carbonyl/oxidative stress. These effects
were observed by reducing the cytotoxic biochemical cellular markers (MG, H,O; and
MDA). These responses were in parallel with enhancing plant growth, chlorophyll content,
leaf water status and activities of antioxidant enzymes. Moreover, MT can differentially
regulate the tuberization process under well-watered and drought stressed conditions.
This regulation may be correlated with the effect of MT on increasing the non-reducing
sugars on one side; and restriction of ABA transport from the root to shoot system on the
other side (Figure 8). Further studies using advanced molecular techniques are required to
better understand the role of MT in tuberization process and inducing different signaling
pathways in potato plants under water deficiency.

R v ~ ROS _7CIosing
y Sugars sy “Stomata

*Q - ‘;/,'A Ca?*

Carl;inyl and Shoots Shoots
}
oxidative strg A

]
1 ]
1 |}
Restriction ; :
1 o [
1- Photosynthesis P~ N :
1 N
2- Water uptake 1 H : E
g Fy
3- Plant growth a : : 2 a
4- Hormonal balance § : Melatonin 1 2
(Excessive increase of ABA) =, :
5- Sugar transport ' v
(Decrease of non-reducing Roots Roots
sugars)
PR —— Drought Stress Drought Stress with

Foliar Melatonin

without Foliar
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Melatonin Treatment

Figure 8. Simplified model for the suggested effect of exogenous melatonin as foliar spray on potato
plants grown under drought stress during the early stage of tuberization. In drying soil, ABA that is
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synthesized in roots can be carried by xylem stream to the shoot system leading to stomata closing
and reducing the rate of transpiration. Moreover, soluble sugars tends to accumulate in shoots as
reducing sugars (not suitable form to sugar transport) leading to decrease the rate of tuberization.
Conversely, melatonin treatments led to decrease ABA in shoots as resulting to enhancement of
leaf water status and antioxidant capacity. This effect may also be explained by restriction of ABA
transport from root to the shoot system. Furthermore, MT-treated plants tended to accumulate
the non-reducing sugars (the most suitable form to sugar transport and starch synthesis) leading
to improve the tuberization. ETC, electron transport chain in chloroplast and mitochondria; ABA,
abscisic acid; MG, methylglyoxal; ROS, reactive oxygen species.
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